Digitalisation of Education: Application and Best Practices

16
1 Digitalisation of Education: Application and Best Practices Olga Viberg & Anna Mavroudi KTH Royal Institute of Technology, School of Electrical Engineering and Computer Science Research Group in Technology-Enhanced Learning e-mail: [email protected]; [email protected] Table of Contents Digitalisation of Education: Application and Best Practices ...................................................... 1 Introduction .......................................................................................................................... 1 1. Learning Management Systems ................................................................................... 2 2. Massive Open Online Courses ...................................................................................... 3 3. Learning analytics dashboards and visualisations ........................................................ 4 4. Data-supported feedback............................................................................................. 5 5. Student misconceptions ............................................................................................... 6 6. Identifying at-risk students and predictive analytics.................................................... 7 7. Student strategies and attitudes .................................................................................. 8 8. Learning in a social context .......................................................................................... 9 9. Learning analytics and learning design ...................................................................... 12 References........................................................................................................................... 14 Introduction The topic of digitalisation of education has attracted the interest of the research community worldwide due to unprecedented capabilities provided by the technology to capture the ‘digital traces’ of today’s students who, being ‘digital natives’, are active in technology-rich learning environments. The aim of this report is to present solutions on the topic that can be applicable to Swedish context. These solutions emerge as best practices or examples derived from searching the recent international literature. They can be adopted or modified to fit the Swedish context, given that it is rare to find universal solutions that can be applied ‘as-is’ (i.e., directly) in every socio-cultural context. This report comprises ten different applications on digitalisation of modern education, which in their majority are relevant to Learning Analytics, defined as “the measurement, collection, analysis and reporting of [big] data about learners and their contexts, for purposes of understanding and optimizing learning and the environments in which it occurs” (Long & Siemens, 2011, p. 34). Learning analytics evidence for learning has earlier been validated and presented according to four propositions: - Learning analytics improve learning outcomes - Learning analytics improve learning support and teaching - Learning analytics are taken up and used widely, including deployment at scale - Learning analytics are used in ethical way (see Ferguson & Clow, 2017; Viberg et al., 2018).

Transcript of Digitalisation of Education: Application and Best Practices

1

DigitalisationofEducation:ApplicationandBestPracticesOlgaViberg&AnnaMavroudi

KTHRoyalInstituteofTechnology,SchoolofElectricalEngineeringandComputerScienceResearchGroupinTechnology-EnhancedLearning

e-mail:[email protected];[email protected]

TableofContentsDigitalisationofEducation:ApplicationandBestPractices......................................................1

Introduction..........................................................................................................................1

1. LearningManagementSystems...................................................................................2

2. MassiveOpenOnlineCourses......................................................................................3

3. Learninganalyticsdashboardsandvisualisations........................................................4

4. Data-supportedfeedback.............................................................................................5

5. Studentmisconceptions...............................................................................................6

6. Identifyingat-riskstudentsandpredictiveanalytics....................................................7

7. Studentstrategiesandattitudes..................................................................................8

8. Learninginasocialcontext..........................................................................................9

9. Learninganalyticsandlearningdesign......................................................................12

References...........................................................................................................................14

IntroductionThetopicofdigitalisationofeducationhasattractedtheinterestoftheresearchcommunityworldwide due to unprecedented capabilities provided by the technology to capture the‘digitaltraces’oftoday’sstudentswho,being‘digitalnatives’,areactive intechnology-richlearningenvironments.TheaimofthisreportistopresentsolutionsonthetopicthatcanbeapplicabletoSwedishcontext.Thesesolutionsemergeasbestpracticesorexamplesderivedfromsearchingtherecentinternationalliterature.TheycanbeadoptedormodifiedtofittheSwedishcontext,giventhatitisraretofinduniversalsolutionsthatcanbeapplied‘as-is’(i.e.,directly)ineverysocio-culturalcontext.

Thisreportcomprisestendifferentapplicationsondigitalisationofmoderneducation,which in their majority are relevant to Learning Analytics, defined as “the measurement,collection,analysisandreportingof[big]dataaboutlearnersandtheircontexts,forpurposesofunderstandingandoptimizinglearningandtheenvironmentsinwhichitoccurs”(Long&Siemens,2011,p.34).Learninganalyticsevidenceforlearninghasearlierbeenvalidatedandpresentedaccordingtofourpropositions:

- Learninganalyticsimprovelearningoutcomes- Learninganalyticsimprovelearningsupportandteaching- Learninganalyticsaretakenupandusedwidely,includingdeploymentatscale- Learninganalyticsareusedinethicalway(seeFerguson&Clow,2017;Vibergetal.,

2018).

2

First,thisreporttouchesuponsomebestpracticesofdigitalisationinconjunctionwithsome prominent learning technology, in particular with Learning Management Systems(LMSs),MassiveOpenOnlineCourses(MOOCs),andlearningdashboards(sections1-3).Thesecondcategorydiscussestheuseoflearninganalyticswithafocusonaddressingparticularproblems (sections 4-7): provide timely and relevant feedback, destabilise studentmisconceptions, help students develop effective learning strategies, and identify at-riskstudentswiththeaimofreducingdrop-outs.Finally,twointerestingandrelevantthemesarediscussedwhicharecloselyrelatedtocurriculumdesign(sections8-9):theinterplaybetweenlearninganalyticsandlearningdesign,learninganalyticsinasociallearningcontext.Itshouldbenotedthattheresearchstudiesmentionedinonecategorymightalsofittosomeothercategory.

In addition to the relevant literature, the report is particularly inspired by recentreviewsoflearninganalytics:Vibergetal.(2018),Misiejuk&Wasson(2017),andLangetal.(2017). These reviews suggest that thereare several researchgaps in theareaof learninganalytics. They currently include the application of learning analytics in K-12 education,researchoneverydayanalyticsinclassrooms,researchonassessment,researchonlearning-centric analytics, as opposed to learner-centric analytics, implementation and impact oflearninganalyticsanddataliteracy,withtheexceptionsofafewstudiesthataddresswhetherornotstakeholders (i.e., teachersand learners)canunderstandthevisualisations theyarepresented(Misiejuk&Wasson,2017).Mostofthelearninganalyticsresearchhassofarbeenconductedinhighereducation.

1. LearningManagementSystemsLearningManagementSystems(LMS;e.g.,Moodle,Blackboard,Canvas)arevirtuallearningenvironmentsthatarebeingwidelyusedinmanydifferenteducationalsettings.Tracedataaboutstudents’activityinaLMSareoftenattheheartoflearninganalyticsapplications.Forexample,Gaševićetal.(2016)haveshownthatonlythefollowingvariables-numberofloginsandnumberofoperationsperformedondiscussionforumsandresources-weresignificantpredictors of academic performance, predicting approximately 21% of the variability inacademic performance. Hence, it is difficult to translate these predictors into actionablerecommendationstofacilitatestudentlearning.AnanswertothisissueisofferedbyNguyenetal.(2018),whoarguethatthekeytoactionableinsightsistheassociationbetweenlearninganalyticswithlearningdesign.Thisassociationenablestheteachertocompareandcontrastthe actual online behaviour of the students with the teacher’s intentions. It is furtherdescribedinsection9onlearninganalyticswithlearningdesign.

LearninganalyticshavebeenshowntomakeextensiveuseoftracedatafromlearnersinteractingwithLMSs,andoneofthemostcommonusesistoderiveanestimateofthetimeeachlearnerspentontask,thatisengaginginparticularlearningactivities.Kovanovicetal.(2015)presenttwoexperimentsexploringdifferentmeasuresoftimeontask;oneusingdatafromafully-onlinecourseataCanadianuniversity,andanotherusingdatafromablendedcourse at an Australian university. Based on modelling different student performancemeasureswithpopularstatisticsmethodsintwodatasets,theresultsshowthattime-on-taskmeasures typically outperformed countmeasures for predicting studentperformance, butmore importantly, identified that the precise choice of time-on-taskmeasure "can have asignificant effect on the overall fit of the model, its significance, and eventually on theinterpretationofresearchfindings"(p.105).Insummary,time-on-taskestimationmethodswerefoundtoplayaconsiderableroleinshapingthefinalsstudyresults,especiallyinonlineenvironmentswheretheamountofinteractionwithLMSisusuallyhigher.Fromapracticalperspective, researchers recommend todevelop“standardizedplugin for theextractionof

3

tracedatafrompopularLMSsystems(e.g.,Moodle,WebCT,Canvas)thatcouldprovidefastandeasytotime-on-taskandcountmeasures”(Kovanovicetal.,2015,p.105).Today,westillneedsuchautomatizedtoolsthatcouldbesmoothlyintegratedintoexistingLMSstobetterunderstandhow learners spend timeon their learning activities and thus to createbetteropportunitiesfortheireffectivelearning.

2. MassiveOpenOnlineCoursesMassiveOpenOnlineCourses(MOOCs)areavailabletothousandsofstudentsviasomeweb-basedplatform,increasingaccesstohigh-qualitymaterialfordistanceandlifelonglearners.MOOCscreatelargeamountsofdatacanfeedthevariouslearninganalyticstools.However,mostMOOCsstilladoptatop-downteachingapproach,ignoringthepotentialforfacilitatingawareness,self-regulationandpersonalisation (Drachsler&Kalz,2016).DrachslerandKalz(2016)describedthepotentialof learninganalytics inthecontextofMOOCs. Inparticular,theydescribeaMOOCLearningAnalyticsInnovationCycle(MOLAC;Figure1)whichcanbeappliedatthemicro,meso,andmacrolevel.

Figure1.TheMOOCLearningAnalyticsInnovationCycle(adoptedfromDrachsler&Kalz,2016)

On the micro-level, the data collection and analytics activities are focused on individualreflectionandindividualprediction.Onthemeso-level,datafromseveralopencoursesarecombined to support benchmarking and to create insights about behavior of groups oflearners rather than the individual. Finally, on themacro-level, cross-institutional learninganalyticsenablestodeveloplearningandteachinginterventionsthatcanbetestedinaclusterof educational institutions to analyse the impactof such interventions, beyond contextualfactors.IntheirreviewofMOOCsandlearninganalytics,theauthorspinpointthatpresentlymostoftheconductedstudiesfocusedonthemicro-leveloftheMOLACcycle.

AchallengewithMOOCSisthat,unliketraditionaleducationalsystems,measureslikedetaileddemographicsandpriorknowledgearenotcollected inorder tomaintaina lowbarrier toentry. Many MOOC-providing institutions thus have begun to collect this data throughoptional surveys. Students completing their courses are also thosewho tend to completethesesurveys.Reich(2014)suggestthatroughlyonequarterofenrolledlearnersfilloutsuchcoursesurveys.Thevolumeofcollectedresponsescanbehigh(oftentensofthousands)butmightrepresentaskewedsampleofgenerallymoremotivatedlearners.

4

Withrespecttostudents’affectivedomain(i.e.,thedomainthatincludesthemannerinwhichindividualsmanagethingsemotionally,forexamplevalues,feelings,andappreciation),Leonyetal. (2015)built fourmodels todetectboredom, frustration,happiness,andconfusion inMOOCs.Themodelswere testedonagroupof studentsand thecorrelationbetween theemotionsandstudent’sinteractiondatawascalculated.ThefoursuggestedmodelshavebeenimplementsintoALAS-KA,alearninganalyticsmodulefortheKhanAcademyplatform.Thismodule includes new metrics (except those already provided by the platform) andvisualisationsofinformationtakenfromtheanalysisoftheuseractivities’patterns.AlloftheimplementedmodulestakeintoaccounttheProblemLogprovidedbytheKhanAcademy.Itincludesalloftheinformationaboutusers’interactionwithexercisesandthetimestampinwhichtheytookplace.Thefourmodelswereappliedonthe90studentstakingthecoursesinmathematics,physicsandchemistryin2013.Theinitialanalysisofemotionvaluescalculatedforaperiodof10dayshasshownseveralexpectedpatterns,suchasincrementsofemotionlevelsaslearnerswereinteractionmorewiththecoursematerials.Theuseofrulesforthedetectioncanhelptoovercomeseveralissues,includingaslowstart,giventhatataninitialmomenttheremightnotbeenoughdatatocalculatethelearners’emotionsvalues.Byaddingthelogictotheinferenceofeachemotion,educationalinstructorscanbeawareofthemetricsthatcouldhaveinterferedtobeabletodetectachosenemotioninalearnerandthustomakebetterinformeddecision.

3. LearninganalyticsdashboardsandvisualisationsLearning-analyticsdashboards(LAD)arecurrentlythemaintrendintheliteraturesincetheymirror the students’ behaviour back to the students and/or/or to the teachers. Learningdashboardisdefinedas“asingledisplaythataggregatesmultiplevisualisationsofdifferentindicatorsaboutlearner(s),learningprocess(es),and/orlearningcontext”(Schwendimannetal.,2016). Millecampetal.(2018)presentaLADthatsupportsthedialoguebetweenastudentand a study advisor. To ensure transfer to other contexts (in terms of scalability), thedashboardvisualisesdatathatiscommonlyavailableinhighereducation,likethegradesofthe student, study progress, and academic ranking in comparison with peers (i.e., socialcomparison), and a prediction of the duration of study for the bachelor program for thisstudent,basedonhistoricdata.AdashboardwasdeployedatKULeuven(Belgium)tosupportdiscussion sessions. The results indicate that the dashboard primarily triggers reflectiveconversationswithstudentsdoubtingtocontinuethebachelorprogram,indicatingthatthedashboardisusefultosupportdifficultdecision-makingprocesses. AnotherexamplepresentstheStudentActivityMeter(SAM)forawarenessandself-reflection (Govaerts et al., 2011). SAM visualises learning activates within online learningenvironments for learners and teachers to help increase awareness and to support self-reflection.Thisdashboardsupportsthefollowingteacherobjectives:

- Awareness for teachersofwhatandhow learnersaredoing is important toassesslearnersprogress

- SAMvisualisesthetimelearnersspentandtheresourcestheyused- Timetrackinginformationallowsteacherstoassesstheirinitialtimeestimateswith

therealtimespendingofthestudentsandfintheexercisesthatconsumemosttime- The resourceusagecanshowthepopular learningmaterialsandenables resource

discovery,throughalistofmostusedormosttimespentonresourcesinSAM.

5

TheresultsoftheconductedcasestudyshowthatSAMcontributestocreatingawarenessforteachers.Itenables:i)tofindstudentsdoingwellandatrisk,ii)abettercourseoverview,andiii)understandingstudenttimespending.MostoftheparticipantswantedtocontinueusingSAM. Broosetal. (2017) introducedaLADforactionablefeedbackonlearningskills.Thedashboard provides actionable feedback about five of the learning skills assessed by theLearningAnalyticsStudyStrategiesInventory(LASSI):concentration,anxiety,motivation,teststrategies,andtimemanagement.Itusesdataaboutstudents,theirlearningskillsandscoresthatwerealreadyavailablewiththeinstitution(KULeuven),butfragmentedacrossservicesandnotfedbacktothedatasubjects(i.e.,learnersandteachers)inadirectway.14061styearstudentsin12differentstudyprogramsatKULeuvenwereinvitedtousethedashboardtosupportthemintheirtransitionfromsecondarytohighereducation.TheLASSIwasusedtoassess learningskillsusingasurveytakenwithinthefirstweeksof theacademicyear.Thedashboardsystem (for thehigh-leveloverviewof thesystemseeFigure2)didnot requiredirectaccesstothestudents’namesorothercharacteristicsthatallowforstraightforwardidentification,astheyweremadeavailableataccesstimebythesingle-signoninfrastructure.

Figure2.Overviewofsystemsanddataflowstosupportthedashboard(adoptedfromBroosetal.2017)

ThesystemloggedaccesstoandbehaviorwithintheLADandanalysedtheirrelationshipwiththese learning skills. The results show that while 8 out of 10 students accessed the LAD,studentswithlowertimemanagementscorestendtohavealowerclick-throughrate.Oncewithinthedashboard,studentswithlowerscoresforspecificlearningskillsareaccessingthecorresponding information and remediation possibilities more often. Regardless of theirscoresforanyoftheotherlearningskills,learnerswithhighermotivationscoresarereadingtheremediationpossibilitiesfortheotherfourlearningskillsmoreoften.GenderandstudyprogramwerefoundtohaveaninfluenceonhowlearnersusetheLAD.

4. Data-supportedfeedbackTheprovisionoftimelyandrelevantfeedbackisanothertopiccloselyassociatedtotheuseoflearning analytics. Kickmeier-Rust et al. (2014) developed a gamified learning app, ‘SonicDivider’1tohelpprimaryschoolstudentsinAustralialearnmathematics.Itfeaturesformativeassessment and feedback functions and gives the teacher a quickly overview about theachievements, scores, and competency levels. The authors examined the link betweenformativefeedbackandlearningperformance,andanalysedtheresultsbygenderandoverall

1SoniceDivider,http://next-tell.eu/portfolios/sonicdivider/

6

bystatisticalmethods.Theyfoundevidenceforthemotivationalaspectofthegamificationelements,inparticularscoring.Theyalsoidentifiedpositiveeffectsofanindividualizedandmeaningful,elaboratedfeedbackabouterrorsmade.Withrespecttogenderdifferences,theauthors found evidence that girls were less attracted by competition elements (e.g., bycomparing high scores) than boys, however, they weremore attentive towards feedbackcomingfromthetool.

“Learning ispersonal (LIP)” 2 isanotheravailabletoolthatoffersdata-supportedfeedback.TheLIPtoolcaptureslearningactivitiesinreal-timeandprovidesinstantstatisticalfeedback.Itmainly targets teachers, studentsandstudents’peers. Inparticular, it supports learners’peer-andself-assessmentsaswellasteachers’observations.Itisoptimizedtofitclassroomactivitieswhere timeandattentionare scarce resources. The tool’s focus is toprovideanoverviewoverall learningactivitiesinallsubjectsoverthewholeterm.Itdoesnotprovidespecificinsightsorin-depthanalyses.However,itprovidestheteacherwithsimple,real-timeinsightsandallowstheteachertoenhancethedatamodel(e.g.,usedmaterial)onthefly.Thistoolisoptimisedforperformanceandtobeontablets,mobilesandlaptops.

5. StudentmisconceptionsStudents’misconceptionsaboutasubjectmightbedeeply-rootedandcanimpedelearning,whichsuggeststhatthepracticeofonlyconsideringthefinalsolutionoftenresultsinstudentknowledge gaps andmisconceptions (Davies et al., 2015). The area of intelligent tutoringsystems3 (ITS)hasa long tradition inclarificationofmisconceptionsandpersonalisationoflearning(e.g.,personalisedfeedback).

Davies et al. (2015) compared differences in detecting students’ knowledge gaps andmisconceptionsabouttheuseofabsolutereferences4whenusingassessment-leveldata(i.e.,thefinalsolutionstudentssubmitwhensolvingaproblem)tothatofusingtransactional-leveloractivity-tracedata(i.e.,theprocessstudentstaketoarriveattheirfinalsolution).Intheirstudy, the researchers – based on the analysis of the student assessment data (i.e., theirwrittenhomework,mid-termexaminationandfinalexams)collectedfromthreeuniversitiesin the western United States in 2014 (995 students) - found higher levels of knowledgecomponents gaps and misunderstandings when assessing transactional-level knowledgecomponentdatathantask-levelfinalsolutiondata.

Data was gathered through an ITS, in this case a tool developed in the Microsoft Excelplatform:foreachassignment,thedevelopedsystemcreatedaspecifiedlogofeachstepthestudenttooktocometoasolution,i.e.,notonlythefinalsolutiongradedbytheprogram.Thelogwasthenrecordedonahiddenworksheetwithintheworkbooksothatwhenthestudent’ssolutionissubmittedthelogissubmittedaswell.Thislogcanthenbeextractedforanalysisofthestudent’slearningprocessandthefinalsolution.

Examiningthe finalsolutions thatstudentssubmittedshowed littleevidencethatstudentshad any misunderstandings or knowledge gaps about the use of absolute references.Nevertheless,analysingdataat the transactional level researchers identified that farmorestudentsstruggledusingabsolutereferencesthantheanalysisofonlythefinalsolutions.In2LIPtool,http://next-tell.eu/portfolios/learning-is-personal-lip/3Intelligenttutoringsystemisacomputersystemthataimstoprovideimmediateandcustomisedfeedbacktolearners.4Formoreinformationaboutabsoluteandrelativereferences,seehttps://edu.gcfglobal.org/en/excel2016/relative-and-absolute-cell-references/1/

7

particular, the findings revealed that students not only struggled to solve the problemrequiringtheuseofabsolutereferences,butalsotheytriedtouseabsolutereferenceswhentheywerenotneeded.Thiswasnotdetectedwhenanalysingjustfinalassessmentdata.

All thissuggeststhatoncedata isunderstoodthroughdatamining itcanbeusedtomakedecisions in regard to when and how to intervene in the learning process. The study’simplicationshighlightthepotentialofmakingadaptationstoinstruction,providingfeedbackand remediation, and also improvements in the ability to diagnose knowledge gaps thatinfluence student comprehension. For researchers and practitioners there are severalchallengestobeconsideredwhenattemptingtoanalysestudents’misconceptions:

- Getting the rightdata isvital! (i.e., in theaforementionedcase, transactional leveldata)

- Whencollectingdata,meaningfuldataloggingproceduresshouldbeestablishedinadvance; this includes capturing pertinent data that can be linked to otherinformation, e.g., systems level data. At this point data must be extracted andanalysedmanually(Daviesetal.,2015).

6. Identifyingat-riskstudentsandpredictiveanalyticsTheidentificationofat-riskstudentshasreceivedmuchattentionandithasbeenfrequentlyassociatedwithaspecialcategoryof learninganalyticsnamedpredictiveanalyticswhich isfocusingspecificallyonthataspect.However,thenumberofinitiativesthathavebeenabletotransitionfromconcepttoimplementationisstillscare(Jayaprakashetal.,2014,Vibergetal.2018).TheCourseSignalsprojectatPurdueUniversity(Arnold&Pistilli,2012)isasuccessfulapplicationofpredictivemodelling to student completion inhighereducation.TheCourseSignals system has been developed on the idea that students do not have a goodunderstandingofhowtheyareprogressingintheirstudies/courses.Purduedevelopedtheirapproachto“earlywarningsystems”whichshowsat-riskstudentsoverseveralyears.

The predictive model used is based on four components: demographic characteristics,previousacademichistory,interactionwiththeLMS/VLEduringthecourseandperformanceon thecourse todate.Thepredictions fromthemodelare translated intoa signal:green,denotingahighchanceofsuccess;yellow,denotingpotentialproblems;orred,denotingahighchanceoffailure.Teachersrunthemodelandgeneratesignalsforthestudentsontheircourse.Theteachercanthenchoosewhat interventions to trigger: sendingapersonalisedemailor text,posting the signalon the LMS.PurduepilotedCourseSignals in2007and itbecameautomated in2009. In2012around24000studentsand145educatorshaveusedCourseSignalsinatleastoneofthecourses.Keypointsinclude:i)problemsareidentifiedasearly as the second week in the semester, iii) feedback is categorised as motivational orinformative, iii)studentsusingSignalsseekhelpearlierandmoreoften,and iv)oneofthestudy’sresultsshowed10%moreAsandBsweregivenforcoursesusingSignalscompareforpreviouscourseswhichdidnotusetheSignalssystem.Overall,studentslikedSignals:89%ofthemconsidereditapositiveexperienceandfoundthecombinationofthetrafficsignalsandinstructor feedback tobe informativeandmotivational.Anticipatedproblemswith Signalsincludedmaintaining theprivacyof teachingperformanceandensuring thevalidityof thealgorithm.Aspointedoutbytheearlierresearch(JICS,2017),severalissueshavetobetakenintoconsiderationwhendesigningandimplementingsimilarsystems:

• Studentsdidnotexpress concernsaboutprivacyabout theirdatabut thatdidnotmeanthattheinstitutionshouldnotneglecttoprotectit.

8

• Institutions need to be able to extract data fromdifferent systems efficiently andtimely.

• Giventhecentralityofstudentsuccesstotheinstitutionalmission,learninganalyticseffortsmightbebetter initiatedandledfromaneducation-focusedunitthanfromtheIT-department.

Based on the success of the Signals systems, researchers at theMarist College in the US(Jayaprakashetal.,2014)implementedtheOnlineAcademicAnalyticsInitiative(OAAI)thataimedtohelpstudents,identifiedas‘needinghelp’,toengagetheminanonlinecommunitydesignedtohelpthemtosucceedacademically.TheOAAIdevelopedaprototypeofanopen-source academic earlier alert system that feeds from the Sakai CLE (Collaboration andLearningEnvironment),andincludesopenpredictivemodelbasedonthePentahoBusinessAnalytics suite (an open source analytics suite with data mining and data integrationcapabilities), and intervention strategies that leverage Open Educational Resources. Thepredictivegoalofthedevelopedsystemwastodetectearlythoseundergraduateswhowerein academic difficulty in the course by using student data. Four sources of data wereconsidered: i) studentdemographicandaptitudedata, ii) coursegradeandcourse relateddata, iii) Sakai-generated data on student interaction with the LMS and iv) partialcontributionstothestudent’sfinalgradecollectedbySakai’sgradebooktool,i.e.,gradesonspecificgradingevents,e.g.,assignmentsandexams.ThepilotswereruninSpring2012andFall2012.Studentidentifiedatrisk,weresubjectedto2interventionsstrategies:“AwarenessMessaging”andparticipatinginon“OnlineAcademicSupportEnvironment”.InonecourseatMaristCollegetherewasasignificantimprovementinfinalgrade(6%)withthoseat-riskstudentswhoweresubjecttoaninterventioncomparedwiththoseinthecontrolgroup,whowerenot.

7. LearningstrategiesDevelopingstudents’learningstrategiesandattitudesisintriguingbecauseitinvolveshigher-orderthinkingskillsonbehalfof thestudents, likeself-regulated learning(SRL)andcriticalthinking.While the importanceof SRL to learning is recognised,understandinghowSRL isappliedincontextisnotasimpletask(Roll&Winne,2015).Torealisethepotentialoflearninganalytics foradvancedof the learning sciences,weneed: i) todevelop instrumentation torecord traces of SRL across all its phases, ii) to develop and to testmethods that identifystructureswithindata,iii)toexploretheeffectsofinterventions(Roll&Winnie,2015).

Oneofthesuccessfulapplicationsoflearninganalyticstoimprovestudents’SRLskillsrefers to the study by Tabuenca et al. (2015). In this study, the researchers investigatedstudents’ timemanagement skills as thepart of their SRL, and in particular examined theeffectsoftrackingandmonitoringtimedevotedtolearnwithamobiletoolonSRL.26studentsenrolled intwoonlinecoursesfromtwouniversities intheNetherlandsparticipated inthestudy.TheLearnTrackerBackendDatabasemodelhasbeenused.Fromthestudentactivitypointofview,thesystemhoststhetimestampanddurationofthelearningactivity(formoreseeTabuencaetal.,2015).LearnTrackeroffersmobilesupportforstudentsenrolledinonlinecourses in which the learning goals are predefined by teachers. Courses deployed inLearnTracker are retrieved from the remote database at LearnTracker Backend. Similarly,time-logs are also recorded in the backened. LearnerTracker also provides social learninganalyticscontrastingthetimedevotedbythestudentwiththetimedevotedbyhispeers,aswellasthetimeoriginallyestimatedbytheteacher.Theexperimentaimedtoestimatehowaccurate estimations by instructional designers are with regard to the time needed to

9

accomplisheachlearningactivityscheduledinacourse.Time-logsrecordsduringthecourseandthegradesobtainedinthefinalevaluationweretakenasindicator.Thestudy’sfindingsshowthatusingmobiledevicesto logandtrackthetimedevotedtostudyacrosscontexts(formalandinformal)mightleadtoanimprovementontimemanagementskillsandshowedthatnotificationspushedatrandomtimeofthedaydonotproducesignificantimprovementsintimemanagement.

Researchers have also examined the development of students' reflection skillsthroughagame-basedapproachcalledthe“TrailsofIntegrityandEthics”(TIEs;Kwongetal.,2017). A total of 658 students from four Hong Kong institutions participated in the studybetweenOctober2016toDecember2016.Thisapproachusesfocusedscenariosonethicaldilemmas - coupledwithAugmentedReality (AR)andmobile technologies - todesignTIEswherescenariosaretriggeredinvariouslocationsandstudentsarechallengedtoreviewtheargumentspresentedandreflectontheirethicalchoices.Inparticular,studentsplayedouttheconsequencesoftheirdecisionswhichhelpstrengthenthelinksbetweenthetheoreticalconceptofacademicintegrityandethicsaswellasthepracticalapplicationindailysettings.Contents of all scenarios are designed based in the 3C model, i.e., each decisionmakingscenariohastoincludeaChallenge,Choices,andConsequences.AllTIEsaredeployedusingamobileapplicationMobxz5,aservicedesignedspecificallyforlearningtrailsandsupportingbothiOSandAndroidsmartdevices.Studentsusetheirmobiledevicestowalkthroughatrailandactivatethe learningactivitieswithineachcheckpointscenariomarker-based(e.g.,QRcode)andmarker-less(e.g.,GPSlocationmapping),ARtechnologiesthatarebuilt-ininthismobile app. To evaluate the effectiveness of TIEs, triangulation of different data setswasadopted,includingexperiencesurveys,qualitativefeedback,clickstreamdataandtextminingofpre/post-traildiscussion.The results indicated that students’ interests in learningaboutissuesofacademicintegrityandethicsinclassroomswerestimulated.

Thisstudy-usingclickstreamdatacollectedfrommobiledevices-presentsanexampleoftheresearch, employed at scale, in the area of learning analytics and shows positive learningevidence.Suchstudiesarelimited(Chanetal.2015)andshouldbeenthusseenasexemplars.“WithenoughevidenceshowingstudentscaneffectivelylearntheconceptsofAIE[academicintegrity and ethics] using the TIEs [Trails of Integrity and Ethics], others in the educationsector,suchassecondaryschoolscanbeencouragedtogetinvolved”(Kwongetal.,2017,p.367).

8. LearninginasocialcontextWithrespecttodigitalisationofdata,learninginasocialcontextpinpointstheemergenceofsocial learning analytics (SLA). SLA emphases the concept of social network analysis onlearningactivitiesandemploysmethodsof learninganalytics to studentgroups insteadofindividualsasascopeforanalysisoflearningactivities(Hayaetal.,2015,p.303).FergusonandBuckinghamShum(2012)suggestfiveapproachestoSLA.

- Sociallearningnetworkanalytics:asuccessfulexampleofthiscategoryistheSNAPP6(SocialNetworksAdaptingPedagogicalPractice)tool,whichisavisualisationtoolforLMSforums.Itcanbeusedtoidentifydisconnectedstudentsandindicatetheextenttowhichalearningcommunityisdevelopingwithinavirtuallearningenvironment.

5Mobxz,https://mightysignal.com/a/ios/6182956476SNAPPtool,https://github.com/aneesha/SNAPPVis

10

- Sociallearningdiscourseanalytics:anexampleistheCoheretool,7whichisawebapplicationprovidingamediumforengaginginstructuredonlinediscourse,orforsummarising/analysingit,e.g.asamoderator,educatororresearcher.Figure2showshowCohereaugmentscommononlinedialoguetext:theiconsatthesideofeachpostshowsrhetoricalroleofthepostandthesemanticconnectionstherhetoricalmovebetweenposts(DeLiddoetal.,2011).

- Sociallearningcontentanalytics:whenviewingonlineresources,SocialLearn’s‘Backpack’–atoolbarofappsandresources–canbeusedonanyInternetsite.TheBackpackcurrentlyincludesthebasiccomponentsofsociallearningcontentanalytics.Itprovides,amongothers,theoptionofviewingthekeywords,hotlinksorimagesconnectedwiththeopenwebpage.Inparticular,whenclickingintheBackpack’slightbulbiconprovidestheoptionofviewingthekeywords,hotlinksorimagesconnectedwiththeopenwebpage(asinthelargeboxontherightofFigure3).Theinformationaboutimagescanbemergedwithvisualsimilaritysearchtoidentifyandrecommendotherresourcesthatmakeuseoftheseimages,

Figure3.TheSocialLearnBackpackopenatthefootofaBBCNewspage,showingalistofimagesonthepage(adoptedfromFerguson&BuckinghamShum,2012)

- Sociallearningdispositionanalytics.Learningdispositionscanbemodelledasamulti-dimensional construct called Learning Power, currently assessed by learner self-report via aweb questionnaire called ELLI (Effective Lifelong Learning Inventory8),whose data warehouse platform supports a range of analytics (Ferguson &Buckingham Shum, 2012). ELLI generates a spider diagram visual analyticwhich isusedtosupportself-reflectionandchange.ELLIhasbeenvalidatedandpilotedattheOpenUniversity(UK;Edwards,2011).

- Implementingsociallearningcontextanalytics:theSocialLearnapprecommendsandprovides access to learningmaterials in response to search terms. The app allowsresourcestoberatedandrecommendedtoindividualsortogroups.Ifuserschoosetomaketheirlocationdataavailable,thiscanbeusedtoinfluencerecommendations;forexample,ifSimonisworkingon‘ClimateChange’theappmightsuggestapodcastoncoastaldefenceswhenhevisitsaseasideresort,andcouldprovideamapshowingalocalsitewhereSimonwouldbeabletoviewtheeffectsoferosion.

7Coheretool,http://cohere.open.ac.uk/8EffectiveLifelongLearningInventory,https://www.elli.global/

11

Figure 4. Dialogues augmented with the Cohere tool

Hayaetal. (2015)demonstratedaSocialLearningAnalytics(SLA)toolkitthatappliessocialnetworkanalysisandcontentanalysistechniquesonforummessagestoanalysecollaborationamong students and to support teacher inquiry. The SLA toolkit was integrated in theJuxtaLearnlearningprocessandplatform(seeFigure5).

Figure5.LearningAnalytics-enhancedJuxtaLearnProcess(adoptedfromHayaetal.2015).

The authors adopted the Teacher-led Inquiry into Student Learning (TISL) pedagogicalapproachandpracticethatencouragesteacherstosystematicallyexaminetheeffectsoftheirlearning design on student performance and learning. Learning Design refers to “theapplication of methods, resources and theoretical frameworks to achieve a particularpedagogicalgoalinagivencontext”(p.302)andfromaLearningDesignpointofview,themain challenge lies in integrating design tools used for lesson planning with tools formonitoringandanalysis.

TheresearchpresentscasestudiesthatexemplifythekeyfeaturesoftheTISLapproachinthecontextofvideocreatedlearningscenarioandthekindofoutcomesthatcanbeobtained.Intheirstudy,Hayaetal.(2015)exploredthepotentialofcomputationalmethodstosupport

12

teachersandlearnersparticipatingincollaborativescenarios.Theresearchersimplementedawebspacethatsupportsnetworksofpeople,contentandservicesbasedontheopen-sourcesocialplatformElgg(https://elgg.org).Thisspaceprovidesobject-orientedprogramming–thechosenforthisstudycourse–relatedcommunicationthroughvideosandensuingdiscussionsand comments. Theplatform supportsuploading, archivingand sharingof learner-createdcontent.Overall,thelearningprocessisgroundedinthestudentreflectioninthethreekeyareas:I)collaborativevideoproduction,ii)discussionandiii)peerevaluation.Discussionandevaluationaredirectlysupportedbythewebspace.

Thecasestudies’resultsshowthattheteacherscanderivevaluableinsightsintothestudents’learningactivitiesfromanalyticsresults.Theauthors(Hayaetal.,2015)exemplifyindicatorsforthequalityofcooperationpresentedbycommunication(seee.g.,Figure6)orportfoliodiagrams(seee.g.,Figure).

Figure6.Discussionnetwork Figure7.Reciprocity

Suchdiagramsallowforintroducingthresholdsforexpectedbehaviorindicatingtheneedforinterventiontoteachershowarenowfamiliarwiththesetypesofdiagrams.Forresearchersand learning designerswho become used to interpreting such diagrams they provide theopportunitytoobtaindetailedinformationaboutirregularitiesintheprocess,whichmayandinsomecases,shouldleadtoadaptations.Thecomplementingapplicationofcontentanalysismethods,hereNetworkTextAnalysishelpedtodetectfrequentmisconceptionsfromstudentcommentswhichinformlearningdesignersandteachersabouttopicsofinterests.Moreover,additionalindicators,suchasthesemanticrichnessmeasure,providethebasesforscaffoldingstudentstokeepfocusedonthedomain-relatedlearningtaskratherthanaimingatproducing‘perfect’ videos. In summary, the toolkit supportsmultiple levels of analysis that providedeeperinsightsintothecollaborativelearningprocess

Berlandetal.(2015)introducedAMOEBA,acollaborationorchestrationtooltosupportprogramminglearningactivitiesinhighschoolbysupportingteacherstopairstudentsbasedonrealtimeanalysesofstudents’programmingprogressions.TheresultsshowedthatusingAMOEBAtohelpwithpairingstudentsresultedinimprovementsinthecomplexityanddepthofthestudent’sprograms.

9. LearninganalyticsandlearningdesignThe interplay between learning analytics and learning design has recently attracted theinterest of researchers mainly for one reason: to check whether there are discrepanciesbetweenthestudents’actualbehaviourandtheteacher’s intentions,andinturn, tomakecorrectiveactions.Forexample,thestudyofNguyenetal.(2018)usedtracedatafromthe

13

Moodle LMS to investigate to what extent students’ timing of engagements aligned withinstructor learning design, and how engagement varied across different levels ofperformance.Theanalysiswas conductedover30weeksusing tracedata (fromanonlinecourseattheOpenUniversity,UK)on387studentsandreplicatedovertwosemestersin2015and2016.

Thedataanalysiswasperformedviavisualisationsandmultilevelmodelling.Tounderstandtowhat extent do students’ timing of engagement align with instructors’ learning designvisualisationswereemployed.Firstly,actuallystudypattersagainstthelearningdesignwerevisualised. Secondly, the study patters for respective individual study materials acrossexcellent, passed, and failed group. The visualisations were conducted using JupyterNotebook9andTableau10.Tocomparestudypattersacrossthreegroupsofperformanceovertime,amultilevelmodelling(ormixed-effectmodelling)approachwasused.Thisapproach,compared to the traditional repeatedmeasure ANOVA approach, allows formissing data,tolerates differently spaced waves of data (e.g., due to Christmas break) and allows fornonlinearrelationships(Nguenetal.,2018,p.144).

Theirfindingsrevealedamismatchbetweenhowinstructorsdesignedforlearningandhowstudents studied in reality. Inmostweeks, students spent less time studying the assignedmaterials on the Moodle platform compared to the number of hours recommended byinstructors.Thetimingofengagementalsovaried,frominadvancetocatchinguppatterns.Highperformingstudents(i.e.,thepassedandtheexcellentgroups)spentmoretimestudyingin advance, while low-performing students spent a higher proportion of their time oncatching-up activities. Towards the end of the course, the gap between failed andpassed/excellentstudentsincreasedconsiderably.

In summary, by comparing and contrasting the assumptions in learning design made byinstructorswithactualstudentbehavior,learninganalyticscouldactasareflectivesourceandprovide actionable feedback.Onepotential implication of this study is if students tend tospendmoretimeoncatchingupaparticular learningmaterial, the instructorscouldcheckwhetherthematerialwasclearlyexplained,andprovideaquickreview.

Rodríguez-Trianaetal.(2015)presentthemonitoring-awaredesignprocess,whichdescribesthe steps that teachers should undertake during the design of computer-supportedcollaborative learning scenarios, inorder to reflecton theirmonitoringneedsandexpressexpectationsaboutstudents’ interaction.Fromalearninganalyticsperspective,monitoringexaminesstudents’interactionsduringtheenactmentofthelearningscenariosandfacilitatestheinterventiononthesituationtowardamoreproductivedirection(Rodríguez-Trianaetal.,2015).Theauthorsadoptthefollowinglearningdesign-awaremonitoringprocess:

1. Collectinteractiondata,guidedbytheunderlyinglearningdesign(e.g.,participants,resources,and/ordeadlines).

2. Createindicatorstoconstructamodelofdesiredinteraction(i.e.,students’interactionswiththelearningsystem)basedonthelearningdesigndefinitionandconstraints,andtheteachers’decisions.

3. Compareactualanddesiredstatesofinteractioni.e.,comparingthegatheredevidencewiththelearningdesigndefinitionandconstraints.

9https://jupyter.org10https://www.tableau.com

14

4. Adviceorguidetheinteraction,byinformingteachersaboutdiscrepanciesabouttheactualandthedesiredstate.

Todeploythestrategymentionedabove,theauthorsusedanumberoftools;inparticular,First,theWeb-Collagetool11tocreatethelearninginadigitalformat;then,theGLUE-PS12tool(i.e.,GroupLearningUnifiedEnvironment-PedagogicalScripting) -usedbytheteachers-deployedautomaticallythedesignintothedistributedlearningenvironments,i.e.,differentexistingVirtual Learning Environments (e.g.,Moodle); and a custom-made third tool, theGroup Learning Interaction Monitor for Pedagogical Scripting Environments (GLIMSE)prototype,totrackandreporttheinteractionstakingplaceintheLMSplatform.GLIMSEtookthescriptinstantiationfilegeneratedbyGLUE-PSandtheXMLversionoftheformstoguidethedatagatheringandanalysis.

In summary,we have provided several relevant examples thatmight be applicable in theSwedishcontext,but tobeable tounderstand furtherhow learninganalyticscan improvedifferentaspectsoflearningprocessandlearningoutcomes,practitionersneedtoconsiderseveral important questions such as:What problems do we want to solve?What learneractivitiesdowewanttosupport?Whatkindofdata,thatwemay,ormaynothavetoday,wouldbevaluabletoanalyse?Howtheavailablemethodsandtoolsthatareapplicableononeeducationalcontextberelevantandusefulinanothercontext?Whatarethechallenges?Arethereanyimportantethicalconsiderationsthatshouldbetakenintoaccount?

ReferencesArnold,K.E.,&Pistilli,M.D.(2012,April).CoursesignalsatPurdue:Usinglearninganalytics

toincreasestudentsuccess.InProceedingsoftheSecondInternationalConferenceonLearningAnalyticsandKnowledge(pp.267-270).ACM.

Berland,M.,Davis,D.,&Smith,C.P.(2015).AMOEBA:DesigningforCollaborationinComputerScienceClassroomsthroughLiveLearningAnalytics.InternationalJournalofComputer-SupportedCollaborativeLearning,10(4),425-447.

Broos,T.,Peeters,L.,Verbert,K.,VanSoom,Langie,G.,&DeLaet,T.(2017).DashboardforActionableFeedbackonLearningSkills:HowLeanerProfileAffectsUse.Proceedingsofthe7thWorkshoponAwarenessandReflectioninTechnologyEnhancedLearning,co-locatedwiththe12thEuropeanConferenceonTechnologyEnhancedLearning.Retrievedfromhttp://ceur-ws.org/Vol-1997/paper7.pdf2018-12-15

Chan,J.,Chiu,R.,Ng,G.,&Kwong,T.(2015).Howclickstreamtrackinghelpsdesignmobilelearningcontent.InternationalJournalofHumanitiesSocialSciencesandEducation,2(7),95–104.

Davies,R.,Nyland,R.,Chapman,J.,&Allen,G.(2015,March).Usingtransaction-leveldatatodiagnoseknowledgegapsandmisconceptions.InProceedingsoftheFifthInternationalConferenceonLearningAnalyticsandKnowledge(pp.113-117).ACM.

DeLiddo,A.,Shum,S.B.,Quinto,I.,Bachler,M.,&Cannavacciuolo,L.(2011).Discourse-centriclearninganalytics.InProceedingsofthe1stInternationalConferenceonLearningAnalyticsandKnowledge(pp.23-33).ACM.

11WebCollage,http://www.ld-grid.org/resources/tools/webcollage12GLUE!-PStool,https://www.gsic.uva.es/glueps/

15

Drachsler,H.,&Kalz,M.(2016).TheMOOCandLearningAnalyticsInnovationCycle(MOLAC):AReflectiveSummaryofOngoingResearchanditsChallenges.JournalofComputerAssistedLearning,32(3),281-290.

Gašević,D.,Dawson,S.,Rogers,T.,&Gasevic,D.(2016).Learninganalyticsshouldnotpromoteonesizefitsall:Theeffectsofinstructionalconditionsinpredicatinglearningsuccess.TheInternetandHigherEducation,28,68-84.

Govaerts,S.Verbert,K.,&.Duval,E.(2011).Evaluatingthestudentactivitymeter:Twocasestudies.InH.Leung,E.Popescu,Y.Cao,R.Lau,andW.Nejdl(Eds).AdvancesinWeb-BasedLearning-ICWL2011,volume7048ofLectureNotesinComputerScience,pp.188-197.SpringerBerlinHeidelberg.

Edwards,C.(2011).Embeddingreflectivethinkingonapproachestolearning-movingfrompilotstudytodevelopinginstitutionalgoodpractice.In:The16thAnnualConferenceofEducation,Learning,Styles,IndividualdifferencesNetwork,29Jun-1Jul2011,UniversityofAntwerp.

Ferguson,R.,&BuckinghamShum,S.(2012).SocialLearningAnalytics:FiveApproaches.InProceedingsofthe2ndInternationalConferenceonLearningAnalyticsandKnowledge,(29Apr-2May,Vancouver,BC).ACMPress:NewYork.Eprint:http://oro.open.ac.uk/32910

Ferguson,R.,&Clow,D.(2017).Whereistheevidence?Acalltoactionforlearninganalytics.Proceedingofthe7thinternationallearninganalyticsandknowledgeconference,pp.56-65.ACM.

Jayaprakash,S.,Moody,E.,Lauria,E.,Regan,J.,&Baron,J.(2014).Earlyalertofacademicat-riskstudents:anOpenSourceAnalyticsInitiative.JournalofLearningAnalytics,1(1),6-47.

Haya,P.,Daems,O.,Malzahn,N.,Castellanos,J.,&Hoppe,H.(2015).AnalysingContentandPatternsofInteractionforImprovingtheLearningDesignofNetworkedLearningEnvironments.BritishJournalofEducationalTechnology,46(2),300-316.

JICS(2017).Learninganalyticsinhighereducation:AreviewofUKandinternationalpractice.CaseStudyA:Trafficlightsandinterventions:SignalsatPurdueUniversity.Retrievedfromhttps://analytics.jiscinvolve.org/wp/files/2016/04/CASE-STUDY-A-Purdue-University.pdf2018-12-06

Kickmeier-Rust,M.,Hillemann,E.,&Albert,D.(2014).Gamificationandsmartfeedback:Experienceswithaprimaryschoollevelmathapp.InternationalJournalofGame-BasedLearning,4(3),35-46.

Kovanovic,V.,Gasevic,D.,Dawson,S.,Joksimovic,S.,Baker,R.,&Hatala,M.(2015).Doestime-on-taskestimationmatter?Implicationsforthevalidityoflearninganalyticsfindings.JournalofLearningAnalytics,2(3),81-110.

Kwong,T.,Wong,E.,&Yue,K.(2017).Bringingabstractacademicintegrityandethicalconceptsintoreal-lifesituations.Technology,KnowledgeandLearning,22(3),353-368.

Lang,C.,Siemens,G.,Wise,A.,&Gasevic,D.(Eds;2017).HandbookofLearningAnalytics(firstedition),DOI:10.18608/hla17

Leony,D.,Merino,P.J.M.,Valiente,J.A.R.,Pardo,A.,&Kloos,C.(2015).DetectionandEvaluationofEmotionsinMassiveOpenOnlineCourses.JournalofUniversalComputerScience,21(5),638-655.

Long,P.,&Siemens,G.(2011).Penetratingthefog:Analyticsinlearningandeducation.EducauseReview,46(5),31-40.

16

McNamara,D.,Allen,L.,Crossley,S.,Dascalu,M.,&Perret,C.A.(2017).Naturallanguageprocessingandlearninganalytics.Handbookoflearninganalytics,93-104.Retrivedfromhttps://solaresearch.org/wp-content/uploads/2017/05/chapter8.pdf2018-09-28

Misiejuk,K.,&Wasson,B.(2017).StateoftheFieldReportonLearningAnalytics.Onlineat:http://bora.uib.no/bitstream/handle/1956/17740/SoF%20Learning%20Analytics%20Report.pdf?sequence=1

Millecamp,M.,Gutiérrez,F.,Charleer,S.,Verbert,K.,&DeLaet,T.(2018,March).Aqualitativeevaluationofalearningdashboardtosupportadvisor-studentdialogues.InProceedingsofthe8thInternationalConferenceonLearningAnalyticsandKnowledge(pp.56-60).ACM.

Nguyen,Q.,Huptych,M.,&Rienties,B.(2018).Linkingstudents'timingofengagementtolearningdesignandacademicperformance.InProceedingsofthe8thInternationalConferenceonLearningAnalyticsandKnowledge(pp.141-150).ACM.

Reich,J.(2014,December8).MOOCcompletionandretentioninthecontextofstudentintent.EDUCAUSEReviewOnline.http://er.educause.edu/articles/2014/12/mooc-completion-and-retention-in-the-context-of-student-intent

Rodríguez-Triana,M.,Martínez-Monés,A.,Asensio-Pérez,J.,&Dimitriadis,Y.(2015).Scriptingandmonitoringmeeteachother:AligninglearninganalyticsandlearningdesigntosupportteachersinorchestratingCSCLsituations.BritishJournalofEducationalTechnology,46(2),330-343.

Roll,I.,&Winne,P.H.(2015).Understanding,evaluating,andsupportingself-regulatedlearningusinglearninganalytics.JournalofLearningAnalytics,2(1),7–12.

Schwendimann,B.,Rodríguez-Triana,M.,Vozniuk,A.,Prieto,L.,Boroujeni,M.,Holzer,A.,Gillet,D.,&Dillenbourg,P.(2016).Understandinglearningataglance:anoverviewoflearningdashboardstudies.LAK.Retrievedfromhttps://infoscience.epfl.ch/record/216917/files/2016___LAK___Dashboard_systematic_review__Poster_.pdf2018-12-15

Simsek,D.,BuckinghamShum,S.,Sandor,A.,DeLiddo,A.,&Ferguson,R.(2013).XIPDashboard:visualanalyticsfromautomatedrhetoricalparsingofscientificmetadiscourse.In:1stInternationalWorkshoponDiscourse-CentricLearningAnalytics,8Apr2013,Leuven,Belgium.

Tabuenca,B.,Kalz,M.,Drachsler,H.,&Specht,M.(2015).TimewillTell:TheRoleofMobileLearningAnalyticsinSelf-RegulatedLearning.Computers&Education,89,53-74.

Viberg,O.,Hatakka,M.,Bälter,O.,&Mavroudi,A.(2018).TheCurrentLandscapeofLearningAnalyticsinHigherEducation.ComputersinHumanBehavior,89,98-110.