Differentiation

1
Mathematics 53 2nd Semester, A.Y. 2014-2015 Exercises 7 - Differentiation II Q3, R3, W8, X8 I. Apply the Chain Rule to find dy dx . There is NO need to simplify. 1. y = x -2/3 sec x + π 2 πx 2 - sin 3 (-5x) 2. y = sec 2 x +3x -2.5 6 x + 3 x + π 3. y = x +(x + sin 2 x) 3 4 4. y = sin 4 5 sin x cot 2x 5. y = cos 3 [ sec(tan(3x 4 + 5))] 6. y = r x cos x 3x 3 + tan 5x 7. y = cot - 3 x 3 + sin 4x x 3 csc x 8. y = cos 4 (3x) - 7 x tan(x 2 ) - 2e 9. y = csc 3 3x 2 + cot 5x πe + x +3 10. y = 3x 4 - 2 - π 2 cot(x 2 ) - 4 3 x II. Do as indicated. 1. Let f (x)= ( tan(1 - x), if x> 1 x 2 - x, if x 1 . Determine if f is differentiable at x = 1. 2. Let f (x)= ( x 2 + (1 - x) 4/3 , if x< 1 2x 2 - 2x, if x 1 . Determine if f is differentiable at x = 1. 3. Let f (x)= - 4 1+ x +2, if x 1 2x 3 - 3x 2 + x, if x> 1 . Determine if f is differentiable at x = 1. 4. Find the value of b so that f (x)= -b 2 +4b 4x , if 0 <x<b 1 - x 4 , if b x is differentiable at x = b. 5. Let f (x)= ax 2 - 3, if x 2 b x +2+ 9x 2 , if x> 2 . Find the values of a and b so that f is differentiable at x = 2. Exercises from sample exams, books, and the internet rperez

description

Exercises on differentiation

Transcript of Differentiation

  • Mathematics 53 2nd Semester, A.Y. 2014-2015Exercises 7 - Differentiation II Q3, R3, W8, X8

    I. Apply the Chain Rule to finddy

    dx. There is NO need to simplify.

    1. y =x2/3 secx+ 2

    x2 sin3(5x)

    2. y =sec2 x+ 3x2.5

    6x+ 3x+

    3. y =[x+ (x+ sin2 x)3

    ]44. y = sin4

    (5 sinx

    cot 2x

    )5. y = cos3[ sec(tan(3x4 + 5))]

    6. y =

    x cosx

    3x3 + tan 5x

    7. y = cot

    3x3 + sin 4xx3 cscx

    8. y =

    cos4(3x) 7x

    tan(x2) 2e

    9. y = csc3(

    3x2 + cot 5x

    e+ x+ 3

    )

    10. y =

    3x4 2 2

    cot(x2) 43x

    II. Do as indicated.

    1. Let f(x) =

    {tan(1 x), if x > 1

    x2 x, if x 1 . Determine if f is differentiable at x = 1.

    2. Let f(x) =

    {x2 + (1 x)4/3, if x < 1

    2x2 2x, if x 1 . Determine if f is differentiable at x = 1.

    3. Let f(x) =

    4

    1 + x+ 2, if x 1

    2x3 3x2 + x, if x > 1. Determine if f is differentiable at x = 1.

    4. Find the value of b so that f(x) =

    b2 + 4b

    4x, if 0 < x < b

    1 x4, if b x

    is differentiable at x = b.

    5. Let f(x) =

    ax2 3, if x 2

    bx+ 2 +

    9x

    2, if x > 2

    . Find the values of a and b so that f is differentiable

    at x = 2.

    Exercises from sample exams, books, and the internet rperez