Digital Image Processing Images © 2002 …bcmi.sjtu.edu.cn/~luhongtao/dip/res/dip04.pdf1 Gianni...

22
1 Gianni Ramponi University of Trieste http://www.units.it/ramponi Images © 2002 Gonzalez & Woods Digital Image Processing Chapter 4 Enhancement in the Frequency Domain: Fourier transform fundamentals Chapter 4 Enhancement in the Frequency Domain: Fourier transform fundamentals 1-D case: Three parameters for the sinusoidal functions: -Frequency -Amplitude -Phase Zero-frequency sine: DC value Gianni Ramponi University of Trieste http://www.units.it/ramponi Images © 2002 Gonzalez & Woods Digital Image Processing +∞ = = dx ux j x f u F x f ] 2 exp[ ) ( ) ( )} ( { π Let f(x) be a continuous (and aperiodic) function of a real variable x. Its Fourier transform is It is a complex function of the real variable u: +∞ = = du ux j u F x f u F ] 2 exp[ ) ( ) ( )} ( { 1 π The inverse Fourier transform is given by ) ( | ) ( | ) ( ) ( ) ( u j e u F u jI u R u F Φ = + = Chapter 4 Enhancement in the Frequency Domain: Fourier transform fundamentals Chapter 4 Enhancement in the Frequency Domain: Fourier transform fundamentals Gianni Ramponi University of Trieste http://www.units.it/ramponi Images © 2002 Gonzalez & Woods Digital Image Processing = = 1 0 ] / 2 exp[ ) ( 1 ) ( N x N x u j x f N u F π For a discrete (sampled), finite length signal, when x takes integer values e.g. in the range [0,N-1], the Discrete Fourier Transform (DFT) is It is a complex function of the discrete variable u = 0, 1, 2, … N-1 . Periodic repetition of the input sequence is implied. The Inverse Discrete Fourier Transform (IDFT) is = = 1 0 ] / 2 exp[ ) ( ) ( N u N x u j u F x f π Chapter 4 Enhancement in the Frequency Domain: Fourier transform fundamentals Chapter 4 Enhancement in the Frequency Domain: Fourier transform fundamentals Gianni Ramponi University of Trieste http://www.units.it/ramponi Images © 2002 Gonzalez & Woods Digital Image Processing Chapter 4 Enhancement in the Frequency Domain: Fourier transform fundamentals Chapter 4 Enhancement in the Frequency Domain: Fourier transform fundamentals

Transcript of Digital Image Processing Images © 2002 …bcmi.sjtu.edu.cn/~luhongtao/dip/res/dip04.pdf1 Gianni...

Page 1: Digital Image Processing Images © 2002 …bcmi.sjtu.edu.cn/~luhongtao/dip/res/dip04.pdf1 Gianni Ramponi University of Trieste Digital Image Processing Images © 2002 Gonzalez & Woods

1

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

1-D case:

Three parameters for the sinusoidal functions:-Frequency-Amplitude-Phase

Zero-frequency sine:DC value

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

∫+∞

∞−−==ℑ dxuxjxfuFxf ]2exp[)()()}({ π

Let f(x) be a continuous (and aperiodic) function of a real variable x. ItsFourier transform is

It is a complex function of the real variable u:

∫+∞

∞−

− −==ℑ duuxjuFxfuF ]2exp[)()()}({1 π

The inverse Fourier transform is given by

)(|)(|)()()( ujeuFujIuRuF Φ=+=

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

∑−

=

−=1

0

]/2exp[)(1)(N

x

NxujxfN

uF π

For a discrete (sampled), finite length signal, when x takes integer valuese.g. in the range [0,N-1], the Discrete Fourier Transform (DFT) is

It is a complex function of the discrete variable u = 0, 1, 2, … N-1 . Periodic repetition of the input sequence is implied.

The Inverse Discrete Fourier Transform (IDFT) is

∑−

=

=1

0

]/2exp[)()(N

u

NxujuFxf π

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

Page 2: Digital Image Processing Images © 2002 …bcmi.sjtu.edu.cn/~luhongtao/dip/res/dip04.pdf1 Gianni Ramponi University of Trieste Digital Image Processing Images © 2002 Gonzalez & Woods

2

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

dxdyvyuxjyxfvuFyxf )](2exp[),(),()},({ +−==ℑ ∫∫+∞

∞−π

If f(x,y) is a continuous function of two real variables x,y, the Fourier pair is

In the discrete, finite-size, supposed periodic case, the 2-D DFT is:

dudvvyuxjvuFyxfvuF )](2exp[),(),()},({1 +==ℑ ∫∫+∞

∞−

− π

∑∑−

=

=

+−=1

0

1

0)]//(2exp[),(1),(

M

x

N

yNvyMxujyxf

MNvuF π

∑∑−

=

=

+=1

0

1

0

)]//(2exp[),(),(M

u

N

v

NvyMxujvuFyxf π

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

),(),(),(

),(),(tan),(

)],(),([),(

222

1

2/122

vuIvuRvuF

vuRvuIvu

vuIvuRvuF

+=

⎥⎦

⎤⎢⎣

⎡=

+=

−φ

As a function of the spatial frequenciesu,v we define the- Fourier spectrum, - phase angle, - power spectrum:

DC component (image average): ∑∑−

=

=

=1

0

1

0),(1)0,0(

M

x

N

yyxf

MNF

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

Symmetry: if f is real, F is conjugate symmetric the spectrum is symmetric:

|),(||),(|),(),( * vuFvuFvuFvuF −−=→−−=

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Define the 2-D impulse, unit step, exponential, complex sinusoid:

elsewhere0,

0),(

elsewhere0,

01

),(elsewhere

001

),( 10

⎩⎨⎧

=≥

⎩⎨⎧

===

⎩⎨⎧

=yxba

yxfyx

yxuyx

yxuyx

(Chapter 4)Enhancement in the Frequency Domain:

Fourier transform fundamentals

(Chapter 4)Enhancement in the Frequency Domain:

Fourier transform fundamentals

u=.4*pi; v=.1*pi;

[x,y] = meshgrid([0:.1:10],[0:.1:10]); [expo.m]

Real: Imag:

∞≤≤∞−=+= yxjvyjuxvyuxjyxf ,)exp()exp()](exp[),(

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

It is common practice to multiply f(x,y) by (-1)^(x+y), which movesthe origin of the Fourier transform at u=M/2, v=N/2:

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

{ } )2/,2/()1)(,( NvMuFyxf yx −−=−ℑ +

Page 3: Digital Image Processing Images © 2002 …bcmi.sjtu.edu.cn/~luhongtao/dip/res/dip04.pdf1 Gianni Ramponi University of Trieste Digital Image Processing Images © 2002 Gonzalez & Woods

3

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Separability:

∑∑

∑∑

=

=

=

=

=

−=

−−=

+−=

1

0

1

0

1

0

1

0

1

0

]/2exp[),(1

]/2exp[),(1]/2exp[1

)]//(2exp[),(1),(

M

x

N

y

M

x

M

x

N

y

MxujvxFM

NvyjyxfN

MxujM

NvyMxujyxfMN

vuF

π

ππ

π

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

1-D data of size 2^n

2-D FFT: sequence of two 1-D transforms

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

)()(]exp[)(]exp[)(

)](exp[)()(]exp[)()(

]exp[)()()]()([

;)()()()(;]exp[)()(

uHuFmujmhnujnf

nmujmhnfxujnxhnf

xujnxhnfxhxf

nxhnfxhxfxujxfuF

mn

mnxn

nx

nx

=−−=

+−=−−=

=−−=∗ℑ

−=∗−=

∑∑

∑∑∑∑

∑∑

∑∑

−∞=

−∞=

−∞=

−∞=

−∞=

−∞=

−∞=

−∞=

−∞=

−∞=

Indeed (1-D case, infinite-length sequences, DTFT):

Page 4: Digital Image Processing Images © 2002 …bcmi.sjtu.edu.cn/~luhongtao/dip/res/dip04.pdf1 Gianni Ramponi University of Trieste Digital Image Processing Images © 2002 Gonzalez & Woods

4

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

Hence, we can perform the convolution as a product in the Fourierdomain, and then take the inverse transform.

Note:for finite-length sequences the product of the DFTs is used, which isequivalent to circular convolution. Zero padding is required to makeit equivalent to linear convolution.

In other words:the Fourier transform assumes that the f and h functions are periodic, with period equal to their length. This should be taken intoaccount, otherwise a wrong result is obtained. The error source isalready visible in the data domain:

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Solution: zero padding

10

10)()(

010)(

)(

−+≥⎩⎨⎧

≤≤−≤≤

=

⎩⎨⎧

≤≤−≤≤

=

BAPPxBBxxh

xh

PxAAxxf

xf

e

e

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

Page 5: Digital Image Processing Images © 2002 …bcmi.sjtu.edu.cn/~luhongtao/dip/res/dip04.pdf1 Gianni Ramponi University of Trieste Digital Image Processing Images © 2002 Gonzalez & Woods

5

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

An example

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

When dealing with real images, f=f* : the correlation operationcoincides with the convolution (apart from the + sign in the shifteddata: no mirroring of the h function).

The correlation can be performed in the Fourier domain, after suitablezero padding.

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

Correlation application: template matching

Page 6: Digital Image Processing Images © 2002 …bcmi.sjtu.edu.cn/~luhongtao/dip/res/dip04.pdf1 Gianni Ramponi University of Trieste Digital Image Processing Images © 2002 Gonzalez & Woods

6

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

Summary pf properties

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

Page 7: Digital Image Processing Images © 2002 …bcmi.sjtu.edu.cn/~luhongtao/dip/res/dip04.pdf1 Gianni Ramponi University of Trieste Digital Image Processing Images © 2002 Gonzalez & Woods

7

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

Chapter 4Enhancement in the Frequency Domain:

Fourier transform fundamentals

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4(Enhancement in the Frequency Domain)

the 2-D Discrete Cosine Transform

Chapter 4(Enhancement in the Frequency Domain)

the 2-D Discrete Cosine Transform

⎩⎨⎧

>=

=⎩⎨⎧

>=

=

++=

++=

∑∑

∑∑−

=

=

=

=

0if/20if/1)(

0if/20if/1)(

]2

)12(cos[]2

)12(cos[)()(),(),(

]2

)12(cos[]2

)12(cos[)()(),(),(

1

0

1

0

1

0

1

0

vNvNv

uMuMu

Nvy

MuxvuvuFyxf

Nvy

MuxvuyxfvuF

M

u

N

v

M

x

N

y

αα

ππαα

ππαα

With respect to the DFT:• The transform is real. No symmetries.• Better energy compaction performance, especially for highly correlated data.• Reduced artifacts from periodic repetition.• Easily truncated to perform compression.(See dftdct.m)

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Image Enhancement in the

Frequency Domain

Chapter 4Image Enhancement in the

Frequency Domain

Page 8: Digital Image Processing Images © 2002 …bcmi.sjtu.edu.cn/~luhongtao/dip/res/dip04.pdf1 Gianni Ramponi University of Trieste Digital Image Processing Images © 2002 Gonzalez & Woods

8

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Image Enhancement in the

Frequency Domain

Chapter 4Image Enhancement in the

Frequency Domain

- (Perform zero-padding)

- Multiply f(x,y) by (-1)^(x+y)

- Take g = Realpart of the inverse transform

- Multiply g(x,y) by(-1)^(x+y)

- (Crop the image)

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Image Enhancement in the

Frequency Domain

Chapter 4Image Enhancement in the

Frequency Domain

The displayed image has beenshifted upwards by 128 levels

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Image Enhancement in the

Frequency Domain

Chapter 4Image Enhancement in the

Frequency Domain

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Image Enhancement in the

Frequency Domain

Chapter 4Image Enhancement in the

Frequency Domain

Page 9: Digital Image Processing Images © 2002 …bcmi.sjtu.edu.cn/~luhongtao/dip/res/dip04.pdf1 Gianni Ramponi University of Trieste Digital Image Processing Images © 2002 Gonzalez & Woods

9

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Image Enhancement in the

Frequency Domain

Chapter 4Image Enhancement in the

Frequency Domain

i.e.: unsharp masking

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Enhancement in the Frequency Domain:

Gaussian lowpass filter

Chapter 4Enhancement in the Frequency Domain:

Gaussian lowpass filter

If the filter has a (real) Gaussian shape in the frequency domain, its coefficients in the data domain are real and have a Gaussian shape too:

)2exp(2)()2/exp()( 22222 xAxhuAuH σπσπσ −=⇔−=ℑ

When σ is large (wide passband in the frequency domain), the coefficients profile isnarrow, and viceversa.

Typical 3x3 lowpass filter masks in the data domain can be considered as very roughapproximations of the Gaussian shape.

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Enhancement in the Frequency Domain:

Difference-of-Gaussians (DoG) filter

Chapter 4Enhancement in the Frequency Domain:

Difference-of-Gaussians (DoG) filter

( )

2121

221

222

221

211

22

22

21

21

;

)2exp()2exp(2)(

)2/exp()2/exp()(

σσ

σπσσπσπ

σσ

>≥

−−−=

−−−=

AA

xAxAxh

uAuAuH

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Enhancement in the Frequency Domain:

Ideal lowpass filter

Chapter 4Enhancement in the Frequency Domain:

Ideal lowpass filter

^ cutoff frequency

It will be a sinc function in the coefficients domain ringing

Page 10: Digital Image Processing Images © 2002 …bcmi.sjtu.edu.cn/~luhongtao/dip/res/dip04.pdf1 Gianni Ramponi University of Trieste Digital Image Processing Images © 2002 Gonzalez & Woods

10

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Enhancement in the Frequency Domain:

Ideal lowpass filter

Chapter 4Enhancement in the Frequency Domain:

Ideal lowpass filter

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Enhancement in the Frequency Domain:

Ideal lowpass filter

Chapter 4Enhancement in the Frequency Domain:

Ideal lowpass filter

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Enhancement in the Frequency Domain:

Ideal lowpass filter example

Chapter 4Enhancement in the Frequency Domain:

Ideal lowpass filter example

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Enhancement in the Frequency Domain:

Ideal lowpass filter example

Chapter 4Enhancement in the Frequency Domain:

Ideal lowpass filter example

Page 11: Digital Image Processing Images © 2002 …bcmi.sjtu.edu.cn/~luhongtao/dip/res/dip04.pdf1 Gianni Ramponi University of Trieste Digital Image Processing Images © 2002 Gonzalez & Woods

11

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

\\\\\\\\

Chapter 4Enhancement in the Frequency Domain:

Ideal lowpass filter example

Chapter 4Enhancement in the Frequency Domain:

Ideal lowpass filter example

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Enhancement in the Frequency Domain:

Butterworth lowpass filter

Chapter 4Enhancement in the Frequency Domain:

Butterworth lowpass filter

nDvuDvuH 2

0 )/),((11),(

+=

n: filter order

D(u,v): Euclidean distance from center of transform

D0: cutoff frequency ( H(D0)=0.5 )

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Enhancement in the Frequency Domain:

Butterworth lowpass filter

Chapter 4Enhancement in the Frequency Domain:

Butterworth lowpass filter

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Enhancement in the Frequency Domain:

Butterworth lowpass filter

Chapter 4Enhancement in the Frequency Domain:

Butterworth lowpass filter

Fig.4.15 (a) original; (b-d) Butterworth filterof order 2, cutoff freqs. 5, 15, 30.

Page 12: Digital Image Processing Images © 2002 …bcmi.sjtu.edu.cn/~luhongtao/dip/res/dip04.pdf1 Gianni Ramponi University of Trieste Digital Image Processing Images © 2002 Gonzalez & Woods

12

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Enhancement in the Frequency Domain:

Gaussian lowpass filter

Chapter 4Enhancement in the Frequency Domain:

Gaussian lowpass filter

[ ]20

2 2/),(exp),( DvuDvuH −=D(u,v): Euclidean distance from center of

transform

D0: cutoff frequency (σ in slide 32)

H(D0)=0.607

0.607

==

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Enhancement in the Frequency Domain:

Gaussian lowpass filter

Chapter 4Enhancement in the Frequency Domain:

Gaussian lowpass filter

Fig.4.18 (a) original; (b-d) Gaussian filterwith cutoff freqs. 5, 15, 30.

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Enhancement in the Frequency Domain:

Gaussian lowpass filter

Chapter 4Enhancement in the Frequency Domain:

Gaussian lowpass filter

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Enhancement in the Frequency Domain:

Gaussian lowpass filter

Chapter 4Enhancement in the Frequency Domain:

Gaussian lowpass filter

Page 13: Digital Image Processing Images © 2002 …bcmi.sjtu.edu.cn/~luhongtao/dip/res/dip04.pdf1 Gianni Ramponi University of Trieste Digital Image Processing Images © 2002 Gonzalez & Woods

13

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Enhancement in the Frequency Domain:

Gaussian lowpass filter

Chapter 4Enhancement in the Frequency Domain:

Gaussian lowpass filter

National Oceanic and Athmospheric Administration

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Highpass filters in the Frequency Domain:

Ideal, Butterworth, Gaussian

Chapter 4Highpass filters in the Frequency Domain:

Ideal, Butterworth, Gaussian

In general, Hhp = 1 - Hlp

[ ]20

2 2/),(exp1),( DvuDvuH −−=

nvuDDvuH 2

0 )),(/(11),(

+=

⎩⎨⎧ >

=elsewhere

DvuDifvuH

0),(1

),( 0

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Highpass filters in the Frequency Domain:

Ideal, Butterworth, Gaussian

Chapter 4Highpass filters in the Frequency Domain:

Ideal, Butterworth, Gaussian

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Highpass filters in the Frequency Domain:

Ideal

Chapter 4Highpass filters in the Frequency Domain:

Ideal

Page 14: Digital Image Processing Images © 2002 …bcmi.sjtu.edu.cn/~luhongtao/dip/res/dip04.pdf1 Gianni Ramponi University of Trieste Digital Image Processing Images © 2002 Gonzalez & Woods

14

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Highpass filters in the Frequency Domain:

Butterworth

Chapter 4Highpass filters in the Frequency Domain:

Butterworth

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Highpass filters in the Frequency Domain:

Gaussian

Chapter 4Highpass filters in the Frequency Domain:

Gaussian

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Highpass filters in the Frequency Domain:

Laplacian

Chapter 4Highpass filters in the Frequency Domain:

Laplacian

),()(),()(),()(),(),(

)()()(

22222

2

2

2

vuFvuvuFjvvuFjudy

yxfddx

yxfd

uFjudx

xfd nn

n

+−=+=⎥⎦

⎤⎢⎣

⎡+ℑ

→=⎥⎦

⎤⎢⎣

⎡ℑ

Hence, a Laplacian filter in the Fourier domain is described as:

Or, when shifted:

)(),( 22 vuvuH +−=

))2/()2/((),( 22 NvMuvuH −+−−=

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

(value at the top of the dome is zero)

Chapter 4Highpass filters in the Frequency Domain:

Laplacian

Chapter 4Highpass filters in the Frequency Domain:

Laplacian

Page 15: Digital Image Processing Images © 2002 …bcmi.sjtu.edu.cn/~luhongtao/dip/res/dip04.pdf1 Gianni Ramponi University of Trieste Digital Image Processing Images © 2002 Gonzalez & Woods

15

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Highpass filters in the Frequency Domain:

Laplacian

Chapter 4Highpass filters in the Frequency Domain:

Laplacian

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Image Enhancement

via subtraction of the Laplacian

Chapter 4Image Enhancement

via subtraction of the Laplacian

),(),(),(

2 yxfyxfyxg

−=

Small details are enhanced; smoothareas become grayish

))2/()2/((1),(

22 NvMuvuH

−+−+

=

Or, equivalently:

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

High-boost:

),(),()1(),( 2 yxfyxfAyxg ∇−−=

))2/()2/(()1(),(

22 NvMuAvuH

−+−

+−=

(with A>1)

Chapter 4Image Enhancement

via subtraction of the Laplacian

Chapter 4Image Enhancement

via subtraction of the Laplacian

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Image Enhancement

via subtraction of the Laplacian

Chapter 4Image Enhancement

via subtraction of the Laplacian

… followed by histogramequalization

Page 16: Digital Image Processing Images © 2002 …bcmi.sjtu.edu.cn/~luhongtao/dip/res/dip04.pdf1 Gianni Ramponi University of Trieste Digital Image Processing Images © 2002 Gonzalez & Woods

16

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

We restrict ourselves to FIR filters with real coefficients and zero (or linear) phase. Nonlinear-phase filters distort the image: differentfrequency components that make up edges and details lose properregistration.

Zero phase implies symmetry wrt the origin for the coefficients:

Additional symmetries may be expedient to obtain more isotropicresponses:

(Chapter 4)Design of linear filters

(Chapter 4)Design of linear filters

),(),(*),(),(*),( yxhyxhyxhvuHvuH −−=−−=⇔=

),(),(),(),(),( xyhyxhyxhyxhyxh =−=−=−−=

Independent coefficientsfor twofold (origin), fourfold, eightfoldsymmetries are:

[J.S. Lim][dipum_4_5.m]

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

2-D filters can be designed extending methods known for the 1-D case:

Windowing

The desired frequency response Hd(u,v) is assumed known; by IDFT the desired impulse response hd(x,y) is determined, which in general hasinfinite extent; it is truncated via multiplication by a suitable window function: h(x,y)=hd(x,y)w(x,y). In the Fourier domain one obtains: H(u,v)=conv[Hd(u,v),W(u,v)].

The window is derived from a 1-D window (rectangular, Hamming, Kaiser,…) via a separable approach (square window) or by rotation.

0000000000000000x000000000x1x0000000x111x00000x11111x00000x111x0000000x1x000000000x0000000000000000

Frequency sampling

Hd is sampled at equally spaced point on the Cartesian grid, and an IDFT is performed. It isexpedient to avoid sharp changes in Hd: define a transition region to do this. E.g., for a lowpass:

(Chapter 4)Design of linear filters

(Chapter 4)Design of linear filters

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

A 2-D function h(x,y) is said to be separable if h1, h2 exist such that

h(x,y)=h1(x)h2(y)

e.g., the delta and unit step sequences are separable

In general, a 2-D function is NOT separable; note indeed that an NxMnonseparable function has NxM degrees of freedom, N+M if separable.

Separable filters are convenient in terms of implementation of the 2-D convolution:

i.e., one can perform a sequence of two 1-D convolutions, first by imagerows (columns) then by columns (rows)

∑∑∑∑∞

−∞=

−∞=

−∞=

−∞=

−−=−−=tsts

tyhtsfsxhtysxhtsfyxg )(),()(),(),(),( 21

(Chapter 4)Design of linear filters

(Chapter 4)Design of linear filters

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

The simplest way to design a 2-D filter is to start from a suitable pair of 1-D filters and realize a separable 2-D filter.

Examples…

Such a solution may be not satisfactory wrt isotropy. In this case, the McClellan transformation can be used.

Let us start from a zero-phase 1-D FIR filter, whose frequency responseis expressed as:

( Remember the Chebyshev polynomials of the first kind Tn, defined as

, and which can be built iteratively:

)

nN

n

N

n

N

Nn

N

nnbnnannhhnjnhH )(cos)(cos)(cos)(2)0()exp()()(

001ωωωωω ∑∑∑ ∑

==−= =

==+=−=

)(cos)cos( ωω nTn =)()(2)(;)(;1)( 2110 xTxxTxTxxTxT nnn −− −===

(Chapter 4)Design of linear filters

(Chapter 4)Design of linear filters

Page 17: Digital Image Processing Images © 2002 …bcmi.sjtu.edu.cn/~luhongtao/dip/res/dip04.pdf1 Gianni Ramponi University of Trieste Digital Image Processing Images © 2002 Gonzalez & Woods

17

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Determine a mapping for the frequency domain such that:

The function G maps each frequency into a 2-D contour. McClellan chosethe mapping with

),(|)(),( vuGHvuH == ωω

),(cos 1 vuQ−=ω)cos()cos()cos()cos(),( 4

141

21

21

21 vuvuvuvuQ −+++++−=

⎥⎥⎥

⎢⎢⎢

⎡−=

121242121

81q

which when the inverse Fourier transform iscomputed yields the set of space-domain values:

The resultingmapping showsgood circularsymmetry, especially in the low-frequencyregion

[mcclellan.m]

(Chapter 4)Design of linear filters

(Chapter 4)Design of linear filters

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

We shall not deal with IIR 2-D filters:

the fundamental theorem of algebra does not extend to 2-D!

It is not possible in general to factorize a 2-D polynomial

The pole-zero stability analysis cannot be performed

Simple cascade realizations of low-order sections cannot be obtained

Theorems exist however for determining stability of an IIR filter basedon its 2-D z transform

It is also possible to limit oneself to filters with separable denominator, which however constitute a very restricted class

(Chapter 4)Design of linear filters

(Chapter 4)Design of linear filters

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

S. Agaian

Trans. IP March 07

Transform-domain nonlinear filters:Alpha rooting

Transform-domain nonlinear filters:Alpha rooting

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Smaller transform coefficients (= tipically, higher frequencies) are less attenuated.

-- The signal power is in fact reduced. It hasto be recovered via a suitable scaling; e.g.:

-- The actual scaling factor dependson the input image content

-- The output image is darker than the original, since the most strongly attenuatedcomponent is the largest: the dc one

Transform-domain nonlinear filters:Alpha rooting

Transform-domain nonlinear filters:Alpha rooting

x = 0:1:255;for alpha=.5:.1:1;

y = x .^ alpha;plot(x,y); hold on; grid on;

end;

Page 18: Digital Image Processing Images © 2002 …bcmi.sjtu.edu.cn/~luhongtao/dip/res/dip04.pdf1 Gianni Ramponi University of Trieste Digital Image Processing Images © 2002 Gonzalez & Woods

18

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

An objective quality metric can sometimesbe used to select the ideal alpha value:

Transform-domain nonlinear filters:Alpha rooting

Transform-domain nonlinear filters:Alpha rooting

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

F. Arslan

Trans.IPNov. 06

Transform-domain nonlinear filters:Alpha rooting

Transform-domain nonlinear filters:Alpha rooting

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Transform-domain nonlinear filters:Alpha rooting

Transform-domain nonlinear filters:Alpha rooting

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Image Enhancement

via Homomorphic filtering

Chapter 4Image Enhancement

via Homomorphic filtering

Image formation model based on illumination and reflectance:

)ln()ln()ln(),(),(),( rifyxryxiyxf +=→=illumination and reflectance can be separated in the log domain;

the former issupposed to varysmoothly and isattenuated, the latter is supposedto vary sharplyand is amplified

(γL<1<γH)

Page 19: Digital Image Processing Images © 2002 …bcmi.sjtu.edu.cn/~luhongtao/dip/res/dip04.pdf1 Gianni Ramponi University of Trieste Digital Image Processing Images © 2002 Gonzalez & Woods

19

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Chapter 4Image Enhancement

via Homomorphic filtering

Chapter 4Image Enhancement

via Homomorphic filtering

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

• Problem: image enhancement– Poorly illuminated images – Backlights– Light sources within the image

• Solution:– Retinex-based approach improve

the lightness in dark areas and emphasize the details

Retinex-based algorithmsRetinex-based algorithms

Courtesy Dr. Stefano Marsi

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

• Retinex = Retina + Cortex• We perceive an object in the

same way, independently of the illumination conditions

• A perceived image I can be considered as a product of the scene illumination L and theobjects reflectance R

L

I

R

I

Retinex-based algorithmsRetinex-based algorithms

Courtesy Dr. Stefano Marsi

),(),(),( yxRyxLyxI =

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

• Through the estimation of the illumination it is possible to obtain an approximation of the reflectance.

• The components are separately processed and then recombined– The Reflectance (details) is suitably emphasized– The Illumination is improved in dark areas

• In the case of logarithmic sensors:– The multiplication can be replaced with an addition block– The division can be replaced with a subtraction block– The Reflectance can be suitably emphasized through a

multiplicative coefficient

: *

Luminanceestimation

In Out

L

R~

~

…IlluminationEstimation

Retinex-based algorithmsRetinex-based algorithms

Courtesy Dr. Stefano Marsi

Page 20: Digital Image Processing Images © 2002 …bcmi.sjtu.edu.cn/~luhongtao/dip/res/dip04.pdf1 Gianni Ramponi University of Trieste Digital Image Processing Images © 2002 Gonzalez & Woods

20

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

• Illumination characteristics– Illumination typically changes very smoothly between

contiguous pixels – Abrupt transitions can also be present

• In presence of light sources in the image• In presence of different illumination systems (backlight)

• The Illumination must be estimated using a narrow band (edge-preserving) lowpass filter– In the literature these filters are realized:

– via very large masks– via recursive filtering– via multi-resolution decomposition

Retinex-based algorithms:Estimation of the illuminationRetinex-based algorithms:

Estimation of the illumination

Courtesy Dr. Stefano Marsi Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

• We propose:the use of the Recursive Rational Filter (RRF)

A simple first order IIR filter is

a can be used to trim the bandwidth:-- a 1 : very narrow band-- a = 0 : the filter is switched off

)1()()1()( −+−= naynxany

Retinex-based algorithms:Estimation of the illuminationRetinex-based algorithms:

Estimation of the illumination

Courtesy Dr. Stefano Marsi

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

1),(]1)1)([(])1,(),1([),(

+++−++−+−

=ov

ovov

SSmnxSSSmnySmnymny αα

δ+⎟⎟⎠

⎞⎜⎜⎝

⎛++−+

= 2

)1,(1)1,(1log

mnxmnx

HSo

δ+⎟⎟⎠

⎞⎜⎜⎝

⎛++−+

= 2

),1(1),1(1log

mnxmnx

HSv

Where

So and Sv respectively are the horizontal and vertical edge sensors

Retinex-based algorithms:Estimation of the illuminationRetinex-based algorithms:

Estimation of the illumination

Courtesy Dr. Stefano Marsi Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Retinex-based algorithms:Estimation of the illuminationRetinex-based algorithms:

Estimation of the illumination

Courtesy Dr. Stefano MarsiCourtesy Dr. Stefano Marsi

Page 21: Digital Image Processing Images © 2002 …bcmi.sjtu.edu.cn/~luhongtao/dip/res/dip04.pdf1 Gianni Ramponi University of Trieste Digital Image Processing Images © 2002 Gonzalez & Woods

21

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

• A modified “gamma” function is used …– To increase the lightness in dark zones– To avoid dynamic compression in bright areas

• … followed by a histogram stretching– To better exploit the system dynamics

( ) KLKLL +=Γ )255~

( 255~

255)~(

Retinex-based algorithms:Processing the illuminationRetinex-based algorithms:Processing the illumination

Courtesy Dr. Stefano Marsi Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

• The reflectance must be processed in a multiplicative domain

• A sigmoid-like function is used to:– emphasize the details when these are poorly defined.– limit the emphasis when the details are already well

defined to avoid artifacts generation– reduce the signal when it is extremely weak

(the information is superseded by the noise)

log expR~

Retinex-based algorithms:Processing the illuminationRetinex-based algorithms:Processing the illumination

Courtesy Dr. Stefano Marsi

2R1R

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

• The adopted function is:

where c is a suitable coefficient which controls the slope of the sigmoid and creates the central dead zone

⎟⎟⎠

⎞⎜⎜⎝

⎛−

−+=

21

))(exp(112

112 RRc

KR

Retinex-based algorithms:Processing the illuminationRetinex-based algorithms:Processing the illumination

Courtesy Dr. Stefano Marsi Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Originaloutput

IlluminationEstimation

ProcessedIllumination

ReflectanceEstimation

ProcessedReflectance

Retinex-based algorithms:Processing example

Retinex-based algorithms:Processing example

Courtesy Dr. Stefano Marsi

Page 22: Digital Image Processing Images © 2002 …bcmi.sjtu.edu.cn/~luhongtao/dip/res/dip04.pdf1 Gianni Ramponi University of Trieste Digital Image Processing Images © 2002 Gonzalez & Woods

22

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

1. Original2. Histogram equalization3. Gamma correction4. Retinex-based method

Retinex-based algorithms:a comparison

Retinex-based algorithms:a comparison

Courtesy Dr. Stefano Marsi Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

(a) (b)

without (a) and with (b) the dead-zone

Retinex-based algorithms:Noise control

Retinex-based algorithms:Noise control

Courtesy Dr. Stefano Marsi

Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Retinex-based algorithms:More images…

Retinex-based algorithms:More images…

Courtesy Dr. Stefano Marsi Gianni RamponiUniversity of Triestehttp://www.units.it/ramponi

Images © 2002 Gonzalez & WoodsDigital Image Processing

Retinex-based algorithms:More images…

Retinex-based algorithms:More images…

Courtesy Dr. Stefano Marsi