Digital Modulation (Part I) - CppSim · M.H. Perrott©2007 Digital Modulation (Part I), Slide 2...

21
M.H. Perrott©2007 Digital Modulation (Part I), Slide 1 Digital Modulation (Part I) Communication using symbols and bits Constellation diagrams and decision boundaries Transmit bandwidth vs.intersymbol interference Eye Diagrams and sample time sensitivity Copyright © 2007 by M.H. Perrott All rights reserved.

Transcript of Digital Modulation (Part I) - CppSim · M.H. Perrott©2007 Digital Modulation (Part I), Slide 2...

Page 1: Digital Modulation (Part I) - CppSim · M.H. Perrott©2007 Digital Modulation (Part I), Slide 2 Review of Analog I/Q Modulation • Consider modulating with both a cosine and sine

M.H. Perrott©2007 Digital Modulation (Part I), Slide 1

DigitalModulation(Part I)

• Communication using symbols and bits• Constellation diagrams and decision boundaries • Transmit bandwidth vs.intersymbol interference• Eye Diagrams and sample time sensitivity

Copyright © 2007 by M.H. PerrottAll rights reserved.

Page 2: Digital Modulation (Part I) - CppSim · M.H. Perrott©2007 Digital Modulation (Part I), Slide 2 Review of Analog I/Q Modulation • Consider modulating with both a cosine and sine

M.H. Perrott©2007 Digital Modulation (Part I), Slide 2

Review of Analog I/Q Modulation

• Consider modulating with both a cosine and sine wave and then adding the results– This is known as I/Q modulation

• The I/Q signals occupy the same frequency band, but one is real and one is imaginary– We can recover both of these signals

I stands forin-phasecomponent

Q stands forquadraturecomponent

Transmitter Outputf

-fo fo0

1 1

f0

f-fo

fo

0

j

-j

2cos(2πfot)

2sin(2πfot)

y(t)

it(t)

qt(t)

It(f)

Qt(f)

f0

f-fo fo0

1 11

1

f-fo

fo

0

j

-j

Yi(f)

Yq(f)

Page 3: Digital Modulation (Part I) - CppSim · M.H. Perrott©2007 Digital Modulation (Part I), Slide 2 Review of Analog I/Q Modulation • Consider modulating with both a cosine and sine

M.H. Perrott©2007 Digital Modulation (Part I), Slide 3

Review of Analog I/Q Demodulation

• Demodulate with both a cosine and sine wave– Both I and Q channels are recovered!

• I/Q modulation allows twice the amount of information to be sent compared to basic AM modulation with same bandwidth

Receiver Output

2cos(2πfot)

2sin(2πfot)

y(t)

ir(t)

qr(t)

f

f

f-fo fo0

1 1

f-fo

fo

0

j

-j

f0

Ir(f)

Qr(f)

f0

2

2

Transmitter Outputf

-fo fo0

1 1

f0

f-fo

fo

0

j

-j

2cos(2πfot)

2sin(2πfot)

y(t)

it(t)

qt(t)

It(f)

Qt(f)

f0

f-fo fo0

1 11

1

f-fo

fo

0

j

-j

Yi(f)

Yq(f)

Lowpass

H(f)

Lowpass

H(f)

Page 4: Digital Modulation (Part I) - CppSim · M.H. Perrott©2007 Digital Modulation (Part I), Slide 2 Review of Analog I/Q Modulation • Consider modulating with both a cosine and sine

M.H. Perrott©2007 Digital Modulation (Part I), Slide 4

Summary of Analog I/Q Demodulation• Frequency domain view

• Time domain view

f0

Receiver Output

2cos(2πfot)2sin(2πfot)

ir(t)

qr(t)

it(t)

qt(t)

It(f)

Qt(f)

f0

1

1

f0

Ir(f)

Qr(f)

f0

2

2

2cos(2πfot)2sin(2πfot)

Baseband Input

Lowpass

H(f)

Lowpass

H(f)

t

t

t

t

Receiver Output

2cos(2πfot)2sin(2πfot)

ir(t)

qr(t)

it(t)

qt(t)

2cos(2πfot)2sin(2πfot)

Baseband Input

Lowpass

H(f)

Lowpass

H(f)

Page 5: Digital Modulation (Part I) - CppSim · M.H. Perrott©2007 Digital Modulation (Part I), Slide 2 Review of Analog I/Q Modulation • Consider modulating with both a cosine and sine

M.H. Perrott©2007 Digital Modulation (Part I), Slide 5

Digital I/Q Modulation

• Leverage analog communication channel to send discrete-valued symbols– Example: send symbol from set {-3,-1,1,3} on both

I and Q channels each symbol period• At receiver, sample I/Q waveforms every symbol

period– Associate each sampled I/Q value with symbols from

set {-3,-1,1,3} on both I and Q channels

2cos(2πfot)

2sin(2πfot)

ir(t)

qr(t)

it(t)

qt(t)

2cos(2πfot)

2sin(2πfot)

Lowpass

H(f)

Lowpass

H(f)

Receiver Output

t

t

t

Baseband Input

t

SampleTimes

31

-1-3

31

-1-3

31

-1-3

31

-1-3

I

Q

Page 6: Digital Modulation (Part I) - CppSim · M.H. Perrott©2007 Digital Modulation (Part I), Slide 2 Review of Analog I/Q Modulation • Consider modulating with both a cosine and sine

M.H. Perrott©2007 Digital Modulation (Part I), Slide 6

Advantages of going Digital• Allows information to be “packetized”

– Can compress information in time and efficiently send as packets through network

– In contrast, analog modulation requires “circuit-switched”connections that are continuously available

• Inefficient use of radio channel if there is “dead time” in information flow

• Allows error correction to be achieved– Less sensitivity to radio channel imperfections

• Enables compression of information– More efficient use of channel

• Supports a wide variety of information content– Voice, text and email messages, video can all be

represented as digital bit streams

Page 7: Digital Modulation (Part I) - CppSim · M.H. Perrott©2007 Digital Modulation (Part I), Slide 2 Review of Analog I/Q Modulation • Consider modulating with both a cosine and sine

M.H. Perrott©2007 Digital Modulation (Part I), Slide 7

Constellation Diagrams

• Plot I/Q samples on x-y axis– Example: sampled I/Q value of

{1,-3} forms a dot at x=1, y=-3– As more samples are plotted,

constellation diagram eventually displays all possible symbol values

• Constellation diagram provides a sense of how easy it is to distinguish between different symbols

2cos(2πfot)

2sin(2πfot)

ir(t)

qr(t)

it(t)

qt(t)

2cos(2πfot)

2sin(2πfot)

Lowpass

H(f)

Lowpass

H(f)

Receiver Output

t

t

t

Baseband Input

t

SampleTimes

31

-1-3

31

-1-3

31

-1-3

31

-1-3

-3 -1 1 3

-3

-1

1

3

I

Q

I

Q

Page 8: Digital Modulation (Part I) - CppSim · M.H. Perrott©2007 Digital Modulation (Part I), Slide 2 Review of Analog I/Q Modulation • Consider modulating with both a cosine and sine

M.H. Perrott©2007 Digital Modulation (Part I), Slide 8

Sending Digital Bits

• Assign each I/Q symbol to a set of digital bits– Example: I/Q = {1,3} translates

to bits of 1110– Gray coding minimizes bit errors

when symbol errors are made• Example: I/Q = {1,1} translates

to bits of 1010– Only one bit change from

I/Q = {1,3}

2cos(2πfot)

2sin(2πfot)

ir(t)

qr(t)

it(t)

qt(t)

2cos(2πfot)

2sin(2πfot)

Lowpass

H(f)

Lowpass

H(f)

Receiver Output

t

t

t

Baseband Input

t

SampleTimes

31

-1-3

31

-1-3

31

-1-3

31

-1-3

00 01 11 10

00

01

11

10

I

Q

I

Q

Page 9: Digital Modulation (Part I) - CppSim · M.H. Perrott©2007 Digital Modulation (Part I), Slide 2 Review of Analog I/Q Modulation • Consider modulating with both a cosine and sine

M.H. Perrott©2007 Digital Modulation (Part I), Slide 9

The Impact of Noise

• Noise perturbs sampled I/Q values– Constellation points no longer

consist of single dots for each symbol

• Issue: what is the best way to match received I/Q samples with their corresponding symbols?

00 01 11 10

00

01

11

10

I

Q

2cos(2πfot)

2sin(2πfot)

ir(t)

qr(t)

it(t)

qt(t)

2cos(2πfot)

2sin(2πfot)

Lowpass

H(f)

Lowpass

H(f)

Receiver Output

t

t

t

Baseband Input

t

SampleTimes

31

-1-3

31

-1-3

31

-1-3

31

-1-3

ReceiverNoise I

Q

Page 10: Digital Modulation (Part I) - CppSim · M.H. Perrott©2007 Digital Modulation (Part I), Slide 2 Review of Analog I/Q Modulation • Consider modulating with both a cosine and sine

M.H. Perrott©2007 Digital Modulation (Part I), Slide 10

Symbol Selection Based on Slicing

• Match I/Q samples to their corresponding symbols based on decision regions– Choose decision regions

to minimize symbol errors

– Decision boundaries are also called slicing levels

DecisionBoundaries I

Q

DecisionBoundaries

00 01 11 10

00

01

11

10

2cos(2πfot)

2sin(2πfot)

ir(t)

qr(t)

it(t)

qt(t)

2cos(2πfot)

2sin(2πfot)

Lowpass

H(f)

Lowpass

H(f)

Receiver Output

t

t

t

Baseband Input

t

SampleTimes

31

-1-3

31

-1-3

31

-1-3

31

-1-3

ReceiverNoise I

Q

Page 11: Digital Modulation (Part I) - CppSim · M.H. Perrott©2007 Digital Modulation (Part I), Slide 2 Review of Analog I/Q Modulation • Consider modulating with both a cosine and sine

M.H. Perrott©2007 Digital Modulation (Part I), Slide 11

Transitioning Between Symbols

• Transition behavior between symbols is influenced by both transmit I/Q input waveforms and receive filter– We will focus on impact of

transition behavior at transmitter today

– Ignore the impact of noise for this analysis

I

Q

00 01 11 10

00

01

11

10

2cos(2πfot)

2sin(2πfot)

ir(t)

qr(t)

it(t)

qt(t)

2cos(2πfot)

2sin(2πfot)

Lowpass

H(f)

Lowpass

H(f)

Receiver Output

t

t

t

Baseband Input

t

SampleTimes

31

-1-3

31

-1-3

31

-1-3

31

-1-3

ReceiverNoise I

Q

Page 12: Digital Modulation (Part I) - CppSim · M.H. Perrott©2007 Digital Modulation (Part I), Slide 2 Review of Analog I/Q Modulation • Consider modulating with both a cosine and sine

M.H. Perrott©2007 Digital Modulation (Part I), Slide 12

Influence of Transitions at Transmitter

• Ideal analog communication channel simply transports the transmitter I/Q signals to the receiver

• Constellation diagram can be constructed at transmitter to evaluate its performance– Bad constellation at transmitter implies

bad one at receiver

I

Q

00 01 11 10

00

01

11

10

2cos(2πfot)

2sin(2πfot)

ir(t)

qr(t)

it(t)

qt(t)

2cos(2πfot)

2sin(2πfot)

Lowpass

H(f)

Lowpass

H(f)

Receiver Output

t

t

t

Baseband Input

t

SampleTimes

31

-1-3

31

-1-3

31

-1-3

31

-1-3

ReceiverNoise I

Q

SampleTimes

Page 13: Digital Modulation (Part I) - CppSim · M.H. Perrott©2007 Digital Modulation (Part I), Slide 2 Review of Analog I/Q Modulation • Consider modulating with both a cosine and sine

M.H. Perrott©2007 Digital Modulation (Part I), Slide 13

Transitions and the Transmitted Spectrum

• Want transmitted spectrum with minimal bandwidth– Wireless communication

channels are a sharedresource

• Issue: sharply changing I/Q waveforms lead to a wide bandwidth spectrum

I

Q

00 01 11 10

00

01

11

10

it(t)

qt(t)

2cos(2πfot)

2sin(2πfot)

t

t

Baseband Input31

-1-3

31

-1-3

SampleTimes

tt

T

t

|Pzoh(f)|

f

d(t) (one trial) pzoh(t)

f00

*

f

T

it(t) (one trial)

|D(f)|

(one trial)

|It(f)|

(one trial)

-1T

1T

0-1T

1T

y(t)

f

|Y(f)|

(one trial)

0-1T

1T

Page 14: Digital Modulation (Part I) - CppSim · M.H. Perrott©2007 Digital Modulation (Part I), Slide 2 Review of Analog I/Q Modulation • Consider modulating with both a cosine and sine

M.H. Perrott©2007 Digital Modulation (Part I), Slide 14

Impact of Transmit Filter

• Transmit filter enables reduced bandwidth for transmitted spectrum

• Issue: can lead to intersymbol interference (ISI)– Constellation diagram displays

vulnerability to making bit errors

I

Q

00 01 11 10

00

01

11

10

it(t)

qt(t)

2cos(2πfot)

2sin(2πfot)

t

t

Baseband Input31

-1-3

31

-1-3

SampleTimes

y(t)

f

|Y(f)|

(one trial)

0-1T

1T

Lowpass

P(f)

Lowpass

P(f)

t

t

31

-1-3

31

-1-3

f

P(f)

f0-1

T1T

|Di(f)|

(one trial)

di(t)

Page 15: Digital Modulation (Part I) - CppSim · M.H. Perrott©2007 Digital Modulation (Part I), Slide 2 Review of Analog I/Q Modulation • Consider modulating with both a cosine and sine

M.H. Perrott©2007 Digital Modulation (Part I), Slide 15

Impact of Low Bandwidth Transmit Filter

• Lowering the transmit filter bandwidth leads to– Lower bandwidth

transmitted spectrum– Increased ISI

• Eye diagrams allow ISI to be intuitively examined

I

Q

00 01 11 10

00

01

11

10

it(t)

qt(t)

2cos(2πfot)

2sin(2πfot)

t

t

Baseband Input31

-1-3

31

-1-3

SampleTimes

y(t)

f

|Y(f)|

(one trial)

0-1T

1T

Lowpass

P(f)

Lowpass

P(f)

t

t

31

-1-3

31

-1-3

f

P(f)

f0-1

T1T

|Di(f)|

(one trial)

di(t)

Page 16: Digital Modulation (Part I) - CppSim · M.H. Perrott©2007 Digital Modulation (Part I), Slide 2 Review of Analog I/Q Modulation • Consider modulating with both a cosine and sine

M.H. Perrott©2007 Digital Modulation (Part I), Slide 16

Eye Diagrams

• Key idea: wrap signal back onto itself in periodic time intervals and retain all traces– Similar to action of oscilloscope

t

3

1

-1

-3

I(t)

t

3

1

-1

-3

Eye Diagram

of I(t)

Page 17: Digital Modulation (Part I) - CppSim · M.H. Perrott©2007 Digital Modulation (Part I), Slide 2 Review of Analog I/Q Modulation • Consider modulating with both a cosine and sine

M.H. Perrott©2007 Digital Modulation (Part I), Slide 17

t

t

3

1

-1

-3

3

1

-1

-3

I(t)

Eye Diagram

of I(t)

Looking at Many Symbols

• Increasing the number of symbols eventually reveals all possible symbol transition trajectories– Intuitively displays the impact of filtering on ISI

Page 18: Digital Modulation (Part I) - CppSim · M.H. Perrott©2007 Digital Modulation (Part I), Slide 2 Review of Analog I/Q Modulation • Consider modulating with both a cosine and sine

M.H. Perrott©2007 Digital Modulation (Part I), Slide 18

t

t

3

1

-1

-3

3

1

-1

-3

I(t)

Eye Diagram

of I(t) Decision

Boundaries

Sample Times

(also called

Slicing levels)

Assessing the Quality of an Eye Diagram

• Eye diagram allows visual inspection of the impact of sample time and decision boundary choices– Large eye opening implies less vulnerability to symbol errors

Page 19: Digital Modulation (Part I) - CppSim · M.H. Perrott©2007 Digital Modulation (Part I), Slide 2 Review of Analog I/Q Modulation • Consider modulating with both a cosine and sine

M.H. Perrott©2007 Digital Modulation (Part I), Slide 19

Relating Eye Diagrams to Constellation

• Open eye diagrams lead to tight symbol groupings in constellation– Assumes proper

sample time placement

I

Q

00 01 11 10

00

01

11

10

it(t)

qt(t)

2cos(2πfot)

2sin(2πfot)

t

t

Baseband Input31

-1-3

31

-1-3

SampleTimes

y(t)Lowpass

P(f)

Lowpass

P(f)

t

t

31

-1-3

31

-1-3

f

P(f)

di(t)

I and Q Eye Diagrams

SampleTimes

t

Page 20: Digital Modulation (Part I) - CppSim · M.H. Perrott©2007 Digital Modulation (Part I), Slide 2 Review of Analog I/Q Modulation • Consider modulating with both a cosine and sine

M.H. Perrott©2007 Digital Modulation (Part I), Slide 20

Impact of Low Transmit Bandwidth

• Eye diagrams intuitively show increased ISI– Also show

sensitivity of bit errors to sample time placement Sample

Times

t

t

Baseband Input31

-1-3

31

-1-3

f

P(f)

I

Q

00 01 11 10

00

01

11

10

it(t)

qt(t)

2cos(2πfot)

2sin(2πfot)

SampleTimes

y(t)Lowpass

P(f)

Lowpass

P(f)

t

t

31

-1-3

31

-1-3

di(t)

I and Q Eye Diagrams

t

Page 21: Digital Modulation (Part I) - CppSim · M.H. Perrott©2007 Digital Modulation (Part I), Slide 2 Review of Analog I/Q Modulation • Consider modulating with both a cosine and sine

M.H. Perrott©2007 Digital Modulation (Part I), Slide 21

Summary• Digital modulation operates by sending discrete-

valued symbols through an analog communication channel– Receiver must sample I/Q signals at the appropriate time– Receiver matches I/Q sample values to corresponding

symbols based on decision regions– Constellation diagrams are a convenient tool to see

likelihood of bit errors being made

• Choice of transmit filter is a tradeoff between achieving a minimal bandwidth transmitted spectrum and minimal intersymbol interference (ISI)– Eye diagrams are a convenient tool to see effects of ISI

and sensitivity of bit errors to sample time choice

• Next lecture: a closer look at the receiver…