Dilution Control in Single-Wire Stainless Submerged Arc Cladding Kotecki

download Dilution Control in Single-Wire Stainless Submerged Arc Cladding Kotecki

of 11

Transcript of Dilution Control in Single-Wire Stainless Submerged Arc Cladding Kotecki

  • 8/11/2019 Dilution Control in Single-Wire Stainless Submerged Arc Cladding Kotecki

    1/11

    W E L D I N G R E S E A R C H

    SUPPLEMENT TO THE WE L DI NG JOURNA L, FEBRUARY 1996

    Sponsored by the Amer ican Welding Soc ie ty and the Welding Research Counc i l

    Dilut ion Contro l in Single -Wire Sta in less

    Subm erged Arc C ladd ing

    Steel

    R e d u c e d s te p o v er , h i g h - c h ro m i u m f lu x , a n d D CE N a re e f fe c t iv e

    in p r o m o t i n g f e rr it e in a s in g l e - la y e r c l a d d i n g

    B Y D A M I A N J . K O T E C K I

    ABSTRACT. An exp er ime nta l s tudy of the

    effec ts o f bead-to-bead s tepover, wire

    s ize , w i re feed speed , vo l tage , f lux

    chrom ium content , and pola r i ty on d i lu-

    t ion and ferr i te in s ing le-wire submerged

    arc c ladd ing o f ER 309L on m i ld s tee l

    p la te i s desc r ibed . Low d i lu t ion was

    found to be p romoted by reduced

    stepover, reduced wir e feed speed, and

    DC electrod e negat ive p o lar i ty . Use of a

    h igh-chromium f lux can broaden the to l -

    e ra n c e f o r d i l u t i o n , p ro v i d i n g a n

    austenit ic deposit free of martensite, and

    containing at least 4 FN for assurance of

    f r e e d o m f ro m h o t c ra c k i n g o v e r a

    broader range of d i lu t ions.

    I n t r o d u c t i o n

    Work by Jackson (Ref. 1 and others

    has shown that d i lu t ion of s ing le weld

    beads can be contro l led to a l imi ted ex-

    tent by choice of weld ing parameters in

    s ing le -w i re submerged a rc c ladd ing o f

    s ta in less stee l on m i ld s tee l or low -a l lo y

    steel. Campbell and Johnson (Ref. 2) re-

    ported that bead over lap could be used

    to reduce d i lu t ion in c ladding. But fur ther

    studies on single-wire submerged arc re-

    la t ing to d i lu t ion seem to have been

    abandoned in v iew o f eas i l y ob ta ined

    low d i lu t ion w i th s t r ip c ladd ing .

    DA MIA N J. KOTECKI s w i th The L inco ln E lec -

    t r i c Co . , C leve land, O hio . Paper presented a t

    the AWS 75 th Annu a l Meet i ng, Ap r i l 10 -14,

    1994, in Phi ladelphia, Pa.

    However , inqu i r ies f rom fab r ica to rs

    about l im i t ing d i lu t ion in s ing le-wire sub-

    merged arc c ladding cont inue to be re-

    ceived. Fabricators request help w ith one

    or both of two problems, ty p ica l ly us ing

    AWS ER309L or s im i lar f i l le r meta l for the

    cladding. The more common problem is

    that the weld c ladding cracks dur ing bend

    tests for procedure qua lif icatio n, and the

    first layer of we ld cla ddin g is found to con-

    sist largely of martensite. Less comm on is

    that the we ld c lad ding exhib i ts center l ine

    cracks in the as-welded condi t ion, wi th-

    ou t bend ing , and the we ld c ladd ing is

    found to be v i r tu a l l y fu l l y aus ten i t i c

    (nearly devo id of ferrite).

    Both of these problems relate to exces-

    s ive d i lu t ion of the weld c ladding by the

    substrate. Accordingly, a procedure de-

    ve lop me nt program was undertaken to

    prov ide technical support to fabricators, in

    K EY W O R D S

    Stainless Steel

    C ladd ing

    Submerged Arc Weld ing

    D i l u t i o n

    Austenit ic Stainless

    Ferrite

    Martens i te

    Neutra l F lux

    A l loy F lux

    particu lar to offer weldin g procedures that

    wi l l l imi t d i lu t ion and prov ide austeni t ic

    stainless steel cladding, con taining a small

    amount of ferrite for crack resistance, in a

    single layer ove r mild steel.

    It should be recognized that a small

    amount of ferrite in the weld metal at room

    temperature is on ly an ind icat ion of the

    sol id i f icat ion mode, which actua l ly seems

    to determine whether or not hot cracking

    is l ikely. If the w eld metal s olidif ies as pri-

    mary ferr i te , hot c rack ing res is tance is

    ma ximized . But i f the weld meta l so l id i -

    f ies as primary austenite, then the l ikeli-

    hood o f hot cracking is rather high unless

    the weld meta l is excep t ional ly f ree of im -

    purities. Lefebvre (Ref. 3) describes this

    situation very we ll, and proposes that an

    approp riate specification req uireme nt is 4

    FN (Fer r i te Number) m in imum (de te r -

    mined wi th a magnet ic ins trument ca l i -

    brated accord ing to ISO 8249 or

    ANSI/AWS A4.2) to guarantee pr imary fer-

    r i te so l id i f i ca t ion in o rd ina ry aus ten i t i c

    stainless steel welding. Lefebvre further

    notes that an upper l im i t on weld FN m ight

    be imposed i f the weldm ent is to see ex-

    tended h igh-temperature serv ice (8 FN

    maximum), or i f the h ighest duct i l i ty and

    toughness are demanded in the as-welded

    condi t ion (12 or 15 FN maximum). How -

    ever, Lefebvre also notes that stainless

    steel weld meta l wi th excel lent duct i l i ty

    and toughness can have up to 70 FN max-

    imum i f used in the as-welded co ndi t ion.

    In the present study, the em phasis is on ob -

    ta in ing 4 FN m in imu m for assurance of

    W E L D I N G R E SE A RC H S U P P L E M E N T I 3 5 - s

  • 8/11/2019 Dilution Control in Single-Wire Stainless Submerged Arc Cladding Kotecki

    2/11

    1 /8 ER309L

    ST-100 Flux

    1 -3 / 4 " St ickou t

    20 ipm Trave l

    34 Vol ts DCEP

    38 Volts DCEP

    701

    =- 601

    O

    5 0 1

    ~ 4 0 1

    3 0 t

    r~

    I

    ~

    2 0 t

    r~ 101

    0 t

    0.4

    8 0 ,

    0.3 012 011

    S t e p o v e r , i n c h

    s e t u s in g a d ig i t a l c o n -

    t r o l w i t h f e e d b a c k t o

    m a i n t a i n c o n s t a n t w i r e

    fe e d s p e e d . C la d d in g s ,

    a t l e a s t e ig h t b e a d s

    w i d e , w e r e d e p o s i t e d

    o n 1 - in . ( 2 5 -m m ) th i c k

    A 3 6 m i l d s t e e l u s i n g

    ER3 0 9 L w i re , i n s i z e s

    5 /64 in . (2 .0 mm), 3 /32

    in . (2 .4 mm ), and 1 /8 in .

    ( 3 .2 m m ) . Fo r a g i v e n

    w i r e s i z e a n d s e t o f w i r e

    fe e d s p e e d (A ) , v o l t s ,

    t rave l speed , e tc . , s in -

    0 . 0 g l e - l a y e r c l a d d i n g s

    w e r e m a d e w i t h

    s te p o v ers f r o m a s m u c h

    as 0 .36 in . (9 .1 mm ) to

    as l i t t le as 0 .14 in . (3 .6

    m m ) . C h e m i c a l c o m -

    p o s i t i o n a n d F e r r i t e

    N u m b e r w e r e d e t e r m i n e d o n t h e l a t e r

    b e a d s o f e a c h s i n g l e - l a y e r c l a d d i n g ,

    w h e r e a s t e a d y- s ta t e c o n d i t i o n w a s o b -

    ta in e d . A t 0 .1 4 in . (3 .6 m m ) s te p o v e r, n o

    b a s e m e t a l p e n e t r a t i o n w a s o f t e n o b -

    s e r v e d , a n d t h e c o m p o s i t i o n o f t h i s

    c l a d d i n g c o u l d b e t a k e n as u n d i l u t e d

    w e l d m e t a l . A l te r n a t e ly , a v e r y l o w d i l u -

    t i o n d e p o s i t wa s p re p a re d , i f n e c e s s a ry ,

    u n d e r o t h e r w i s e i d e n t i c a l c o n d i t i o n s b y

    b u i l d i n g a s i x - l a y e r p y r a m i d o f w e l d

    m e ta l c o n s is t i n g o f s i x b e a d s in t h e f i r s t

    l a y e r, f i v e b e a d s in t h e s e c o n d la y e r, a n d

    s o fo r th , u n t i l t h e s i x th l a y e r c o n ta in e d

    F i g. I - - E f fe c t o f s t e p o v e r o n d i l u t i o n i n s i n g l e - w i r e s u b m e r g e d a r c

    c l a d d i n g .

    f r e e d o m f r o m h o t c r a c k i n g a l o n g w i t h

    a v o i d i n g m a r t e n s it e .

    E x p e r i m e n t a l P r o c e d u r e

    A t a b l e w a s c o n s t r u c t e d w i t h a l e a d

    s c r e w f o r a c c u r a t e l y an d r e p r o d u c i b l y i n -

    d e x i n g t h e s t e p o v e r f ro m b e a d t o b e a d .

    A l l w e l d i n g w a s c a r ri e d o u t w i t h a 6 0 0 -

    A DC re c t i f i e r h a v in g c o n s ta n t p o te n t ia l

    e l e c t r i c a l c h a r a c t e r i s t i c s a n d f e e d b a c k

    c o n t r o l t o m a i n t a i n d i g i t a l l y p r e s e t v o l t -

    a g e . A s i d e - b e a d c a r r i a g e c a r r i e d t h e

    w e l d i n g h e a d . W i r e f e e d s pe e d w a s p re -

    o n l y a s i n g l e b e a d . T h e c h e m i c a l c o m -

    p o s i t i o n a n d F e r ri te N u m b e r o f t h e s i x t h

    l a y e r w e r e t h e n d e t e r m i n e d f o r c o m p a r i -

    s o n to t h e re s u l t s f r o m th e s in g le l a y e r .

    D i l u t i o n w a s t he n c a l c u l a t e d f r o m t h e

    c l a d d i n g c h r o m i u m a n d n i c k e l c o n t e n t s

    c o m p a r e d t o t h o s e o f a l l - w e l d m e t a l

    u n d e r t h e s a m e c o n d i t i o n s , u s in g t h e f o l -

    l o w i n g f o r m u la s :

    % D i lu t i o n = 1 0 0 [1 - (% Cr i n o n e

    layer ) / (% Cr in s ix layers ) ] (1)

    % D i lu t i o n = 1 0 0 [1 - (% N i i n o n e

    layer ) / (% Ni in s ix layers ) ] (2)

    Av e ra g e D i lu t i o n = [Eq u a t io n (1 ) +

    Equ at ion (2 ) ] /2 (3)

    M o r e t h a n 7 0 d i f f e re n t c l a d d i n g c o n -

    d i t i o n s h a v e b e e n e x a m i n e d . T y p i c a l

    c o n d i t i o n s p r o v i d e d b y f a b r i c a t o r s

    s e rv e d a s s ta r t i n g c o n d i t i o n s . Th e s e t y p i -

    c a l l y i n v o l v e d p r o d u c i n g a w e l d b e a d

    a p p r o x i m a t e l y 3 / 4 i n . ( 1 9 m m ) w i d e , a n d

    i n d e x i n g t h e b a s e m e t a l r e l a t i v e t o t h e

    w e l d i n g w i r e a d is t a nc e o f a p p r o x i m a t e l y

    o n e - h a l f b e a d w i d t h f o r e a c h a d d i t i o n a l

    w e l d b e a d . T h i s a p p r o a c h w a s f o u n d t o

    o f t e n p r o d u c e o v e r 5 0 % d i l u t i o n . T h e n

    c o n d i t i o n s w e r e a d j u s t e d t o t ry t o o b t a i n

    l o w e r d i l u t i o n . I n s e tt i ng w e l d i n g c o n d i -

    t i o ns , w i r e f e e d s p e ed w a s a l w a y s p r e d e -

    te rm in e d . W i re fe e d s p e e d in t u rn d e te r -

    m i n e s w e l d i n g c u r r e n t , b u t t h i s

    re la t i o n s h ip i s a f f e c te d b y e le c t ro d e e x -

    T a b l e 1 - - C l a d d i n g T e s t R e s u lt s

    Angle

    Towards

    Step- Pr ev iou s Arc Composition of Last Beads in First Layer, % Percent Dilu tion Based on:

    Sample over, B e ad , Volts,

    Num ber in . De gre es DCEP C Mn P S Si Cr Ni Mo Cu FN Comments Cr Ni Avg.

    W ireLo t - - - - - - 0 .022 2 .12 0 .024 0 .011 0 .55 23 .84 13 .43 0 .04 0 .41 12 .7 N= 0.05 1 - - - - - -

    309N

    309 100 5 0.36 0 34 0.114 1.78 0.017 0.007 0. 41 10.38 6.40 0.02 0.18 61.0 Martensite 56.8 49.1 53.0

    309 10 04 0.29 0 34 0 .1 01 1. 78 0.018 0.008 0.42 12.48 7.30 0.03 0.18 6.3 Martensite 48.1 42.0 45.0

    30 91 00 3 0 .21 0 34 0.078 1 .94 0 .023 0 .011 0 .53 16 .58 9 .12 0 .04 0 .24 0 . 70 kT ie - i n 31 .0 27 .5 29 .3

    W1 64 0.18 0 34 0.075 2.52 0.0 31 0.015 0.63 19.90 10.78 0.05 0.31 7.0 Slig htR oll 17.2 14.3 15.8

    30 91 00 2 0.14 0 34 0.022 2.56 0.032 0.01 1 0.75 24.04 12.58 0.05 0.37 17.9 No Tie - in 0.0 0.0 0 . 0

    30 910 033 0 .21 30 34 0 .070 1 .93 0 .023 0 .011 0 .54 17 .10 9 .49 0 .04 0 .25 0 .6 0k T ie - i n 28 .9 24 .6 26 .7

    W165 0.18 30 34 0.119 2.47 0.0 31 0.014 0.64 19 .1 2 10.29 0.05 0.29 4.6 Slig htR oll 20.5 18.2 19.3

    30 91 00 32 0.14 30 34 0.035 2.16 0.025 0.009 0.6 1 21.22 11.24 0.03 0.28 7.5 Sl ightR oll 11.7 10.7 11.2

    45P3 0.21 45 34 0.074 1.74 0.019 0.006 0.37 15.97 7.67 0.0 1 0.20 0 .8 0 k T ie - i n 3.6 39.0 36.3

    45P2 0.14 45 34 0.048 2.30 0.027 0.010 0.66 22.66 11 .7 2 0.04 0.32 11 .1 Slig htR oll 5.7 6.8 6.3

    90 30 9 0.36 0 38 0.137 1.74 0.017 0.008 0.38 10.56 6.14 0.02 0.18 54.5 Martensite 56.1 50.4 53.2

    1 0 0

    38 5

    90 30 9 0.29 0 38 0.107 1. 85 0.018 0.008 0.42 12.57 6.80 0.03 0.20 13 .1 Martensite 47.7 45.1 46.4

    100 38 4

    90 30 9 0.21 0 38 0.086 1.97 0.024 0.012 0.56 16.74 8.74 0.04 0.26 0.8 Slight Roll 30.4 29.4 29.9

    1 0 0

    38 3

    90 30 9 0.14 0 38 0.029 2.50 0.034 0.01 1 0.74 24.04 12.38 0.05 0.33 15 .3 N oT ie in

    0 . 0 0 . 0

    0.0

    1 0 0

    38 2

    303 09 0 .21 30 38 0 .0 91 1 .9 5 0 .023 0 .012 0 .54 17 .08 9 .05 0 .05 0 .25 0 .5 0k T ie - i n 29 .0 26 .9 27 .9

    1 0 0

    38 3

    30 30 9 0.14 30 38 0.050 2.25 0.029 0.009 0.63 22.08 11.08 0.04 0.27 11 .5 Slig htR oll 8.2 10.5 9.3

    1 0 0 3 8 2

    Madewith 1/8 in. ER309L,80 in./minwire eedspeed approximately 80 A, 16 .7 b/h del~sition ate),1-3/4 n. Electrical xtension,20 in./min ravelspeed,ST-IO0chromium-compensatinglux.

    3 6 - s l F E B R U A R Y 1 99 6

  • 8/11/2019 Dilution Control in Single-Wire Stainless Submerged Arc Cladding Kotecki

    3/11

    F i g . 2 - - C r o s s - s e c t i o n s o f 1 / 8 - i n . ( 3 . 2 - m m ) E R 3 0 9 L s i n g l e - l a y e r c l a d d i n g w i t h S T - 1 0 0 f l u x a t v a r -

    i o u s s t e p o v e r s , s u c c e s s i v e b e a d s f r o m l e f t t o r ig h t .

    tension, polarity, and factors not always

    under con t ro l . Cur ren t va lues repor ted

    here in are on ly approx imate. I t was a l -

    ways the w ire feed speed that was actu-

    a l l y se t . A l l we ld ing was done on ASTM

    A36 mi ld s tee l p la tes. A nominal com-

    pos i t ion of 0 .17% C, 1% Mn, 0 .1% Si is

    quite representative of A36 steel, and any

    d e p a r tu re f r o m th i s c o m p o s i t i o n i n a

    g iven tes t p la te wi th in the A 36 s tee l spec-

    i f icat ion is very u n l ike ly to a f fec t the re-

    su l ts . Un less o the rw ise spec i f ied , the

    plate thickness was 1 in. (25 mm ). The in-

    t e rp a s s t e m p e ra tu re e m p l o y e d w a s

    300F (150C) maximum.

    E x p e r i m e n t a l R e s u l t s

    Ch r o m iu m - Co m p e n s a t i n g F l u x - - DCEP

    A n u m b e r o f c l a d d i n g s w e re m a d e

    with 1/8- in . (3 .2-mm) weld ing wire at 80

    in . /m in (2 .03 m/min ) w i re feed speed ,

    wh ich de posited about 16 .6 Ib/h (7.6 kg/h)

    on DC electrode p osit ive (DCEP) polarity,

    wit h a chromium-com pensating f lux, ST-

    100. Table 1 l is ts the tes t condi t ion s,

    cladding composit ions and Ferrite Num-

    bers, and calculated dilution s. Voltage, t i l t

    of the electrode back tow ard the previous

    bead, and s tepover were pr inc ipa l var i -

    ab les. Of these, on ly s tepover had a major

    effect on dilution. With stepover of 0.36

    in. (9 .1 mm), over 50% di lu t ion was ob-

    served, and the c ladding was h igh ly m ag-

    netic due to martensite formation. Since

    martensite is ferromagnetic, as is ferrite,

    some in terpretat ion of measured Ferr i te

    Number is always necessary in cladding.

    Martensite presence can be determined

    me ta l lographica l ly by i ts hardness, by i ts

    brittleness in a ben d test, or by the chem -

    ical composit ion of the metal wit h refer-

    ence to the Schae ffler diagram (Ref. 4). In

    the present work, most martensite deter-

    m i n a t i o n s w e re m a d e f r o m c h e m i c a l

    composit ion and the Schaeffler diagram.

    With s tepover o f 0 .21 in . (5 .4 mm), the

    depos i t was v i r tua l l y nonmagne t ic (0 .7

    FN) , ind ica t ing tha t i t i s a lmos t fu l l y

    austenit ic. With stepover of 0.14 in. (3.6

    mm), 0% di lu t ion was observed (no t ie- in

    to the base metal). With stepover of 0.18

    in. (4 .5 mm), d i lu t ion of about 16% w as

    obtained with 7 FN, and the steady-state

    deposit composit ion matches exa ctly wit h

    a 308 composit ion. This last result wo uld

    be opt imum for crack res is tance, me-

    chanical properties, and corrosion resis-

    tance in a single layer of cladding.

    Figure I presents thes e results graphi-

    ca l ly and shows that vol tage has v i r tu a l ly

    no ef fec t on d i lu t io n under these condi-

    t ions, b ut stepover has a very large effect.

    Figure 2 shows cross-sections of the 34-V

    claddings of Fig. I and Table I. W ith 0.36 -

    in. (9.1-mm) stepover, the depth of fusion

    for each successive bead is sca rcely

    changed from that of the f irst bea d. But as

    the stepover is reduced, i t can be seen that

    the b eads after the f irst one h ave succes-

    sive ly less penetration into the m ild steel.

    The c ladd ing a t 0 .18 in . (4 .5 mm)

    stepover, wh ich produced the most desir-

    able result of 7 FN and a deposit compo-

    s i t ion that looks exa ct ly l ike that o f a 308

    weld metal, exhibits a sl ight tendency to-

    ward ro l love r a t the edg e of the depos it ,

    which could be considered undesirable,

    though no incomplete fusion was found.

    Tilt ing the electrode back to war d the pre-

    v ious bead at 30 and 45 deg f rom vert ica l

    was used to see if this electrode t i l t co uld

    lessen the tendency tow ard rol lover, but i t

    was not ve ry helpfu l (Table I ) and did not

    in general reduce dilution.

    A s eries of claddings was m ade also

    with 3/32-in. (2.4-ram) and 5/64-in. (2.0-

    mm ) electrodes wit h sim ilar results. These

    are given in Table 2. Figure 3 compares the

    3/32-in . wire resul ts wi th those f rom the

    I /8- in . w ire . I tcan be seen that the smal ler

    we ld ing w ire produces somewhat less d i -

    lution at larger stepovers, but at 0.18-in.

    s tepover, wh ere there is ferr i te in the

    c ladd ing , the two w i re s izes p roduce

    equiva lent results , wi th lowe r depos i tion

    rate for the smal ler wire . As wi th the 1/8-

    in. electrode described above, when the

    stepover was reduced to the point w here

    about 5 to 8 FN was observed in the de-

    posit, there was a tendency fo r ro l l-ove r at

    the b ead edge. Table 2, as Table I, shows

    that t i t l ing the electrode 30 deg back to-

    ward the previous bead did not reduce di-

    lu t ion. With 5/64-in . w eld ing wire, both a

    low and a h igh wire feed speed were used

    to make c laddings at var ious s tepovers .

    The same genera l t rends we re seen wi th

    the la rge r w i res . The h igher w i re feed

    speed in general produced highe r di l u-

    t ion at a given stepover. The se results are

    W E L D I N G R E SE A RC H S U P P L E M E N T I 3 7 - s

  • 8/11/2019 Dilution Control in Single-Wire Stainless Submerged Arc Cladding Kotecki

    4/11

    T a b l e 2 - - C o m p a r i s o n o f C la d d i n g s

    Ang le

    Towards Arc Percent D i l u t i on

    Step- Previous Vol ts , Com posi t ion of Last Beads in Fi rst Layer, % Based on:

    Sample over, Bead DCEP

    Num ber in . Degrees ( in .) C Mn P S Si Cr Ni Mo Cu FN Comm ents Cr Ni Avg.

    3/32 W ire Lot 309 W 0.025 2.10 0.02 0.012 0.54 23.96 13.38 0.04 0.38 13.0 N=0.049

    Claddings m ade at 120 in . /min W ire Feed Speed (325 A 14.1 Ib /h D epos i t ion Rate) , 1 Electr ica l extension 20 in . /min T ravel Speed

    SW 221 0.36 0 34 0.098 1. 81 0.026 0.012 0.41 12.84 7.25 0.03 0.19 16.5 Martensi te 42.4 41.3 41.9

    W1 6 6 0 . 2 9 0

    W 167 0.21 0

    SW222 0.18 0

    W1 6 8 0 . 1 4 0

    SW223 0.36 30

    W1 6 9 0. 2 9 3 0

    W1 70 0 .21 30

    SW224 0.18 30

    W171 0.14 30

    2 .0 mm Wi re Lo t PN2817

    34 0.099 1.72 0.025 0.014 0.44 14.37 8.01 0.25 0.28 0.3 Ok Tie- in 35.6 35.2 35.4

    34 0.082 1.97 0.025 0.014 0.59 17.35 9.30 0.10 0.33 1.1 Ok Tie- in 22.2 24.8 23.5

    34 0.064 2.24 0.030 0.015 0 .6 1 19.36 10.33 0.05 0.28 5.5 Ok Tie- in 13.2 16.4 14.8

    34 0.057 2.78 0.037 0.018 0.78 22.31 12.36 0.07 0.36 16 .1 No Tie- in 0.0 0.0 0.0

    34 0 .121 1 .5 1 0 .023 0 .010 0 . 31 12 .14 6 .99 0 .02 0 .18 13.9 Mar tens ite 45 .6 43 .4 44 .5

    34 0.111 1.80 0.027 0.010 0.41 13.39 7.59 0.03 0.21 6.6 Martensi te 40.0 38.6 39.3

    34 0 .088 2 .00 0 .030 0 .009 0 .56 17 .49 9 .40 0 .04 0 .26 0 .2 Ok T ie - in 21 .6 23 .9 22 .8

    34 0.070 2.56 0.029 0.016 0.65 20.10 10.54 0.06 0.29 5.9 Rol l 9 .9 14.7 12.3

    34 0.055 2.62 0.035 0.009 0.69 20.71 11.39 0.06 0.31 9 .9 Rol l 7 .2 7.8 7.5

    0.020 2.08 0.021 0.007 0.44 23.90 13.73 0.05 0.53 12.5 N = 0.045

    Claddings m ade at 150 in . /m in W ire Feed Speed (300 A, 12.3 Ib /h D epos i t ion Rate) , 1 Ele lctr ica l extension 20 in . /min T ravel Speed

    W 174 0.29 0 34 0.146 1.77 0.021 0.009 0.32 13.42 7.81 0.03 0.29 0.3 Ok Tie- in 41.0 38.4 39.7

    W175 0 .21 0 34 0 .128 1 .87 0 .024 0 .012 0 .43 15 .23 8 .82 0 .04 0 .31 0 .0 0 k T ie - i n 33 . 1 30 .4 31 .7

    W 17 6 0.14 0 34 0.073 2.62 0.029 0.01 6 0.63 19.98 11.25 0.09 0.45 6.7 Sl ight Rol l 12.2 11.2 11 .7

    Claddings m ade at 100 in . /min W ire Feed Speed (210 A, 8 .2 Ib /h Dep osi t ion Rate) , 1 g Electr ica l extension, 14 in . /min T ravel Speed

    W17 7 0 .29 0 34 0 .102 1 .99 0 .026 0 .013 0 .47 16 .68 9 .35 0 .04 0 .35 0 . 7 0 k T ie - i n 26 .7 26 .2 26 .5

    W 178 0.21 0 34 0.060 2.82 0.031 0.015 0.61 20.14 11.27 0.06 0.42 8.0 Sl ight Rol l 11.5 11.0 11.3

    W1 79 0 .14 0 34 0 .059 2 .89 0 .037 0 .016 0 .74 22 .76 12 .67 0 .08 0 .46 17 .4 No Tie - i n 0 .0 0 .0 0 .0

    Made wit h Y~2 n. and ~.4 in. , ST-100chromium-compensating lux.

    T a b l e 3 - - C o m p a r i s o n o f Cl a d d in g s

    Ang le

    Towards Arc Percen t D i l u t i on

    Step- Previous Vol ts , Com posi t ion of Last Beads in Fi rst Layer, % Based on:

    Sam ple over, Bead DCEP

    Num ber in . Degrees ( in .) C M n P S Si Cr Ni M o Cu FN Com ments Cr Ni Avg.

    Claddings ma de at 120 in . /m in W ire Feed Speed (325 A, 14.1 Ib /h Dep osi t ion Rate, 20 in . /m in Trave l Speed

    SW225 0.36 30 34 0.075 1.68 0.022 0.012 0.55 17.00 9.95 0.04 0.26 0.2 Too Mu ch 23 .5 24.2 23.8

    Step

    SW 226 0.29 30 34 0.072 1.74 0.022 0.013 0.59 17.95 10.39 0.04 0.27 0.0 Ok Tie- in 19.2 20.8 20.0

    W1 73 0.21 30 34 0.062 2.38 0.022 0.015 0.75 19.83 11.80 0.05 0.34 5.4 Ok Tie- in 10.7 10.1 10.4

    SW227 0.18 30 34 0.023 2.30 0.024 0.016 0.74 21.54 12.87 0.06 0.35 9.3 Slag Spots 3.0 1.9 2.5

    SW 228 0.14 30 34 0.014 2.47 0.026 0.015 0.83 22.21 13.12 0.06 0.37 12.1 No Tie- in 0.0 0.0 0.0

    Claddings m ade at 150 in . /min W ire Feed Speed (380 A, 17.6 Ib /h D eposi t ion Rate), 25 in . /m in Trav el Speed

    SW229 0.36 30 34 0.099 1.50 0.020 0.011 0.42 14.59 8.77 0.03 0.22 0.2 Too Mu ch 35.0 33.2 34 .1

    Step

    SW 230 0.29 30 34 0.096 1.59 0.021 0.012 0.48 16.25 9 .48 0.03 0.25 0.1 Fai rT ie- in 2 7.6 27.8 27.7

    W 198 0.21 30 34 0.027 1.68 0.017 0.009 0.59 19.30 10 .7 1 0.17 0.31 4.0 Fai rT ie- in 14.0 18.4 16.2

    SW 231 0.18 30 34 0.041 2.26 0.023 0.015 0.67 20.92 12.26 0.06 0.34 8.1 Slag Spots 6.8 6.6 6.7

    SW232 0.14 30 34 0.025 2.42 0.025 0.016 0.75 22.44 13.13 0.07 0.35 12.3 No Tie- in 0.0 0.0 0.0

    Claddings m ade at 180 in . /min W ire Feed Speed (450 A, 21.2 Ib /h D epos i t ion Rate) , 30 in . /m in Travel Speed

    SW233 0.36 30 34 0.119 1.42 0.018 0.010 0.35 14.05 8.31 0.02 0.21 0.7 Too Mu ch 37.4 3 6.7 3 7.0

    Step

    SW234 0.29 30 34 0.149 1.54 0.019 0.013 0.45 15.08 8.92 0.03 0.24 0.1 Slag Spots 32.8 3 2 .1 32.4

    W 199 0.21 30 34 0.036 1.59 0.015 0.008 0.58 16.70 9.81 0.20 0.30 1.5 Fai r Tie- in 25 .6 25.3 2 5.4

    SW235 0.18 30 34 0.042 1.82 0.022 0.014 0.62 20.21 11.66 0.05 0.32 5.6 Ok Tie- in 9.9 11.2 10.6

    SW236 0 .14 30 34 0 .030 2 .30 0 .023 0 .016 0 .70 21 .85 12 .7 1 0 .06 0 .35 10 .0 No T ie - i n 0 .0 0 .0 0 .0

    Madewit h g2 in. ER309LLot 309W, 1 in. Electricalextension,882 basicchromium-free lux.

    a l s o i n c l u d e d i n F i g . 3 .

    B a s i c C h r o m i u m - F r e e F l u x - - D C E N

    D C e l e c t r o d e n e g a t i v e (D C E N ) p o l a r -

    i t y w a s u s e d f o r a s e ri e s o f c l a d d i n g s w i t h

    3 / 3 2 - i n . ( 2 . 4 -m m ) w e l d i n g w i r e . T h e

    c h r o m i u m - c o m p e n s a t i n g f l ux d i d n o t

    p e r f o r m w e l l u s i n g D C E N ( p o o r b e a d

    s h a p e ) s o a h ig h b a s i c i t y c h r o m i u m - f r e e

    f l u x ( 88 2 ), w h i c h w e l d s b e t t e r o n D C E N ,

    w a s c h o s e n f o r t h i s s e r i e s . E v e n w i t h t h i s

    f l u x , b e a d s t e n d e d t o b e n a r r o w e r a n d

    h i g h e r w h e n u s in g D C E N t h an w h e n

    u s i n g D C E P a t o t h e r w i s e i d e n t i c a l s e t -

    t i n gs . T h e 0 . 3 6 - i n . ( 9 . 1 - m m ) s t e p o v e r

    t u r n e d o u t t o b e t o o m u c h t o o b t a i n c o n -

    s i s t e n t t i e - i n b e t w e e n b e a d s . T h e r e s u l t s

    a r e g i v e n i n T a b l e 3 . F o r a g i v e n s t e p o v e r ,

    le ss d i l u t i o n w a s o b t a i n e d o n D C E N t h a n

    w a s o b t a i n e d o n D C E P , a s c a n b e s e e n b y

    c o m p a r i n g t h e r e s u lt s f o r o t h e r w i s e s i m -

    i l a r w e l d i n g c o n d i t i o n s i n T a b l e 2 . T h i s

    c o m p a r i s o n is m a d e g r a p h i c a l l y i n F ig . 4 .

    F e r r i te w a s n o t a s h i g h a s w i t h t h e

    c h r o m i u m - c o m p e n s a t i n g f l ux a t a g iv e n

    d i l u t i o n d u e to l o w e r c h r o m i u m , b u t 5

    3 8 - s l F E B R U A R Y 1 99 6

  • 8/11/2019 Dilution Control in Single-Wire Stainless Submerged Arc Cladding Kotecki

    5/11

    e,

    o

    8 o r

    I/8 wire, 80 ipm, 16.6 lb/hr

    701 -E3-- 3/32 wire, 120 ipm, 14.1 lb/hr

    5/64 wire, 150 ipm, 12.3 Ib/hr

    601 ~ 5/64 wire, 100 ipm, 8.2 lb/hr

    I -

    %,

    0.4 0;3 o12 d l o.o

    S t e p o v e r ,

    i n ch

    F i g . 3 - - E f fe c t o f w i r e s i z e o n d i l u t i o n i n s in g l e - w i r e s u b m e r g e d a r c

    c l a d d i n g .

    801

    701

    d 601

    o

    5 0

    401

    ~ 30

    i

    ~

    2ol

    r~ lOl

    01

    0.4

    0 . 0

    3/32 ER309L

    120 ipm Wire Feed, 34 Volts

    1 - I / 2 " S t i c k o u t

    20 ipm Travel

    D C E P , S T - 1 0 0

    Flux

    --E3-- DCEN, 882 Flux

    [] ............13 ..... .. [ ]

    0.3 012

    01

    S t e p o v e r ,

    i n c h

    F i g . 4 - - E f fe c t o f p o l a r i t y o n d i l u t i o n i n s i n g l e - w i re s u b m e r g e d a rc :

    c l a d d i n g .

    FN was ob ta ined a t about 10% d i lu t ion

    wi th 0.21 - in. (5.4-mm) stepover, at a de-

    posi t ion rate of abou t 14 .1 Ib/h (6.4 kg/h) .

    The bead shape ob ta ined under the 120

    in . /m in (3 .05 m /m in) w i re feed speed

    condi t ion at 0.21- in. (5.4-mrn) stepover

    (Sample W173 in Table 3) was very at -

    t r a c t i v e w i t h n o t e n d e n c y t o w a r d

    rol lover .

    W i th th i s same f lux and we ld ing w i re ,

    a d d i t i o n a l c l a d d i n g s w e r e m a d e o n

    DCEN at h igher w i re feed speeds to de-

    te rm ine i f a h igher depos i t ion ra te cou ld

    be made wi th s imi lar resul ts . C laddings

    made a t 150 in . /m in (3 .81 m /m in) w i re

    feed speed ( I 7.6 Ib/h; 8.02 kg/h) depo si -

    t ion rate) and at 180 in. /m in (4.57 m/m in)

    w ire feed speed (21.2 Ib/h; 9.62 kg/h de-

    pos i t i on ra te ) were made a t var ious

    stepovers, with the travel speed adjusted

    to keep a con stan t bead cross-section or

    constan t rat io of w i re feed speed to t ravel

    speed. These results are also detai led in

    Tab le 3 . H igher w i re feed speed com-

    b ined w i th h igher trave l speed produced

    h i g h e r d i l u t i o n a t a n y g i v e n s t e p o v e r .

    This is best seen in Fig. 5. The tende ncy

    for inco nsistent t ie- in be tween beads at

    large stepover became greater, and slag

    spots be tween beads were somet imes

    found in cross-sect ions of the c laddings,

    as no ted in Tab le 3 . Whi le good t i e - in

    and Ferr ite Num ber were ob tained at 180

    in. /m in (4.57 m/rain) w i re feed speed and

    0.1 8-in . (4.5-mm) stepover, it appeared

    that th is condi t ion is rather sensi t ive to

    s m a l l f l u c t u a t i o n s i n w i r e p o s i t i o n i n g ,

    and i t i s no t recommend ed.

    C h r o m i u m - A d d i n g F l ux - - D C E P

    As note d earl ier, Lefebvre (Ref. 3) rec-

    ommends a m in imum o f 4 FN fo r max i -

    mum hot cracking resistance. I t is appar-

    ent f rom the data of Tables 1 and 2 that

    d i lu t ion must be l im i ted to someth ing on

    t h e o r d e r o f 1 5 % w i t h t h e c h r o m i u m -

    compensat ing f l u x i f t h i s Ferr ite N umbe r

    is to be achieved. To permi t more f ree-

    dora i l l se lec t ion o f we ld ing cond i t i ons

    for s ingle-w ire submerged arc c ladding,

    a c h r o m i u m - a d d i n g f l u x c a n b e c o n s i d -

    e r e d . T h e A - 1 0 0 c h r o m i u m - a d d i n g f l u x

    w a s o r i g i n a l l y d e s i g n e d t o p r o d u c e a

    Type 410 stain less steel deposi t (12"/ , ,

    chrom ium) us ing a m i ld s tee l e lec t rode

    and DCEN polar i ty . This f lux can be used

    w i th DCEP as we l l , bu t DCEN a t h igh

    vo l tage i s recommended to ob ta in the

    12% Cr depos i t w i th a m i ld s tee l w i re .

    W i t h t h e c h r o m i u m - a d d i n g f l u x u s i n g

    DCEP, a series of six-layer deposits was

    made wi th the 3/32- in. (2.4-mm) ER309L

    w i re to exam ine a l l -we ld -meta l depos i t

    composi t ion and Ferr i te Number. The re-

    sults from a series of

    depos i t s a t i nc reas-

    ing vol tage are given

    in the upper por t ion 80

    of Table 4. Wi th al l 7o

    o t h e r c o n d i t i o n s ~ ,

    he ld cons tan t , the d 60

    d e p o s it c h r o m i u m o

    ~

    5 0

    conte nt r ises w i t h in-

    creasing vol tage , as ~ 4o

    expected . This ef fect ~

    30

    is caused by increas- r~

    ing arc leng th w i th ~ 20

    inc rea s ing vo l tage, r~ l0

    t h e r e b y m e l t i n g

    m o r e f l u x f o r t h e 0

    same amou nt o f w i re

    o . 4

    mel ted , o ther th ings

    b e i n g e q u a l . S i n c e

    t h e f l u x c o n t a i n s

    m e t a l l i c c h r o m i u m

    ( in the fo rm o f l ow -

    carbon fe r ro -chrom ium) , me l t i ng more

    f lux resul ts in more c hrom ium ga in in the

    we ld depo si t . At the same t ime, i t can be

    seen f rom the upper par t of Table 4 that

    the nickel content of the deposi t is de-

    creasing w i th increasing vol tage. This is

    no t caused by loss o f n i cke l due to o x i -

    d a t i o n , b u t t o m i x i n g a n d d i l u t i n g t h e

    n icke l f rom the w i re w i th the n icke l - f ree

    m e t a l ( f e r r o - c h r o m i u m ) f r o m t h e f l u x .

    Then, as a resu l t o f bo th inc reas ing

    chrom ium and decreas ing n icke l i n the

    deposi t , the deposit 's Ferri te N um ber in-

    c reases marked ly w i th inc reas ing vo l t -

    age. I t can also be see n that the Ferri te

    N u m b e r c a l c u l a t e d f r o m t h e d e p o s i t ' s

    com pos i t i on us ing the WRC -1992 d ia -

    gram (Ref . 5) agrees reasonably we l l w i th

    the measured Ferri te Numbers. I t is note-

    wo rthy that the deposi ts ' Ferr ite Num bers

    a r e c o n s i d e r a b l y h i g h e r w i t h t h i s f l u x

    - O - 180 ipm WFS, DCEN, 882 Flux

    --E3- 150 ipm WFS, DCEN, 882 Flux

    A-- 120 ipm WFS, DCEN, 882 Flux

    ' F [

    " - ~ " " - . E l

    0.3 0.2 0.1 0 , 0

    S tep o v er , i n ch

    F i g . 5 - - E f fe c t o r 3 / 3 2 - in . ( 2 . 4 - m m ) w i r e f e e d s p e e d o n d i l u t i o n i n

    D C E N c l a d d i n g w i t h 8 8 2 f lu x .

    W E L D I N G R E S EA R CH S U P P L E M E N T I 3 9 -s

  • 8/11/2019 Dilution Control in Single-Wire Stainless Submerged Arc Cladding Kotecki

    6/11

    T a b l e 4 D C E P W e l d s

    W i r e

    Feed Appro x. Deposi t Travel Six-Layer Depos i t Com posi t ion, %

    Sam ple Speed, Curren t, Rate Speed, Volts,

    Num ber ipm Amps Ib /hr ipm DCEP C Mn Si Cr Ni

    Wi re - - - - - - 0 .025 2 .10 0 .54 23 .96 13 .38

    6P8 110 315 12.9 18.0 30 0.028 2.02 0.73 25.88 12.93

    6P9 110 315 12.9 18.0 32 0.030 1.96 0.74 26.24 12.89

    6P10 110 315 12.9 18.0 34 0.038 2.03 0.76 26.99 12.40

    6P l l 110 315 12 .9 18 .0 36 0 .036 2 .05 0 .78 27 .73 12 .26

    6P12 110 315 12.9 18.0 38 0.032 2.07 0.79 27.78 11.75

    6P13 110 315 12.9 18.0 40 0.034 2.00 0.80 29.47 11.68

    6P14 120 340 14.1 20.0 34 0.030 1.92 0.76 27.17 12.41

    6 P 1 0 1 1 0 3 1 5 1 2 . 9 1 8 . 0 3 4 0 . 0 3 8 2 . 0 3 0 . 7 6 2 6 . 9 9 1 2 . 4 0

    6 P 1 5 1 0 0 2 9 0 1 1 . 8 1 6 .5 3 4 0 . 0 3 6 1 . 9 7 0 . 7 9 2 8 . 3 4 1 2 .3 1

    6 P 1 6 9 0 2 6 5 1 0 . 6 1 5 . 0 3 4 0 . 0 3 5 1 . 9 5 0 . 8 4 2 8 . 6 5 1 2 . 2 0

    6 P l 7 8 0 2 4 0 9 . 4 1 3 . 0 3 4 0 . 0 3 4 1 . 9 7 0 . 8 4 2 9 . 5 1 1 2 . 0 7

    6 P 1 8 7 0 2 1 5 8 . 2 1 1 .5 3 4 0 . 0 3 5 1 . 9 9 0 . 8 5 2 9 . 4 1 1 2 . 3 6

    6 P 1 9 6 0 1 9 0 7 .1 1 0 . 0 3 4 0 . 0 4 1 2 . 0 9 0 . 8 4 2 9 . 9 9 1 1 . 8 0

    Sing le -Laye r Depos i t C ompos i t i on , %

    WRC Percent Di lu t io n

    Mag ne 1992 Based on:

    Gage D iag ram

    N FN FN Cr Ni Avg.

    0 . 05 - - 1 3 .0 - - - - - -

    0 . 05 2 8 2 4. 1 - - - - - -

    0 . 05 2 5 2 5 . 8 - - - - - -

    0 . 05 2 9 3 2 . 6 - - - - - -

    0 . 05 3 7 4 2 . 8 - - - - - -

    0 . 0 5 4 2 4 9 . 8 - - - - - -

    0.05 66 66.8

    0.05 32 37.7

    0 . 0 5 2 9 3 2 . 6

    0 , 0 5 3 8 4 7 . 5

    0.05 51 51.9

    0.05 67 62.6

    0 . 0 5 7 0 5 7 . 7

    0 . 0 5 7 0 6 6 .9 - - - - - -

    SW265 120 340 14.1 20 .0 34 0 .102 1 .62 0 .52 15 .10 6 .56 - - 0 .2 - - 44 .42 47 .13 45 .78

    SW264 110 315 12 .9 18 .0 34 0 .110 1 .62 0 .49 16 .06 6 .62 - - 0 .6 - - 40 .49 46 .61 43 .55

    SW263 100 290 11.8 16.5 34 0.086 1.65 0.51 18.75 7.66 - - 6 .3 - - 33.83 37.77 35.80

    SW262 90 265 10 .6 15 .0 34 0 .079 1 .68 0 .53 20 .32 8 .17 - - 15.1 - - 29 .07 33 .03 31 .05

    SW261 80 240 9 .4 13 .0 34 0 .074 1 .80 0 .57 23 .00 9 .12 - - 25 .0 - - 22 .06 24 .44 23 .25

    Made wit h ~Z~ in, ER309L wire Lot 309 W and A -IO 0 chromium adding flux l in. Electrical extension, 0.29 in. Stepover

    t h a n w it h t h e c h r o m i u m - c o m p e n s a t i n g

    f l u x c o n s i d e r e d e a r l i e r .

    A s e c o n d s e ri e s o f s i x - l a y e r w e l d d e -

    p o s i ts w a s p r e p a r e d w i t h t h is s a m e f l u x

    a n d w i r e , b u t v a r y i n g o n l y w i r e f e e d

    s p e e d a t 3 4 V D C E R T h e t r a v e l s p e e d o f

    t h is s e r ie s w a s v a r i e d i n p r o p o r t i o n t o t h e

    w i r e f e e d s p e e d t o m a i n t a i n a n e a r l y

    c o n s t a n t w e l d b e a d c r o s s- s e c ti o n . T h e

    t e s t re s u l t s f r o m t h i s s e r i e s a r e g i v e n i n

    t h e m i d d l e o f T a b l e 4 . I t c a n b e s e e n t h a t ,

    a s t h e w i r e f e e d s p e e d i n c r ea s e s , o t h e r

    t h i n g s b e i n g e q u a l , t h e d e p o s i t o f

    c h r o m i u m d e c re a s e s. S i n c e t h e v o lt a g e

    ( a rc l e n g t h ) i s c o n s t a n t , i n c r e a s i n g t h e

    w i r e f e e d s p e e d s e n d s m o r e w i r e

    t h r o u g h t h e a rc c o l u m n f o r t h e s a m e

    a m o u n t o f m e t a l f r o m t h e f lu x , w h i c h

    c a u se s t h e c h r o m i u m t o de c r e a s e in th e

    d e p o s i t w i t h i n c r e a s i n g w i r e f e e d s p e ed .

    A t t h e s a m e t i m e , t h e n i c k e l c o n t e n t o f

    t h e d e p o s i t i n c r e as e s s l i g h t l y w i t h w i r e

    f e e d s p e e d . A s a r e s u l t o f b o t h d e c r e a s -

    i ng c h r o m i u m a n d i n c r e a s in g n i c k e l

    w i t h i n c r e a s i n g w i r e f e e d s p e e d , th e

    m e a s u r e d a n d c a l c u l a t e d d e p o s i t F e r r it e

    N u m b e r s d e c r e a s e w i t h i n c r e a s in g w i r e

    f e e d s p e e d . A g a i n , t h e d e p o s i t s ' F e r r i t e

    N u m b e r s a r e c o n s i d e r a b l y h i g h e r t h a n

    w i t h th e c h r o m i u m - c o m p e n s a t i n g f l ux

    c o n s i d e r e d e a r l i e r . A n d t h e m e a s u r e d

    F e rr it e N u m b e r s a g r e e re a s o n a b l y w e l l

    w i t h t h o s e c a l c u l a te d f r o m t h e W R C -

    1 9 9 2 d i a g r a m .

    I n c l a d d i n g , d e p o s i t i o n r a t e ( w i r e f e e d

    s p e e d ) d e t e r m i n e s h o w q u i c k l y a g i v e n

    j o b c a n b e c o m p l e t e d . S o i t w a s o f m o s t

    i n t e r e s t t o e x a m i n e s i n g l e - l a y e r c l a d d i n g

    c o m p o s i t i o n w i t h t h e c h r o m i u m - a d d i n g

    f l u x a s a f u n c t i o n o f w i r e f e e d s p e e d . F o r

    t h i s s e r ie s , a r e l a t i v e l y l a r g e s t e p o v e r ,

    0 . 2 9 i n . ( 7 .3 m m ) , w a s s e l e c t e d , a s t h i s

    r e su l ts i n n o t e n d e n c y f o r r o l l o v e r a t t h e

    e d g e o f t h e b e a d . T h e r e s u l t s a r e g i v e n i n

    t h e l o w e r p a r t o f T a b l e 4 . D i l u t i o n s w e r e

    c a l c u l a t e d u s i n g t h e s i x - l a y e r d e p o s i t

    c o m p o s i t i o n s f r o m t h e m i d d l e o f T a b le 4 .

    I t c a n b e s e e n t h a t , a t 1 0 0 i n . / m i n ( 2 . 5 4

    m / m i n ) w i r e f e e d s p e e d ( 1 1 . 7 I b / h ; 5 . 3

    k g / h d e p o s i t i o n r a t e ) , 3 5 % d i l u t i o n a n d a

    n e a r - 3 08 d e p o s i t c o m p o s i t i o n , w i t h 6 . 3

    5 0

    o

    4 0

    3 o

    o

    o

    ,.-1

    )

    7 0 1 3 0

    % D i l u t i o n 0 . . . . -. " ' ~ / _

    ---E)-- % C r

    - -- V -- % N i /

    :- L .. D - . . .. . .. . .. . .. . . a . . . . . .

    ~ , .. . . ' t ~ .. .. . .. . .. . .. . . []

    - v

    7 ~ - . . . .. . . .. ~ . . . . . . . .. . .V

    ' -4 ? A

    8 0 9 '0 1 0 0 1 1 0 1 ~ 0

    W i r e F e e d S p e e d , i p m

    6 0

    5 0

    4 0

    .~ 3 0

    2 0

    ca

    l 0

    1 ) 8 E R 3 0 9 L ' 0 ~ F N

    8 0 i p m W i r e F e e d S p e e d J '

    1 6 . 6 l b / h r D e p o s i t i o n R a t e

    2 0 i p m T r a v e l S p e e d

    A - 1 0 0 F l u x /

    l S t i c k o u t /

    0 . 2 9 S t e p o v e r

    J

    O

    O j n ~ - - - ~ - - ' ~ c r

    ........ B .......... o ......... o . -D

    .. . . . . . . A . . . . . . . . ~ . . . . . . . ~_ . . . . . . .~ . . . . . . . . .A__._%_._N

    2'6

    2 ' 8 3 ' 0 3 ' 2 3 ' 4

    ' 3'6 ' 3'8

    4 ~ 0

    A r c V o l t s , D C E N

    F i g . 6 - - E f fe c t o f 3 / 3 2 - i n . ( 2 . 4 - ra m ) w i r e f e e d s p e e d o n d i l u t i o n (%),

    c l a d d i n g c o m p o s i t i o n ( % ) , a n d f e r ri t e n u m b e r in D C E P c l a d d i n g w i t h

    A- 1 0 0 f l ux .

    F i g . 7 - - E ff e ct o f v o lt a g e o n a l l - w e l d - m e t a l c o m p o s i t i o n w i t h A - I O 0

    f l u x

    4 0 - s [ F E B R U A R Y 1 9 9 6

  • 8/11/2019 Dilution Control in Single-Wire Stainless Submerged Arc Cladding Kotecki

    7/11

  • 8/11/2019 Dilution Control in Single-Wire Stainless Submerged Arc Cladding Kotecki

    8/11

    T a b l e 7 - - L o n g i t u d in a l F a c e B e n d T e s ts

    C Mn P S Si Cr Ni N

    ER309L Lot 309N 0.022 2.12 0.024 0. 01 1 0.55 23.84 13 .4 ~ 0.051

    Sample Bead Six-Layer Deposit Composition, %

    Num ber Num ber Polari ty C MN P S Si Cr Ni N

    SW239 Six-Layer DC EP 0.028 2.03 0.030 0.008 0.77 26.40 12.43 - -

    SW280 1 DC EP 0 .1 0 1 0.96 0.017 0.016 0.35 12.98 4.27 - -

    SW280 2 DC EP 0.134 1. 01 0.018 0.014 0.39 14.7 7 5.22 - -

    SW280 3 DC EP 0.088 1 .0 2 0.018 0.014 0.39 15.4 8 5.41 - -

    SW280 4 DC EP 0.085 1 .0 4 0.018 0.014 0.42 15.67 5.54

    SW280 6 DC EP 0.104 0.99 0.018 0.017 0.37 I3.51 4.90 - -

    WRC

    1992

    FN

    12.7

    Magne

    Gage

    FN

    24.9

    65.7

    41.6

    8.9

    6.8

    63.2

    Comments

    Al l -We ld -

    meta

    Martensite

    Martensite

    Martensite

    Martensite

    Martensite

    Percent d i lu t ion

    based on:

    Cr Ni Avg.

    50.8 65.6 58.2

    44.1 58.0 51.0

    41.4 56.5 48.9

    40.6 55.4 48.0

    48.8 60.6 54.7

    S W270P S ix-Layer D C E N 0 . 0 3 1 1.58 0.026 0.008 0.79 29.40 1 2. 06 - - 4 5 . 1 A ll-W e ld . . .

    Metal

    SW281 1 DC EN 0.075 1 .1 2 0.022 0.014 0.47 18.51 6.20 - - 3.3 Fe rr i te ~7.0 48.6 42.8

    SW281 2 DC EN 0.059 1 .2 3 0.024 0.012 0.54 20.74 9.07 - - 10 .9 Fe rr i te 29.5 24.8 27.1

    SW281 3 DCE N 0 .065 1 . 25 0 .024 0 .012 0 .54 21 .41 9 .41 - - 12 .7 Fer r i te 27 . 2 22 .0 24 .6

    SW281 4 DC EN 0.057 1.24 0.023 0.012 0.54 20.94 9.40 - - 10 .0 Fer r i te 28.8 22.1 25.4

    SW281 6 DC EN 0.080 1 .1 4 0.024 0.015 0.49 1 9 .8 5 8.14 8.2 Fer r i te 32.5 32.5 32.5

    Using ~A n. ER~09L at 80 in./m in wi re feed speed (16.7 Ib/h depositi~)n rate), A-10 0 chr(~m ium-a dding flux, tg in. eh ( tri( al extension, 0. 29 in. stepow r, 20 in./mi n traw l speed, { 6 V, ~ in. thick m ild

    steel base metal.

    w h i l e l i m i t i n g d i lu t i o n , f u r th e r w e l d i n g

    w i t h t h e c h r o m i u m - a d d i n g f l u x w a s d o n e

    w i t h 1 / 8 - in . ( 3 . 2 - m m ) w i r e a n d D C E N . A t

    8 0 i n . / m i n ( 2 .0 3 m / m i n ) w i r e f e e d s p e e d

    (16 .7 Ib /h ; 7 .6 kg /h depos i t ion ra te ) , a se -

    r ie s o f v a r y i n g v o l t a g e w e l d s w a s m a d e .

    Th e u p p e r p a r t o f Ta b le 5 d e s c r ib e s th e

    a l l - w e l d - m e t a l c o m p o s i t i o n a n d F e r r i t e

    N u m b e r s o b t a i n e d . A s w i t h t h e D C EP r e-

    s u l t s n o t e d i n T a b l e 4 , t h e d e p o s i t

    c h r o m i u m c o n t e n t , a n d t h e r e fo r e t h e F e r-

    r i t e Nu m b e r , r is es w i th i n c re a s in g v o l t -

    a g e , a n d th e n i c k e l c o n te n t d ro p s s l i g h t l y .

    F ig u re 7 s h o ws th e s e t r e n d s a l s o . Th e s e

    d a ta p ro v id e th e b a s is f o r d i l u t i o n c a lc u -

    l a t i o n s f o r t h e s i n g l e - l a y e r c l a d d i n g s

    g iv e n in t h e lo w e r h a l f o f Ta b le 5 Fo r t h e

    lo we s t v o l t a g e c la d d in g in Ta b le 5 . (Sa m -

    p ie SW 2 6 6 ) , t h e re wa s v e ry l i t t l e t i e - i n

    b e tw e e n b e a d s . Th e 3 0 - , 3 2 - , a n d 3 4 -V

    c la d d in g s a l l s h o we d o c c a s io n a l s p o ts o f

    p o o r t i e - i n b e t w e e n b e a d s a l s o , w h i c h

    l o o k e d m u c h l i k e u n d e r c u t . B u t t h e t w o

    h i g h e s t v o l t a g e c l a d d i n g s s h o w e d g o o d

    t i e - in w i t h n o r o l l - o v e r t e n d e n c y ( d u e t o

    t h e r a t he r c o m f o r t a b l e 0 . 2 9 - i n . ( 7 . 3 - m m )

    s te p o v e r , a n d ra th e r h ig h Fe r r i t e Nu m -

    bers . The t rends a re shown in F ig . 8 .

    I t i s n o te wo r th y th a t t h e p e rc e n t d i l u -

    t i o n i n c r e a s e s s l i g h t l y w i t h i n c r e a s i n g

    v o l ta g e , a t t h e s a m e t im e th a t t h e d e p o s i t

    FN r ises . Th is occurs becaus e the h ig her

    v o l ta g e p r om o t e s m o r e c h r o m i u m p i c k u p

    f ro m th e f l u x . A l l o f t h e c la d d in g s o f Ta b le

    5 h a v e a s a t is fa c to ry c o m p o s i t i o n .

    A s t i l l h i g h e r d e p o s i t i o n r a te c o n d i -

    t i o n w a s t h e n e x a m i n e d w i t h t h i s w i r e

    a n d f l u x , a s d e t a i l e d i n T a b l e 6 . T h e

    u p p e r p a r t o f Ta b le 6 l i s t s a l l -we ld -m e ta l

    d e p o s i t c o m p o s i t i o n a n d F e r r i te N u m b e r

    a s a fu n c t io n o f v o l t a g e a t 1 0 0 in . / m in

    (2 .5 4 m /m in ) w i re f e e d s p e e d (2 0 .9 Ib /h ;

    9 . 5 k g / h d e p o s i t i o n r a t e ) . T h e t r a v e l

    speed in these tes ts was inc reased p ro -

    p o r t i o n a l l y t o t h e i n c r e a s e d w i r e f e e d

    s p e e d a s c o m p a r e d to t h e tes ts o f T a b le 5 .

    T h e i n c r ea s e in d e p o s i t c h r o m i u m c o n -

    te n t a n d re s u l t i n g fe r r i t e w i t h i n c re a s in g

    v o l ta g e i s n o t a s g re a t as at t h e lo w e r w i re

    f e e d s p e e d o f T a b l e 5 . T h e t r e n d s i n

    c h r o m i u m , n i c k e l , a n d F N ar e s h o w n

    graph ica l ly in F ig . 9 . The sca le o f F ig . 9

    is exac t ly the same as o f F ig . 7 , pe rmi t -

    t i n g d i r e c t c o m p a r i s o n .

    4 0

    3 0

    ~ 2o

    -~

    l O

    e~

    01

    1 /8 " E R 3 0 9 L , 8 0 i p m W i r e F e e d S p e e d

    1 6 . 7 l b/ hr D e p o s i t io n R a te , 2 0 i p m T r a v e l S p e e d

    A - 1 0 0

    F l u x , 1 " S t i c k o u t , 0 . 2 9 " S t e p o v e r

    A

    % D i l u t i o n

    _~. .~ . .. . . . . - ~ ... . . . . '~

    % C r ............ [ ] .......... [] .......... IZt ........ U] ......... ~ ............

    % N i ~

    F N

    2 6 2 8 3'0 32 3'4 36 3'8 4 0

    A r c V o l ts , D C E N

    F i g . 8 - - E f fe c t o f v o l t a g e o n D C E N s i n g l e - l a y e r c l a d d i n g w i t h A - 1O 0

    f l u x .

    6 0

    5 0

    N

    e~

    ~ 40

    ~ 20

    m 1 0

    1 /8 " E R 3 0 9 L , 1 0 0 i p m W i r e F e e d S p e e d

    2 0 . 9 l b /h r D e p o s i t i o n R a t e , 2 5 i p m T r a v e l S p e e d

    A -1 0 0 F l u x , 1 - 1 /4 " S t i c k o u t , 0 . 2 9 " S t e p o v e r

    0

    F N

    f 'q % Cr

    . . . . . . . . .. A . . . .. . . . " ~ . . . . . . . z 5 . . . . . . . - ~ . . . . .. . . . A - . . . . .. - ~ % Ni

    2 8

    30 32 34 36 38

    4 0 4 2

    A r c V o l ts , D C E N

    F i g . 9 - - E f fe c t o f D C E N v o l t a g e o n a l l - w e l d - m e t a l w i t h A - 1 0 0 f lu x ,

    9

    1 0 0 i n . / m i n ( ~ . 5 4 n r / m i n ) w i r e f e e d s p e e d .

    4 2 - s l

    F E B R U A R Y 1 9 9 6

  • 8/11/2019 Dilution Control in Single-Wire Stainless Submerged Arc Cladding Kotecki

    9/11

    The data in the upper portion of Table

    6 are used in comput ing the percent d i -

    lu t ion in the lower port ion of th is tab le ,

    w h e re t h e c o r re s p o n d i n g s i n g l e - l a y e r

    c ladd ings a re de ta i led . In these

    c laddings, on ly the lowest and h ighest

    voltages produced poo r t ie-in spo ts (un-

    dercut) between beads. The claddings at

    32 through 38 V had good t ie- in , wi th ab-

    sence of any h in t o f ro l lo ver a t the edge

    of the last bead, again due to the rather

    com fortab le 0.29 - in . s tepover used. The

    d i l u t i o n s o b s e rv e d a re v e ry s i m i l a r t o

    those observed at the lower wire feed

    speed of Table 5, but the result ing Ferrite

    Numbers are lower in general, because

    the a l l -we ld -m eta l ch rom ium con ten t is

    lower under the h igher wire feed speed

    condit ions. The trends are shown in Fig.

    10. In contrast to the trend for increasing

    FN with increasing voltage in Fig. 8 for

    the 80 in . /min wire feed speed tests , the

    Ferrite Numbers are nearly unchanged

    wi th inc reas ing vo l tage . These Fer r i te

    Numbers, al l about 4 FN, are just ade-

    quate for assurance of f reedom from hot

    cracking, acco rding to Lefebvre (Ref. 4).

    These, therefore, would be sat is fac tory

    condi t ions for s ta in less s teel c ladding.

    Long i tudina l Face B end Tes ts

    I t mus t be recogn ized tha t , in a

    cladding of stainless steel on mild steel,

    the f i rs t bead wi l l not bene f i t f rom the arc

    imp inging part ly on pre v ious ly depos i ted

    we ld meta l . Th is means tha t the f i rs t

    bead, and poss ib ly the second, w i l l have

    a com pos i t ion re f lec t ing h igher base

    meta l d i lu t ion than the s teady-s tate d i lu-

    t ion of a ser ies of b eads as were cons id-

    ered above.

    To examine th is e f fec t , c laddings w ere

    made on 1 /2 - in . - (12 .7 -mm) th ick A36

    mi ld s tee l p la te us ing 1/8- in . (3 .2-mm)

    E R 3 0 9 L w i re a n d A -1 0 0 c h ro m i u m -

    add ing f lux . One se t o f c ladd ings was

    made DCEP and the other D CEN , under

    o the rw ise iden t ica l we ld ing cond i t ions .

    Details are given in Table 7. In each set,

    two p la tes were welded. On one p la te,

    four beads were depos i ted us ing 0.29- in .

    s tepover, wi th the f i rs t bead about 16 in .

    (400 mm) long, the second 14 in. (350

    ram) long, the third 12 in. (300 mm) long,

    and the fourth 10 in . (250 mm )lon g, a l l

    s tar t ing at the same d is tance f rom one

    end of the p la te. Th is prov ided conve-

    n ien t samp les fo r chemica l l y ana lyz ing

    each bead jus t outs ide the crater. The

    second plate in each set consisted of six

    beads deposited using 0.29-in. stepover,

    each about 12 in. (300 mm) long. This

    p l a te , w i t h o u t a n y p re p a ra t i o n o f t h e

    we ld face , was ben t

    around a 2- in . (50-mm)

    diam eter . Then ch em i- ~,C

    ca l ana lys is was pe r -

    fo rmed on the s ix th

    bead. These che m ical ~C

    analysis results are given

    in Tab le 7 , a long w i th

    s ix - lay er com po si t ion s ~,0

    p ro d u c e d u n d e r th e

    s a m e w e l d i n g c o n d i -

    t ions for d i lu t io n ca lcu- 0

    lations.

    The s ix - lay er depos i t

    on DCEN con ta ins 0

    h igher ch romium, lower

    n icke l , and h igher ferr i te

    than does the s ix - laye r

    depos i t on DCEP . For

    b o th t h e D C E P a n d

    DCE N claddings of Table

    7, on ly the f i rs t bead of each is s ign i f i -

    can t ly leaner in a l loy con ten t than the

    other beads. The com posi t ion of the f i rs t

    bead in each case reflects higher di lu tion

    than in the other beads. The DCE P con-

    d i t ion p roduces abou t 50% d i lu t ion in

    s teady-s tate, whi le the DCEN condi t ion

    produces jus t over ha l f o f the d i lu t ion of

    t h e D C E P c o n d i t i o n . A l l o f t he D C E P

    beads con ta in mar tens i te , some more

    than others. But not even the f irst DCEN

    bead con ta ins mar tens i te . A l l o f the

    DCE N beads, even the f irst, conta in some

    ferrite.

    T h e s i x -b e a d -w i d e D C E N c l a d d i n g

    b e n t w i t h o u t c ra c k i n g . B u t t h e D C E P

    claddin g f ractured com plete ly across the

    c lad ding in severa l p laces. This i llus-

    t ra tes the d i f f icu l ty wi th hav ing marten-

    s i te in the c ladding. F igure 11 shows

    cross-sections of the two bend samples.

    It can be see n that the penetration into

    the m i ld s teel p la te is much greater wi th

    DCEP than wi th DCEN, again i l lus tra t ing

    the h igh d i lu t ion , whic h leads to marten-

    s i te format ion and causes the c laddin g to

    fracture dur ing bending.

    r - - - - - - - - - - - - -

    1 / 8 E R 3 0 9 L , 1 0 0 i p m W i r e

    F e e d S p e e d

    2 0 . 9 l b / h r

    D e p o s i t i o n R a t e ,

    2 5 i p m

    T r a v e l S p e e d

    A - 1 0 0 F l u x , 1 - 1 / 4 S t i c k o u t , 0 .2 9

    S t e p o v e r

    % D i l u t i o n

    . . . . . . . . . . . . . . . . . . . .> . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . ; >

    . . . . .. . . . .. . Q . . . . . .. . . . [ ] . . . . .. . . . . [ ] . . . .. . . . . D . . . . .. . . .. [ ] . .. . . .. . . . [ ] % C r

    . . . . . . . . . . A . . . . . . . . . ~ . . . . . . . . A . . . . . . . . -& , . . . . . . . 23- . . . . . . ~ % N i

    o o o o

    F N

    2 8 3 0 3 2 3 4 3 6 3 8 4 0 4 2

    A r c V o l t s , D C E N

    F i g. 10 - - E f fe c t o f DC E N v o l t a g e o n s i n g l e - l a y e r c l a d d i n g w i t h A -

    100 fl u x , 100 i n . / m i n ( 2 . 54 m / m i n ) w i r e f e e d sp e e d .

    to form martensite. It does not present

    predictions in terms of Ferrite Numbers,

    so i t is not e spec ia l ly su i tab le for ferr i te

    p re d i c t i o n s . T h e WR C -1 9 9 2 d i a g ra m

    (Ref. 5) is more su i tab le for ferr i te predic-

    t ions in terms of Ferr i te Numbers, but

    does not consider martensite.

    Figure 12 presents the Schaeffler dia-

    gram generated from the FERRITEPRE-

    DICTOR com puter sof tware (Ref. 6) . On

    i t are located the n om inal A36 m i ld s tee l

    base meta l compos i t ion and the a l l -

    we ld -meta l compos i t ion ob ta ined w i th

    ER309L and ST-100 ch romium-com pen-

    sat ing f lux (Sample Num ber 309 100 2 in

    Tab le 1 ) . A t ie - l ine i s cons t ruc ted be -

    tween these two composi t ions, and a l l

    poss ib le mix tures of th is a l l -weld-meta l

    compos i t ion w i th the A36 base meta l

    D i s c u s s i o n o f R e s u lt s

    A nu mbe r of c laddings have been pro-

    duced in th is study, under a var ie ty o f

    cond i t ions . Wh i le the cond i t ions wh ich

    produce the m ost des irab le results can be

    useful to any fabr ica tor d i rec t ly , the data

    developed can a lso prov ide some d irec-

    t ion fo r mod i f i ca t ions o f the cond i t ions

    used here in , for part icu lar appl icat ions.

    The two concerns addressed are avoid-

    ing martens i te and obta in ing 4 FN min i-

    mum in the deposi t.

    The Schaeff ler d iagram (Ref. 4) is

    qui te usefu l for cons ider ing the tendency

    118 ER309L W i re , A -100 F l ux

    1 -114 S t i c kou t , 80 i pm W i re Fe e d

    2 0 i p m T r a v e l , 3 6 V o l t s

    0 . 2 9 S t e p o v e r

    F ig . 11 - - C ross -sec t ions o f 1 /2 - i n . ( 12 .7- mm) -

    t h i c k A 3 6 s t e e l w i t h 1 / 8 - in . ( 3 . 2 - m m ) E R3 09L

    c l a d d i n g u s i n g A - 1 0 0 f l u x D C E N ( t o p ) a n d

    DCEP ( bo t t om) a t 0 .29- i n . ( 7 .3 -mm) s t epove r .

    W E L D I N G R E S E A R C H S U P P L E M E N T I 4 3 - s

  • 8/11/2019 Dilution Control in Single-Wire Stainless Submerged Arc Cladding Kotecki

    10/11

    3 0 . C

    ~ 2 7 . C

    0

    +

    ~ 2 4 . 1 1

    ~'

    2 1 . n

    II

    ~

    t 8 . 0

    I

    , ~

    1 5 . 0

    t 2 . 0

    , I I

    , ~ 9 . o

    Z

    G o O

    3 . 0

    i

    ~ L - ~ l l f f i l r D i a g r a n

    4 . 0 8 . 0 1 2 . 0 t 6 . 0 2 1 ] . 0 2 4 . 0

    C h r o M i u l t E q u i u a l e s l t

    = O r + N o + | . ~ $ i t O . S N b

    l l e t a 1 1 0 H e t i 1 2

    4 ' F i ] [ e r @ M e | d ~ e n t

    2 8 . 0 3 2 . 0 3 8 . 0 4 0

    F i g. 12 - - D i l u t i o n t i e - l i n e o n S c h a e f f l e r d i a g r a m f o r s i n g l e - l a y e r c l a d d i n g o f A 3 6 s t e e l w i t h

    E R309L a n d S T- 100 f l u x ( a l l - we l d - m e t a l c o m p o s i t i o n 3 0 9 100 2 i n T a b l e 1 ). Th e 3 0% d i l u t i o n

    p o i n t i s e x p e c t e d t o c o n t a i n n o m a r t e n s i te a n d n o f e r ri te . T h is f ig u r e i s a d i r e c t p r i n t o u t o f t h e F E R-

    R I T EP RE DIC T O R s o f t wa r e ( Re f. 6 ) . I n t h e l e g e n d b e l o w t h e f ig u r e , M e t a l 2 i s i n c l u d e d , b u t

    i t does no t ex i s t i n t he f i gu re .

    m u s t l i e a l o n g t h e t i e - l i n e . T h e w e l d

    meta l m ic ros t ruc tu re fo r a g iven d i lu t ion

    is then est imated by m oving a long the t ie-

    l ine , f rom the a l l -we ld -meta l compos i -

    t ion toward the base meta l compos i t ion ,

    a d is tance eq ual to the percent d i lu t io n.

    Then a d i lu t io n of 30% w ould be located

    by proceeding 30% of the d is tance f rom

    th e a l l -w e l d -m e ta l c o m p o s i t i o n t o t h e

    base meta l com posi t ion on the d iagram,

    wh ich is ind ica ted by the we ld meta l

    po int inc luded in the d iagram shown in

    Fig. 12. It is of interest to note that, as di-

    lu t ion increases, the weld meta l com po-

    s i t ion reaches z e ro fe r r i te jus t be fo re

    re a c h i n g t h e tw o -p h a s e m a r te n s i t e -

    i

    Creq = Cr Mo + 0 .7 Nb

    F i g. 13 - - W RC - 1992 d i a g r a m s h o w i n g E R3 09L d e p o s i t c o m p o s i t i o n w i t h 8 8 2 , S T- 100, a n d A -

    100 f lu x e s , w i t h d i l u t i o n t i e - l i n e s c o n n e c t e d t o t h e n o m i n a l A 3 6 s t e e l b a s e m e t a l c o m p o s i t i o n .

    austenite region of the diagram. This in-

    dicates that, i f ferrite is obtained in a de-

    posit made using this f i l ler metal, there

    wil l be no martensite. Then satisfying the

    re q u i re m e n t f o r 4 F N m i n i m u m a l s o

    takes care of avoiding martensite.

    The FERRITEPREDICTOR software

    is a lso very conv enient for ca lcu la t ing d i -

    lu t ion ef fec ts on est imated w eld c laddin g

    FN us ing the WRC-1992 d iag ram , a l -

    though i t does not graphica l ly ex tend the

    axes to ze ro ch rom ium equ iva len t and

    zero n icke l equ iva len t as was done by

    Kotecki and Siewe rt (Ref. 5) . Di lu t ion ef-

    fec ts were ca lcu la ted wi th th is sof tware

    us ing the ra the r low-ch rom ium a l l -we ld -

    m e ta l c o m p o s i t i o n o b ta i n e d w i t h t h e

    DCEN depos i t o f ER309L and 882 bas ic

    c h r o m i u m - f r e e f l u x ( S a m p l e N u m b e r

    SW228 in Tab le 3 ) , w i th the h igher -

    c h ro m i u m a l l -w e l d -m e ta l c o m p o s i t io n

    o b ta i n e d w i t h t h e D C E P d e p o s i t o f

    ER309L and ST-100 ch romium-com pen-

    sat ing f lux (Sample Num ber 309 100 2 in

    Tab le 1 ) , and w i th the ve ry h igh -

    c h ro m i u m a l l -w e l d -m e ta l c o m p o s i t i o n

    o b ta i n e d w i t h t h e D C E N d e p o s i t o f

    E R 3 0 9 L a n d A -1 0 0 c h ro m i u m -a d d i n g

    f lux (Samp le Number SW270P in Tab le

    7). These three composit ions are shown

    in F ig . 13, wi th t ie- l ines connected to the

    nomina l A 36 com pos i t ion . F rom F ig . 13 ,

    i t is easy to see that the ER309L wire wi th

    A-100 f lux permits greater d i lu t ion than

    does the same wire wi th ST-100 f lux or

    882 f lux . For each of these three a l l -w eld -

    meta l compos i t ions and the nom ina l A36

    m i ld s tee l base meta l com posi t ion, the

    FN o f the we ld c ladd ing a t va r ious d i lu -

    t ions was est imated. On e m ight vary the

    s tepover w i th each o f these a l l -w e ld -

    meta l composi t ions, for example, to ad-

    jus t the d i lu t ion. These resul ts are then

    plot ted in F ig . 14. This f igure a l lows con -

    s iderat ion of the range of d i lu t ions over

    wh ich 4 FN can be exceeded (an d over

    wh ich martensi te w i l l a lso be avoided).

    From Fig. 14, i t can be seen that the

    c ladd ing f rom the bas ic ch romium- f ree

    f lux 882 w i th ER309L can only be ex-

    pected to exceed 4 FN when the d i lu t ion

    is less than about 8% . This is very d i f f i -

    cu l t to ma in ta in w i thou t incomp le te fu -

    sion defects. It can also be seen that the

    c l a d d i n g f r o m th e c h ro m i u m -c o m p e n -

    sat ing f lux ST-100 wi th ER309L can on ly

    be expected to exceed 4 FN wh en the d i -

    lu t ion is less han about 20% . This is pos-

    s ib le wi th l imi ted s tepover, a l though the

    condit ions are necessari ly close to bead

    ro l lover. And i t can be s een from Fig. 13

    th a t t h e c l a d d i n g f r o m th e c h ro m i u m -

    add ing f lux A-100 w i th ER309L can be

    expected to exceed 4 FN when the d i lu-

    4 4 s I F E B R U A R Y 1 9 9 6

  • 8/11/2019 Dilution Control in Single-Wire Stainless Submerged Arc Cladding Kotecki

    11/11

    60

    5 0

    4 0

    3 0

    2 0

    ~ A-1 00 Flux, DCEN

    - ' i , . ~ ST-1 00 Flux, DCEP

    8 8 2 Flux, DCEN

    5 0

    P e r c e n t D i lu t i o n

    F ig . 14 F er r i t e umb ers ca lcu la ted by the WRC- 1992 d iagram for s ing le-layer subm erged arc

    c ladd ing o f A36 m i ld s tee l us ing chromium -f ree 882 f lux DCEN, chron#um-com pensat ing ST-100

    f lux DCEP, an d chromium -adding A- 100 F lux DCEN assum ing a l l -weld-meta l comp os i tions .

    t i o n i s l es s t h a n a b o u t 4 0 % . T h e

    c h r o m i u m r e c o v e r ie s u s in g th e o t h e r t w o

    f luxes do no t vary g rea t ly wi th vo l tage ,

    bu t wi th the A-100 f lux , as can be seen

    f rom the upper p or t ion o f Tab les 4 and 5 ,

    c h r o miu m r e c o v e r y v a r i e s s t r o n g l y w i t h

    vo l tage (and wi th wi re feed speed) .

    I t shou ld be c lear f rom the abo ve tha t ,

    be fo re an acceptab le leve l o f d i lu t ion can

    be de te rmined , i t i s necessary to know

    wh a t t h e a l l - we ld - me ta l c o mp o s i t i o n i s

    f o r a g i v e n s e t o f we ld i n g c o n d i t i o n s .

    T h e n th e W R C - 1 9 9 2 d i a g r a m c a n b e

    ............ Dr[

    u s e d t o e s t i m a t e f e r r it e c o n t e n t o f t h e

    c ladd ing .

    C o n c l u s i o n s

    In s ing le -wi re submerged a rc c ladd ing

    with ER309L, stepover is a very important

    var iab le in de te rmin ing d i lu t ion and fe r -

    r i te. Decreasing stepover decreases di lu-

    t i o n . Ho w e v e r , i f t o o l i t t l e s t e p o v e r is

    used , incomple te fus ion o f the c ladd ing

    with the base metal resul ts . Use of DCEN

    can be he lp fu l in l imi t ing d i lu t ion and ob-

    ta in ing fe r r i te , bu t m any f luxes do no t per -

    f o r m we l l o n DCEN. A c h r o miu m- a d d in g

    f lux des igned fo r DCEN can be o f some

    ass is tance in l imi t ing d i lu t ion , and can

    p e r mi t f e r r i t e t o b e o b ta i n e d o v e r a

    broader range o f d i lu t ions .

    Q u a n t i t a t i v e d i l u t i o n a n d F e r r i t e

    Number da ta a re p resen ted fo r a var ie ty

    o f s ing le - layer c ladd ing cond i t ions . These

    data show tha t inc reas ing wi re feed speed

    tends to inc rease d i lu t ion . Inc reas ing vo l t -

    age has a smal l tendency to increase di-

    lu t ion . Bu t inc reas ing vo l tage can a lso be

    used to increase the chrom ium con ten t o f

    the a l l -we ld -meta l depos i t when us ing a

    c h r o miu m - a d d in g f l u x , wh i c h i n t u r n c a n

    prov ide some fe r r ite a t h igher d i lu t ion .

    References

    1. Jackson, C. E. 1960. The science of arc

    we ld ing - - pa r t I I I . Weld ing Journa l 39(6) :

    225-s to 230-s.

    2. Campbel l , H. C., and Johnson, W. C.

    1 9 5 8 . We l d i n g a l l o y s t e e l s u n d e r b o n d e d

    f luxes.

    Weld ing Journa l

    37(11 ) : 1081 -108 5.

    3. Lefebvre, J. 1993. G uida nce on speci f i -

    cat ions of ferr i te in sta in less stee l weld meta l .

    Weld ing in the Wor ld 31 (6): 39 0-4 06.

    4. Schaeff ]er , A. I . 1949. Const i tu t ion d ia-

    g r a m

    for stainless steel weld metal etal

    Progress

    56(11 ) : 680-6 80B .

    5. Kotecki, D. J., and Siewert, T. A. 1992.

    WRC-1992 const i tu t ion d iagram for sta in less

    s tee l we ld m e ta ls : a mod i f i ca t i on o f the WRC-

    1988 d iag ram. Weld ing Journa l 71 (5): 171 -s to

    178-s.

    6. FERRITEPREDICTOR. V.3.0. 1992.

    Ame r i can W e ld ing Inst itute , Knox v i l l e , Tenn .

    111111111111111