Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a...

115
U n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals & Tissue Applications Arjun G. Yodh Department of Physics & Astronomy University of Pennsylvania Acknowledgement: NIH, ARMY

Transcript of Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a...

Page 1: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Diffuse Optics: Fundamentals & Tissue Applications

Diffuse Optics: Fundamentals & Tissue Applications

Arjun G. YodhDepartment of Physics & Astronomy

University of Pennsylvania

Acknowledgement: NIH, ARMY

Page 2: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

OutlineOutline• Brief Introduction/Motivation• Light Transport

• Single Scattering• Multiple Scattering (Linear Transport & Diffusion Equations)• Solutions (Homogeneous Turbid Media)• Solutions (‘Simple’ Heterogeneous Turbid Media)• Image Reconstruction• Temporal Fluctuations: Diffuse Correlation Transport

• Biomedical Motivations Revisited• Background on Hemodynamics• Oxygen Metabolism

• Validation of the Techniques• In-Vivo Biomedical Applications (recent)

• Breast• Brain• Cancer Therapy Monitoring

• Summary/Future/Acknowledgements

Page 3: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

The Dream.The Dream.

from: Minority Report

from: Star Trek

Page 4: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

In-Vivo Optical BiopsyIn-Vivo Optical Biopsy• Near Infrared Light

Penetrates Tissue• Sensitivity to Tissue

Physiology• Unique Contrasts are

Complementary to Other Medical Diagnostics

• Non-invasive, safe, rapid, portable, continuous, inexpensive ...

Page 5: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Imaging & MonitoringImaging & Monitoring

Page 6: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Clinical Scenarios Clinical Scenarios

• Stroke detection and monitoring• Cancer Imaging and Diagnosis• Cancer Therapy monitoring• Mitochondial diseases• Epilepsy• Brain Activation• Muscle Activation

(Peripheral Vascular Disease)

Page 7: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

OutlineOutline• Brief Introduction/Motivation• Light Transport

• Single Scattering• Multiple Scattering (Linear Transport & Diffusion Equations)• Solutions (Homogeneous Turbid Media)• Solutions (‘Simple’ Heterogeneous Turbid Media)• Image Reconstruction• Temporal Fluctuations: Diffuse Correlation Transport

• Biomedical Motivations Revisited• Background on Hemodynamics• Oxygen Metabolism

• Validation of the Techniques• In-Vivo Biomedical Applications (recent)

• Breast• Brain• Cancer Therapy Monitoring

• Summary/Future/Acknowledgements

Page 8: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Light TransportLight Transport

• How are photons lost from the incident light beam?

E0, I0 ?

Page 9: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Absorption (linear response)Absorption (linear response)

μa = Absorption Coefficientμa = [Absorber Concentration] ε (λ)

ExtinctionCoefficient

LightWavelength

L

It = I0 e -μaLI0

Page 10: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Absorption InformationAbsorption Information

I0 It = I0 e

L-μaL

• What molecules are present?(Hemoglobin, water, lipids, …)

• What are their concentrations?• What is their local environment?

(spectral shifts & broadening)

Page 11: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Scattering (single scattering limit)Scattering (single scattering limit)

μs = Scattering Coefficientμs = [Scatterer Concentration]σs (λ)

ScatteringCross-section

LightWavelength

I0

Is (θ)

L

It = I0 e -μsLθ

Page 12: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Scattering (single scattering limit)Scattering (single scattering limit)

I0It = I0 e

Is (θ)

L

-μsL

θ

μs’ = reduced scattering coefficient = μs (1-g)(μs’)-1 = photon random walk step length

σd (θ) = Differential Scattering Cross-section

σs = σd (θ) dΩ

Is (θ) = σd (θ) I0

σd (θ) cos (θ) dΩ)(g = anisotropy factor = σs

1 = ⟨cos (θ)⟩)

Page 13: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Scattering InformationScattering Information

• What are the scatterers?(particles, organelles, cells, cell-networks)

• What are scatterer concentrations?• What is their local environment?

(surrounding fluids)

I0It = I0 e

Is (θ)

L

-μsL

θ

Page 14: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Scattering: Temporal FluctuationsScattering: Temporal Fluctuations

• What is moving?(organelles, red blood cells, …)

• How much is moving, how fast & what is the manner of motion?

(Blood flow)

time

Page 15: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Traditional Optical TechniquesTraditional Optical Techniques

• Rigorous• Tested

I0

L

It = I0 e -(μs Lθ

μa+ )

Page 16: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

OutlineOutline• Brief Introduction/Motivation• Light Transport

• Single Scattering• Multiple Scattering (Linear Transport & Diffusion Equations)• Solutions (Homogeneous Turbid Media)• Solutions (‘Simple’ Heterogeneous Turbid Media)• Image Reconstruction• Temporal Fluctuations: Diffuse Correlation Transport

• Biomedical Motivations Revisited• Background on Hemodynamics• Oxygen Metabolism

• Validation of the Techniques• In-Vivo Biomedical Applications (recent)

• Breast• Brain• Cancer Therapy Monitoring

• Summary/Future/Acknowledgements

Page 17: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Problem of Tissue: Multiple ScatteringProblem of Tissue: Multiple Scattering

Page 18: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Linear Transport TheoryLinear Transport Theory

= Radiance [W/(cm2 sr)]

Power/Area-Angle at traveling in direction .

L ~ ⟨E*(r,t) E(r,t)⟩

Radiance is balanced in each small volume of medium.

Page 19: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Transport Theory: Convective Time DerivativeTransport Theory: Convective Time Derivative

dr

Page 20: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

μt = μa + μs

dr

SourcesRadianceScattered into Ω

Transport Theory: Microscopic Sources & SinksTransport Theory: Microscopic Sources & Sinks

Absorption &Scattering Losses

Page 21: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Linear Transport EquationLinear Transport Equationdr

μt = μa + μs

Page 22: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Photon Fluence Rate & FluxPhoton Fluence Rate & Flux

Fluence rate (W/cm2)

Flux (W/cm2)

Page 23: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

PN ApproximationPN Approximation

Page 24: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Fluence & Flux in PN ApproximationFluence & Flux in PN Approximation

Page 25: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Radiance in the P1 Approximation (N=1)Radiance in the P1 Approximation (N=1)

Substitute P1 form of L into the linear transport equation.

Page 26: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Photon Diffusion EquationPhoton Diffusion Equation

Page 27: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Photon Diffusion Equation: AssumptionsPhoton Diffusion Equation: Assumptions

• Scattering length much smallerthan absorption length

• Fluence rate much greater thanFlux (radiance is largely isotropic)

• Isotropic sources(breaks down close to fiber sources)

(ω << υ μs’ )

Page 28: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Photon Diffusion Equation: AssumptionsPhoton Diffusion Equation: Assumptions

• OK for Tissues

• Scattering (on average)Independent of Incident Direction.

• Tissue Measurements are NOT Precision Measurements.

(μs’)-1 ~ 1 mm

(μs)-1 ~ 0.01 - 0.1 mm

(μa)-1 ~ 2 - 10 cm

υ(μs’) ~ 300 MHz

Page 29: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

OutlineOutline• Brief Introduction/Motivation• Light Transport

• Single Scattering• Multiple Scattering (Linear Transport & Diffusion Equations)• Solutions (Homogeneous Turbid Media)• Solutions (‘Simple’ Heterogeneous Turbid Media)• Image Reconstruction• Temporal Fluctuations: Diffuse Correlation Transport

• Biomedical Motivations Revisited• Background on Hemodynamics• Oxygen Metabolism

• Validation of the Techniques• In-Vivo Biomedical Applications (recent)

• Breast• Brain• Cancer Therapy Monitoring

• Summary/Future/Acknowledgements

Page 30: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Ideal SolutionsIdeal Solutions

• Infinite homogeneous turbid media

• Point sources

Page 31: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Frequency Domain: Diffuse Photon Density Waves*

Frequency Domain: Diffuse Photon Density Waves*

*first suggested by Enrico Gratton

Page 32: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Frequency Domain: Point Sources & Green’s Functions

Frequency Domain: Point Sources & Green’s Functions

= Green’s Function Solution.

for arbitrary source distribution

If ,

Page 33: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Frequency Domain: Point Sources & Green’s Functions

Frequency Domain: Point Sources & Green’s Functions

• Point Source at the Origin in Infinite Homogeneous Media• Diffuse Photon Density Waves• Frequency Dispersion

Page 34: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Diffusive Wave OpticsDiffusive Wave Optics

Boas, Oleary, Chance, Yodh. Physical Review E, 47(5) 1993.Oleary, Boas, Chance, Yodh. Physical Review Letters, 69 1992.

Page 35: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Time Domain SolutionTime Domain Solution

Time Resolved Reflectance and Transmittance for The Noninvasive Measurement of Tissue Optical-Properties, Patterson, MS, Chance, B, Wilson, BC, Applied Optics 28, 1989

Page 36: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

What has been gained?What has been gained?

• Can separate scattering from absorption.

• Can measure absorption in turbid media.

• Can measure scattering (photon random walk step) in turbid media.

What about heterogeneous media?

Page 37: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

OutlineOutline• Brief Introduction/Motivation• Light Transport

• Single Scattering• Multiple Scattering (Linear Transport & Diffusion Equations)• Solutions (Homogeneous Turbid Media)• Solutions (‘Simple’ Heterogeneous Turbid Media)• Image Reconstruction• Temporal Fluctuations: Diffuse Correlation Transport

• Biomedical Motivations Revisited• Background on Hemodynamics• Oxygen Metabolism

• Validation of the Techniques• In-Vivo Biomedical Applications (recent)

• Breast• Brain• Cancer Therapy Monitoring

• Summary/Future/Acknowledgements

Page 38: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Boundary Conditions: Semi-infinite MediaBoundary Conditions: Semi-infinite Media

• e.g. Air-Tissue Boundary• Fiber Source Changed to Displaced Point Source

(lt ~ (μs’)-1 )

Page 39: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Boundary Conditions: Semi-infinite MediaBoundary Conditions: Semi-infinite Media

• R(θ) is a Fresnel Coefficient

Page 40: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Semi-infinite Media: Partial-flux Boundary ConditionSemi-infinite Media: Partial-flux Boundary Condition

• Reff depends on indices of refraction (easily calculated)• Ls approximately (μs’)-1

Page 41: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Extrapolated Zero-boundary ConditionExtrapolated Zero-boundary Condition

Page 42: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Solutions: Semi-infinite MediumSolutions: Semi-infinite Medium

• Method of images

Page 43: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Solutions: Semi-infinite MediumSolutions: Semi-infinite Medium

Danen, R.M., Wang, Y., Li, X.D., Thayer, W.S., and Yodh, A.G., Photochemistry and Photobiology. 67, 33-40 (1998)

ρ2

Page 44: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Solutions: Slab MediumSolutions: Slab Medium

Page 45: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Spectroscopy: Absorption Coefficients vs. λSpectroscopy: Absorption Coefficients vs. λ

THC =

Total Hemoglobin Concentration = [HbO2] + [Hb] = THC

Tissue Oxygen Saturation = [HbO2] / THC = StO2

Page 46: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

OutlineOutline• Brief Introduction/Motivation• Light Transport

• Single Scattering• Multiple Scattering (Linear Transport & Diffusion Equations)• Solutions (Homogeneous Turbid Media)• Solutions (‘Simple’ Heterogeneous Turbid Media)• Image Reconstruction• Temporal Fluctuations: Diffuse Correlation Transport

• Biomedical Motivations Revisited• Background on Hemodynamics• Oxygen Metabolism

• Validation of the Techniques• In-Vivo Biomedical Applications (recent)

• Breast• Brain• Cancer Therapy Monitoring

• Summary/Future/Acknowledgements

Page 47: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Image ReconstructionImage Reconstruction

Arridge SR, Optical tomography in medical imaging, Inverse Problems 15, R41-R93, 1999

Page 48: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Image ReconstructionImage Reconstruction

= D0 + ΔD

(Born)

(Rytov)

Page 49: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Basic Scattering Theory (Example)Basic Scattering Theory (Example)

ΔD = 0

Green’s Function

>> , Incident wave, Green’s function ~

,

Page 50: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Inverting the DataInverting the Data

Discretize the Integral

Page 51: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Inverting the Data (one-step)Inverting the Data (one-step)

[φ] = W [δμa] (Set of linear equations)

[δμa] = W-1 [φ]

Principles of Computerized Tomographic Imaging by Avinash C. Kak, Malcolm Slaney

Page 52: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Inverting the Data (iteratively)Inverting the Data (iteratively)

Page 53: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

3D Image Reconstruction3D Image ReconstructionFinite difference forward calculation, parallel processor implementation.

Culver, J.P., Choe, R., Holboke, M.J., Zubkov, L., Durduran, T., Slemp, A., Ntziachristos, V., Pattanayak, D.N., Chance, B., and Yodh, A.G., Medical Physics 30, 235-247 (2003)

Page 54: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

OutlineOutline• Brief Introduction/Motivation• Light Transport

• Single Scattering• Multiple Scattering (Linear Transport & Diffusion Equations)• Solutions (Homogeneous Turbid Media)• Solutions (‘Simple’ Heterogeneous Turbid Media)• Image Reconstruction• Temporal Fluctuations: Diffuse Correlation Transport

• Biomedical Motivations Revisited• Background on Hemodynamics• Oxygen Metabolism

• Validation of the Techniques• In-Vivo Biomedical Applications (recent)

• Breast• Brain• Cancer Therapy Monitoring

• Summary/Future/Acknowledgements

Page 55: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

(Single) Dynamic Light Scattering(Single) Dynamic Light Scattering

s

Page 56: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Correlation Transport EquationCorrelation Transport Equation

~ ⟨E*(r,t+τ) E(r,t)⟩

B. J. Ackerson, R. L. Dougherty, N. M. Reguigui, and U.Nobbman, "Correlation transfer: application of radiative transfer solution methods to photon correlation problems," J. Thermophys. Heat Transfer 6, 577–588 (1992).

R. L. Dougherty, B. J. Ackerson, N. M. Reguigui, F. Dorri-Nowkoorani, and U. Nobbmann, "Correlation transfer: development and application," J. Quant. Spectrosc. Radiat. Transfer. 52, 713–727 (1994).

Page 57: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

P1 Approximation (Again)P1 Approximation (Again)

Correlation Diffusion Equation

is Light Diffusion Coefficient.

D. A. Boas, L. E. Campbell, and A. G. Yodh, Phys. Rev. Lett. 75, 1855–1858 (1995).

Differential Form of Diffusing-Wave Spectroscopy (DWS)

G. Maret and P. E. Wolf, Z. Phys. B 65, 409–413 (1987); D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, Phys. Rev. Lett. 60, 1134–1137 (1988).

α

α = fraction of scatterers that move.

Page 58: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Remainder Analysis Formally Same as Photon Diffusion Equation

Remainder Analysis Formally Same as Photon Diffusion Equation

• Solutions ~ ,

• Diffuse Correlation Imaging & Spectroscopy

(k0)2 α3

Page 59: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Measurements of Blood FlowMeasurements of Blood Flow

Page 60: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Blood Flow Index (BFI)Blood Flow Index (BFI)

⟨Δr2 (τ)⟩ ~ Db τ

rBFI = relative blood flow change

α = fraction of scatterers moving

Db = effective diffusion constant

αDb = BFI

Γ gives α⟨Δr2 (τ)⟩

Page 61: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

OutlineOutline• Brief Introduction/Motivation• Light Transport

• Single Scattering• Multiple Scattering (Linear Transport & Diffusion Equations)• Solutions (Homogeneous Turbid Media)• Solutions (‘Simple’ Heterogeneous Turbid Media)• Image Reconstruction• Temporal Fluctuations: Diffuse Correlation Transport

• Biomedical Motivations Revisited• Background on Hemodynamics• Oxygen Metabolism

• Validation of the Techniques• In-Vivo Biomedical Applications (recent)

• Breast• Brain• Cancer Therapy Monitoring

• Summary/Future/Acknowledgements

Page 62: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Sensitivity to Tissue PhysiologySensitivity to Tissue Physiology1. Absorption Variations [μa(λ)]

- Access to tissue chromophore concentrations- Hemoglobin Concentration (Hb), Blood Volume- Blood Oxygen Saturation (HbO2/[Hb + HbO2])- Water, Lipids

2. Exogenous Contrast Agents- Absorption Contrast, Drugs,… [μa(λ)]- Fluorescence [c], τlifetime- Uptake & Clearance [μa(λ)], [c(t)]

3. Scattering Variations [μs,(λ)]- Organelle Concentrations (mitochondria,…)- Background fluids, n(λ,t).

4. Motions of Scatterers [⟨Δr2(τ)⟩], Γ, BFI- Average Blood Flow Density- Brownian Dynamics

Page 63: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Circulatory System

Circulatory System

Images from Human Physiology by Vander, Sherman and Luciano, Chapter 13.

Page 64: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Circulatory SystemCirculatory System

At any given time, some of the Hemoglobin carried in the red blood cells is oxygenated (HbO2) and some is deoxygenated (Hb).

Images from Human Physiology by Vander, Sherman and Luciano, Chapter 13.

Page 65: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Oxygen ExchangeOxygen Exchange

• 98% of Oxygen in Blood isbound reversibly to hemoglobin.

• O2 (dissolved gas) + Hb ↔ HbO2

• “Blood Volume/Concentration”: [Hb] + [HbO2]

• Blood Oxygen Saturation (SO2): [HbO2] / ([Hb] + [HbO2] )

Page 66: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Hypoxia: Deficiency of Oxygen at Tissue LevelHypoxia: Deficiency of Oxygen at Tissue Level

• Arterial Oxygen too low.• Blood flow too slow (ischemic hypoxia).• Local Tissue metabolism too large.

O2 IN O2 OUT

O2 OUT(Metabolism)

Arterioles Venules

Tissues

Page 67: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Clinical Scenarios (revisited) Clinical Scenarios (revisited)

• Stroke detection and monitoring• Cancer Imaging and Diagnosis• Cancer Therapy monitoring• Mitochondial diseases• Epilepsy• Brain Activation• Muscle Activation

(Peripheral Vascular Disease)

[Hb] , [HbO2] , THC, StO2 , BFI , rBFI

Page 68: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Cerebral Oxygen Metabolism: CMRO2Cerebral Oxygen Metabolism: CMRO2

from DOS/NIRS from DCS

Page 69: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

OutlineOutline• Brief Introduction/Motivation• Light Transport

• Single Scattering• Multiple Scattering (Linear Transport & Diffusion Equations)• Solutions (Homogeneous Turbid Media)• Solutions (‘Simple’ Heterogeneous Turbid Media)• Image Reconstruction• Temporal Fluctuations: Diffuse Correlation Transport

• Biomedical Motivations Revisited• Background on Hemodynamics• Oxygen Metabolism

• Validation of the Techniques• In-Vivo Biomedical Applications (recent)

• Breast• Brain• Cancer Therapy Monitoring

• Summary/Future/Acknowledgements

Page 70: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

DOS: Oxyhemoglobin Dissociation CurveDOS: Oxyhemoglobin Dissociation Curve

Mouse erythrocytes in tissue phantom over the course ofphantom deoxygenation.

Diffuse optics get oxygen saturation (SO2).Oxygen electrodes get pO2.

Wang, H.-W., Putt, M.E., Emanuele, M.J., Shin, D.E., Glatstein, E., Yodh, A.G., and Busch, T.M., Treatment-induced changes in tumor oxygenation predict photodynamic therapy outcome. Cancer Research 64, 7553-7561 (2004)

Page 71: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Validation of DCSValidation of DCS

• against ASL-MRI• against Xenon-CT• against Transcranial Doppler Ultrasound• against Color Doppler Ultrasound• against Fluorescent Microspheres• against Laser Doppler• by comparison to Literature• in Phantoms

DCS has been validated:

Page 72: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Validating DCS Across Spatial Scales in Brain

Page 73: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

DCS vs Laser Doppler: Rat Brain (3cm)

Hypocapnia byHyperventilation.(Flow decreases during activation period.)

Page 74: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Live vs Dead Piglet (25 cm)Live vs Dead Piglet (25 cm)

Chao Zhou, Stephanie A. Eucker, Turgut Durduran, Guoqiang Yu, Jill Ralston, Stuart H. Friess, Rebecca N. Ichord, Susan S. Margulies, and Arjun G. Yodh. Journal of Biomedical Optics, 14(3):034015, 2009.

Page 75: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

DCS vs Fluorescent Microspheres: Neonatal Piglet Brain (25 cm)

Flow decrease measured versus time after ~200 Radian/sec rotational head injury to mimic traumatic brain injury in babies.

Page 76: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Hypercapnia (Whole Brain Response)Hypercapnia (Whole Brain Response)

Two-layer model

Page 77: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Hypercapnia (Scalp Response)Hypercapnia (Scalp Response)

Small (if any) scalp flow change detected during measurement!

Page 78: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

DCS Validation with Xenon-CTDCS Validation with Xenon-CT

with Kofke, Levine, Grady, Detre, Greenberg

Page 79: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Example PatientExample Patient

Page 80: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

DCS vs Xenon-CT: Bed-Side ComparisonDCS vs Xenon-CT: Bed-Side Comparison

Good correlation, good agreementwith Kofke, Levine, Grady, Detre, Greenberg

Page 81: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

OutlineOutline• Brief Introduction/Motivation• Light Transport

• Single Scattering• Multiple Scattering (Linear Transport & Diffusion Equations)• Solutions (Homogeneous Turbid Media)• Solutions (‘Simple’ Heterogeneous Turbid Media)• Image Reconstruction• Temporal Fluctuations: Diffuse Correlation Transport

• Biomedical Motivations Revisited• Background on Hemodynamics• Oxygen Metabolism

• Validation of the Techniques• In-Vivo Biomedical Applications (recent)

• Breast• Brain• Cancer Therapy Monitoring

• Summary/Future/Acknowledgements

Page 82: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Diffuse Optical Tomography of BreastDiffuse Optical Tomography of Breast

Regine Choe, Soren D. Konecky, Alper Corlu, Kijoon Lee, Turgut Durduran, David R. Busch, Saurav Pathak, Brian J. Czerniecki, Julia Tchou, Douglas L. Fraker, Angela DeMichele, Britton Chance, Simon R. Arridge, Martin Schweiger, Joseph P. Culver, Mitchell D. Schnall, Mary E. Putt, Mark A. Rosen, and Arjun G. Yodh, Journal of Biomedical Optics, 14(2):024020, 2009.

Page 83: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Potential niches for DOT in Breast CancerPotential niches for DOT in Breast Cancer

Page 84: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Parallel-Plane DOT InstrumentParallel-Plane DOT Instrument

Culver, Choe, Holboke, Zubkov, Durduran, Slemp, Ntziachristos, Chance, Yodh, Medical Physics 30 2003

Page 85: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

3D Diffuse Optical Tomography3D Diffuse Optical Tomography

Page 86: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Invasive Ductal CarcinomaInvasive Ductal Carcinoma

• 53-year-old post-menopausal female, 2.2 cm invasive ductal carcinoma

Page 87: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Cyst & Invasive Ductal CarcinomaCyst & Invasive Ductal Carcinoma

• 47-year-old pre-menopausal female, 6 cm cyst & 1.3 cm invasive ductal carcinoma

Page 88: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Example: Malignant vs BenignExample: Malignant vs Benign

Region of Interest

Optical IndexrTHC

Malignant: Invasive Ductal CarcinomaRegion of Interest

Benign: FibroadenomaMRI axial slice rTHC Optical Index

rStO 2

rStO 2

MRI axial slice

Page 89: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Tumor/Normal Endogenous Contrast (N=51)Tumor/Normal Endogenous Contrast (N=51)

(A) Benign, (B) Malignant measured before core biopsy, (C) Malignant measured after core biopsy

Page 90: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

OutlineOutline• Brief Introduction/Motivation• Light Transport

• Single Scattering• Multiple Scattering (Linear Transport & Diffusion Equations)• Solutions (Homogeneous Turbid Media)• Solutions (‘Simple’ Heterogeneous Turbid Media)• Image Reconstruction• Temporal Fluctuations: Diffuse Correlation Transport

• Biomedical Motivations Revisited• Background on Hemodynamics• Oxygen Metabolism

• Validation of the Techniques• In-Vivo Biomedical Applications (recent)

• Breast• Brain• Cancer Therapy Monitoring

• Summary/Future/Acknowledgements

Page 91: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Functional Activation In BrainFunctional Activation In Brain

Page 92: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Functional Activation In BrainFunctional Activation In Brain

THC = Total Hemoglobin ConcentrationStO2 = Blood Oxygen SaturationrBF = Relative Blood FlowCMRO2 = Rate of Cerebral Oxygen Metabolism

Page 93: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Motor Stimulus: OpticalMotor Stimulus: Optical

Page 94: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Durduran, T., Yu, G., Burnett, M.G., Detre, J.A., Greenberg, J.H., Wang, J., Zhou, C., and Yodh, A.G., Diffuse optical measurement of blood flow, blood oxygenation and metabolism in human brain during sensorimotor cortex activation. Optics Letters 29, 1766-1768 (2004).

Motor Stimulus: OpticalMotor Stimulus: Optical

Page 95: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Population Average (n=5)Population Average (n=5)

Durduran, Yu, Burnett, Detre, Greenberg, Wang, Zhou, Yodh, Optics Letters, 2004

Page 96: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Clinic: Relevant Cerebral PhysiologyClinic: Relevant Cerebral Physiology

ICP

MAP

CPP = MAP - ICP

Page 97: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Cerebral Blood Flow AutoregulationCerebral Blood Flow Autoregulation

CPP = MAP - ICP

Page 98: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Intracranial Pressure (ICP) MonitoringIntracranial Pressure (ICP) Monitoring

Page 99: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Other CBF Monitoring SchemesOther CBF Monitoring Schemes

• Xenon – CT

• Arterial-Spin-Labeled MRI (ASL-MRI)

• Transcranial Doppler Ultrasound (TCD)

Page 100: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Opportunities for OpticsOpportunities for Optics

• Continuous CBF monitoring at the bedside.

• Direct measurement of Tissue Microvasculature.

• Combine with NIRS/DOS to get cerebral metabolism.

Page 101: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Acute Ischemic Stroke Study ProtocolAcute Ischemic Stroke Study Protocol

Turgut Durduran, Chao Zhou, Brian L. Edlow, Guoqiang Yu, Regine Choe, Meeri N. Kim, Brett L. Cucchiara, Mary E. Putt, Qaisar Shah, Scott E. Kasner, Joel H. Greenberg, Arjun G. Yodh, and John A. Detre, Opt. Express, 17(5):3884-3902, 2009.

Page 102: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Cerebral Blood Flow vs. Head of Bed Angle: Healthy Subjects vs. Stroke Patients

Cerebral Blood Flow vs. Head of Bed Angle: Healthy Subjects vs. Stroke Patients

Common ResponseCommon Response

Injured hemisphere doesnInjured hemisphere doesn’’t t autoregulateautoregulate..

Page 103: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Cerebral Blood Flow vs. Head of Bed Angle: Healthy Subjects vs. Stroke Patients

Cerebral Blood Flow vs. Head of Bed Angle: Healthy Subjects vs. Stroke Patients

Paradoxical ResponseParadoxical Response

Injured hemisphere doesnInjured hemisphere doesn’’t t autoregulateautoregulate..

Page 104: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

ResultsResults

• HOB position was found to be a significant factor in both hemispheres (healthy and stroke groups).

• HOB was a stronger factor in the infarcted area which also showed a larger variation (stroke group).

• “Paradoxical Response” (25% of stroke group): the maximal CBF occurred at an elevated angle. Therefore, standard clinical practice of “HOB flat” might not be optimal for all stroke patients.

Turgut Durduran, Chao Zhou, Brian L. Edlow, Guoqiang Yu, Regine Choe, Meeri N. Kim, Brett L. Cucchiara, Mary E. Putt, Qaisar Shah, Scott E. Kasner, Joel H. Greenberg, Arjun G. Yodh, and John A. Detre, Opt. Express, 17(5):3884-3902, 2009.

Page 105: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

OutlineOutline• Brief Introduction/Motivation• Light Transport

• Single Scattering• Multiple Scattering (Linear Transport & Diffusion Equations)• Solutions (Homogeneous Turbid Media)• Solutions (‘Simple’ Heterogeneous Turbid Media)• Image Reconstruction• Temporal Fluctuations: Diffuse Correlation Transport

• Biomedical Motivations Revisited• Background on Hemodynamics• Oxygen Metabolism

• Validation of the Techniques• In-Vivo Biomedical Applications (recent)

• Breast• Brain• Cancer Therapy Monitoring

• Summary/Future/Acknowledgements

Page 106: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Tumor Therapy MonitoringTumor Therapy Monitoring

NeoadjuvantNeoadjuvant chemotherapychemotherapy

Choe, Corlu, Lee, Durduran, Konecky, Grosicka-Koptyra, Arridge, Czerniecki, Fraker, DeMichele, Chance, Rosen, Yodh, Medical Physics, 32, 2005.

Page 107: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Photodynamic TherapyPhotodynamic Therapy

Laser

Injection ofphotosensi tizer

Illuminatedby light

Photo-activa ted

druginducedsingle toxygen

destroystum or

Tumor

Abs

o

rption

Fluoresc

enc

e

S1 IntersystemCrossing

T1

ExcitedTrip let

Type I

Type I I

1O2

O2-

Single t

3O2

Page 108: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Diffuse Optical Measurements of Tumor Response Before, During & After PDT

Diffuse Optical Measurements of Tumor Response Before, During & After PDT

Page 109: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Measurement ProtocolMeasurement Protocol

Radiation-Induced Fibrosarcoma (RIF) mice tumorsControl group = light (135J/cm2 at 75 mW/cm2)Treated group = light + Photofrin (5 mg/Kg)

Treatment efficacyDays after PDT for tumor growth to a volume of 400 mm3

(starting volume ~100 mm3)

Page 110: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Before/After PDTBefore/After PDT

Significant decreases in blood flow and oxygen saturation

Page 111: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Responses During PDTResponses During PDT

Large slope → Poor treatment efficacy

Yu, Durduran, Zhou, Wang, Putt, Saunders, Sehgal, Glatstein, Yodh, Busch,Clinical Cancer Research 11, (2005)

Page 112: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

Oxygenation Response Just After PDTOxygenation Response Just After PDT

(n = 12)

Low relative - SO2 immediately after PDT → Poor treatment efficacy

Wang, Putt, Emanuele, Shin, Glatstein, Yodh, Busch, Cancer Research 64, (2004)

Page 113: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

• Diffuse Optics Probes Physiology of Deep Tissues.

• Breast Tumors, Brain, Head & Neck

Tumors, Muscle ...

• Animal Model Research (Pre-clinical)

Summary/FutureSummary/Future

Page 114: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

• Image Reconstruction (large data sets)• Image/Data Processing

(composite indices, automated segmentation)• Flow plus Oxygen gives Metabolism• Contrast Agents (fluorescence)• Multi-modal Imaging & Diagnosis• Near Surface (skin)• Dosimetry• Microscopic Origins of Signals

(molecular, tissue level)• Identify New Applications

Summary/FutureSummary/Future

Page 115: Diffuse Optics: Fundamentals & Tissue ApplicationsU n i v e r s i t y o f P e n n s y l v a n i a Diffuse Optics: Fundamentals & Tissue Applications Diffuse Optics: Fundamentals &

U n i v e r s i t y o f P e n n s y l v a n i a

PhD Students & Post-docs

CollaboratorsCollaborators

Boas, DavidCheung, CecilCheung,RexCorlu, AlperCulver, JosephDanen, RobertFisher, Jonathan A. N.Giammarco, JoeGonatas, Dinos

Ripoll, Jorge Slemp, AlisonSolonenko, MichaelSunar, UlasVulcan, TeodorWang, Hsing-WenYu, GuoqiangZhou, ChaoZubkov, Leonid

Simon Arridge, University College London, UKLarry Campbell, Hobart & Williams CollegeMark Burnett, University of PennsylvaniaTheresa Busch, University of PennsylvaniaBritton Chance, University of PennsylvaniaBrian Czerniecki, University of PennsylvaniaAngela DeMichele, University of PennsylvaniaJohn Detre, University of PennsylvaniaJared Finlay, University of Pennsylvania (HUP)Tom Floyd, University of PennsylvaniaDoug Fraker, University of Pennsylvania Joe Friedberg, University of PennsylvaniaEli Glatstein, University of PennsylvaniaJoel Greenberg, University of PennsylvaniaSteve Hahn, University of Pennsylvania Daniel Licht, Children's Hospital of Philadelphia (CHOP)

Chandrakala (Kala) Menon, University of PennsylvaniaEmile Mohler III, University of PennsylvaniaShoko Nioka, Johnson Foundation, Penn/HUPDeva Pattanayak, Vishay Intertechnology Inc.Mary Putt, University of PennsylvaniaHarry Quon, University of PennsylvaniaNimi Ramanujam, Duke UniversityRobert (Bob) Rogers, University of DelawareMark Rosen, University of Pennsylvania Mitch Schnall, University of Pennsylvania Martin Schwieger, University College London, UKChandra (Sandy) Sehgal, University of Pennsylvania Bruce Tromberg, University of California at IrvineQing Zhu, University of Connecticut Tim Zhu, University of Pennsylvania

Baker, Wes Ban, Han YongBuckley, ErinBusch, DavidKim, MeeriXing, XiaomanChoe, RegineDurduran, TurgutPatak, Saurav

Holboke, MonicaIntes, XavierKonecky, SoreLee, KijoonLi, XingdeLiu, HanliMeglinsky, IgorNtziachristos, VasilisO'Leary, Maureen

Senior Collaborators