Diagnostic Technology for Degradation of Feeder Pipes and ...

72
KAERI/CM-549/200 1 -TS, x/c EIclzk 41 El!gE XI2 L-r 0-1’ &aEt 7197flS Diagnostic Technology for Degradation of Feeder Pipes and Fuel Channels in CANDU Reactor ZFTS =* SHojs jiHL=IOI z- kIjS4Odgt Lo= gq g gilt 7Ig7HgJ Development of Aging Assessment Technology for CANDU Pressure Tubes

Transcript of Diagnostic Technology for Degradation of Feeder Pipes and ...

KAERI/CM-549/200 1

-TS, x/c EIclzk 41 El!gE X I 2 L-r 0-1’ &aEt 7197flS Diagnostic Technology for Degradation of Feeder Pipes

and Fuel Channels in CANDU Reactor

ZFTS =* SHojs jiHL=IOI z- kI jS4Odgt Lo= gq g gilt 7Ig7HgJ Development of Aging Assessment Technology for CANDU

Pressure Tubes

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

’200’29 4% 309

O b 1

.. - 11

iV

SUMMARY

This research project attempts to resolve two issues related to

integrity assessment of CANDTJ pressure tubes: (1) finite element

analysis of blister formation and growth and (2) engineering estimation

scheme to predict deflection of pressure tubes due to creep. For each

subject, the following issues have been addressed:

1. Development of Finite Element Analysis Technique to Predict Blister

Formation and Growth

- Development of thermal analysis technique

- Development of hydrogen diffusion simulation technique

- Development of FE analysis technique for blister formation and

growth

- Effect of initial hydrogen content on blister formation and growth

2. Development of Mechanistic Model for Predicting Creep Deflection of

Pressure Tubes

- Development of mechanistic model based on reference stress

approach

- Validation of the proposed method against 3-D FE results

- Provision of integrity assessment method for CANDU pressure tubes

Results for blister formation and growth can be summarised as

follows. Comparing the results from FE analysis, developed within this

project, with experimental data shows some differences ranging from

10% to 57%. Such differences results from two possible sources. One

source might be neglecting two phase diffusion. The present FE

analysis considers only single phase diffusion, and thus blister growth

can not be modelled accurately. The other would be inherent errors

associated with experimental measurement. Therefore it has been

concluded that further efforts should be made on two phase diffusion

modeling.

For developing mechanistic model of creep deflection, the proposed

reference stress based model is simple to use. Extensive validation

against creep FE results shows that the proposed model is also

accurate. Another advantage of the proposed model is that it can be

easily generalised to more complex problems. Therefore it is believed

that the present results provide a sound basis for integrity assessment

of CANDU pressure tubes.

- vi -

CONTENTS

................................................................................ Chapter 1 INTRODUCTION 1

Section 1 Background 1

Section 2 Objective 2

Section 3 Scope 3

.....................................................................................

..........................................................................................

.................................................................................................

................................................................... Chapter 2 STATE-OF-THE-ART 5

.................................................................... Chapter 3 RESEARCH RESULTS 6

Section 1 Development of Finite Element Analysis Technique

to Predict Blister Formation and Growth .............................. 6

Section 2 Development of Mechanistic Model for Predicting Creep .................................................. Deflection of Pressure Tubes 16

Section 3 A Reference Study for the Irradiation Effect on Material Properties and Degrading Mechanism ............... 30

Chapter 5 THE PLAN FOR APPLICATION OF RESULTS .................. 33

Section 1 Academic Side 33

Section 2 Industrial Side 33

..............................................................................

..............................................................................

................................................................................... Chapter 6 REFERENCES 34

............................................................................................................. AppENDIX 36

vii -

........................................................................................................... zj1 1 6) A j g 1

4) 1 ~2 97~f lg 1

zj1 2 2 g++-s 2

zj] 3 3 f=g 9q g 4% 3

...............................................................................................

...............................................................................................

.............................................................................

. ......................................................................... 41 2 34 S?l 7197fl%! 5

................................................................... 41 3 %I 3777H95=8J 4% 2 zq 6

zj] 1 ZJ %qgq S d & E ] %A$) 2 d N - 0 0 41% 33 71% 6

1. “ l 2 6

.....................

........................................................................................................

................................ 2. 4-J-3- E!=?‘- -!&q&E{ gA$) 2 Ad%)- 814 7 3. cl-%t$ ~ 7 1 ++- 5s 2 s++j ~1aql q$ +& 2+g ..14

16

1. qq”2F 16

2. g q g q &AJ 2 34% 234% 4 1 ~ ~ q$ z-qq a]^,~+ ..17 3. a]̂ ,F)q zj1A]S 4 9 -f;-3&&3flq 21

..................... zj] 2 2 gq gq 3j $ qgg- q 3 7) 7 q ; y E.3 71 “,F ......................................................................................................

......................................

............................ 4. 321% -f;-g&+-8lq-g o]$$ +5qq.”?xi % $ 24

zj1 3 3 E+l] qg @ % 7 ] 7 2 JllS+g+q qq- ............................................................................................. x)-g+;”d 30

............................................. 41 4 3% 9 7 7 1 % +-E g A d z qq 71qZ 32

..................................................................... 41 5 %l 9771$3q-Sq g-$J-fi]q 33

zj] 1 % qg7q q$ 33

41 2 3 ,̂Fq zj qg .......................................................................................

....................................................................................... 33

................................................................................................... zj1 6 &k &-I-3 1 1- 34

......................................................................................................................... v q 36

- viii -

1 -

- 2 -

- 3 -

- 4 -

- 5 -

- 6 -

- 7 -

0.69mm r , if r10.69mm

, PRESSURETUBE

(3.1.1)

Fig. 3.1.1 (a> Scheme showing geometrical relationship between the

sample and the pressure tube from which it was extracted.

(b) Experimental device for blister formation (Domizzi,

1996).

- 8 -

Table 3.1.1 Thermal parameters used in estimate the temperature field

(Domizzi, 1996).

Heat transfer coefficient between sample and surrounding, air

hair

~~

Thermal conductivity of Zr-2.5Nb 1 kzr-Nb 1 0.0215W/(mm"C )

2.1 x ~ O - ' W / ( T T Z ~ ~ "C

Thermal conductivity of A1 I kAr I 0.2W/(mm°C)

Heat transfer coefficient between sample and cold finger (maximum)

1.7852 W/( mmz "C )

Heat transfer coefficient between sample and aluminum block

I hblock I 9.81 x 1 0 - 4 ~ / ( m d 0 c )

t 17mm

Fig. 3.1.2 2-dimensional finite element model for the present work.

- 9 -

12 12 5

-3.4 -0.4 0

Radial location (mm)

Vertical location (mm)

Measured temperature 392 390 >352

11

0

392

Fig. 3.1.3 Estimated temperature field in the sample and in the cold

( C ) FE

results( C ) 385.95 388.15

finger.

368.55 384.95

- 10 -

(3.1.2) ac at - +div ( YJ, + YJS) = 0

(3.1.3)

D= D,exp( - Q/RT) (3.1.4)

- 11 -

Table 3.1.3 Material constants for the thermal-diffusion of hydrogen in

Zr-2.5%Nb (Domizzi, 1996).

Gas constant

Frequency factor

R 8.314 J/Kmol

DO 0.41 mm'/s

Activation energy for diffusion

Heat of transport

Q

Q* 20,930 Jlmol

38,400 J/mol

Fig. 3.1.4 Computed concentration field at times 6 X lo5 sec.

- 12 -

3.0 1 0

E 2.5 5 E 0 Lf 2.0 a, a, E 1.5 ca

CI

*I4 n 1.0

0.5

E- 0 0

FE Results

0 . 0 1 ' I ' I ' I ' I ' I ' I ' 0 100 200 300 400 500 600 700

Time, 1000 sec

1.5

E 1.0

4 @

E

a 0.5

0.c

r- o Experimental FE Results

0 - I 100 200 300 400 500 600 700

Time, 1000 sec

Fig. 3.1.5 Diameter and depth of computed blister as a function of time.

Also shown are the experimental results, for the purpose of

comparison.

- 13 -

- 14

0.5

0.4

$ 0.3

E ̂e 0.2 a

0.1

0.0' ' I ' I ' I ' I " ' I ' 0 100 200 300 400 500 600 700

Time, 1000 sec

Fig. 3.1.6 Plot of blister depth vs. time for blister formation.

- 15 -

16 -

I Symm.

.. I ............................................ I.. ........ ...,. ‘ G ,

... ..............., i” Fig. 3.2.1 Schematic illustration of a cylinder under pure bending, and

relevant dimensions.

e M L ~ 6 =- 2EI (3.2.1)

17

I=$ (e- e) (3.2.2)

_-- E - + f f ( + ) " Eo Go

(3.2.3)

(3.2.4)

Mo = 4Rkt6, (3.2.5)

- 18 -

(3.2.6)

(3.2.8)

(3.2.9)

(3.2.10)

- 19 -

M n-1 -=a(-) aP Mre/

(3.2.11)

(3.2.12)

_ z - . M 6" - (3.2.13)

(3.2.14)

-- 20 -

(3.2.15)

6= 6"+ 6" (3.2.17)

21

Table 3.2.1 Summary of FE calculations for the present work. For each

case, two values of L(L=5R0 and lOR,) are used, giving a

total of 16 cases.

Loading Condition

Bending Moment

R J t n

10 1, 3, 5, 10

15 1, 3, 5, 10

Fig. 3.2.2 A typical 3-D FE model for R,dt=lO, employed in the

present elastic-plastic FE analysis.

- 22 -

Table 3.2.2 Comparison of elastic FE deflection results with those

estimated using the theoretical solution.

Theoretical (mm)

L RnJt ABAQUS Difference

(mm) (%) 10Ro

5Ro 10

10.07 10.04 0.3

2.52 2.48 1.6

- 23 -

lOR,

5Ro 15

9.46 9.43 0.3

2.37 2.33 1.7

Table 3.2.3 Values of the h-function, determined from elastic-plastic FE

results.

R d t L

10Ro

5Ro 10Ro

5Ro

10

15

h(n=l) h(n=3) h(n=5) h(n=lO)

6.633 6.943 6.953 6.939

3.265 3.363 3.373 3.367

6.536 6.836 6.852 6.866

3.214 3.310 3.325 3.331

0.2 0-4 1 0.2

0-4 i 0.0' ' I * ' I " I * "

3 6 9 12 3 6 9 12 0.0' ' " " I ' '

n n

Fig. 3.2.3 Variation of h(n)/h(n=l) with n for (a) R,dt=10 and (b)

RJt=15.

-- 24 -

800

600

2 8 400 m m E 3i

200

0 (

SA312 TP316 (288°C)

0 0

O0 0

0.1 0.2 0.3

Strain

Fig. 3.2.4 True stress-strain data for the SA312 TP316 stainless steel

(288°C 1, employed in the present elastic-plastic FE analysis

for validation.

- 25 -

(3.2.20)

B = 2 . 2 2 4 3 ~ 1 0 - ' ~ , m=4.3056, 0-0.44633 -7.0337 (3.2.21) ~ = 1 . 7 1 2 2 ~ 1 0 - ~ , n=8.20, tfp=2.75366x1019 o

(3.2.22) E,= ko"f'+ mont k = 7 . 4 3 ~ 1 0 - ~ ; m = 1 . 9 0 8 ~ 1 0 - ' ~ ; n=5.4 ; p=2.364

-- 26 -

40

30

b 2o * 10

0.0 0.5 1 .o 1.5 2.0

ANA4

Fig. 3.2.5 Comparison of the maximum deflection from the

elastic-plastic FE analysis, with the present prediction.

- 27 -

-- 28 -

0 1 2 3 4 5

(b) Primary-Secondary creep law

0 0 2

10 -

4 6 8

t / L d

" 0 2 4 6 8

Fig. 3.2.6 Comparison of the maximum deflection from the elastic-creep

FE analysis, with the present prediction: (a> the power-law

creep law, (b) the primary-secondary creep law and (c) the

secondary- tertiary creep law.

- 29 -

1. Fitness-for-Service Guideline Rev. O q Part In (AEXL, 1991)

3. ASME PVPol] 3!2€%! CANDU %qg 88 &% (Hopkins,

1998)

4. AECL 9 - X A j , "Highlights of the Metallurgical Behavior of CANDU

Pressure Tube"

5. AECL X i l A j , "Fracture Toughness of Irradiated Zr-2.5%Nb

Pressure Tube from CANDU Reactor" (Chow, 1990)

- "Measurements of Fuel Channel Deformation from Operation

Power Reactor"

C.W. Schulte (Ontario Hydro Technology) - "SAG of Pressure Tube and Calandria Tube"

A.R. Causey, A.G. Norsworth, and A, Schabkur

- "Creep and Growth of Pressure Tubes"

J.D. Parker, A.R. Causey, and R.G. Fleck

- "Limitations of Current Design Equations"

A.R. Causey, C.E. Ells, V.Fidleris, and J.I. Veeder

- 31

32 -

ABAQUS Standarwser’s Manual, Version 5.8, 1998, Hibbit, Karlsson

& Sorensen Inc., Pawtucket, RI, USA.

AECL (19911, ”Fitness-for-Service Guidelines for Zirconium Alloy

Pressure Tubes in Operating CANDU Reactors,’’ Revision 0, COG-91

-66.

AFCEN (19851, ”RCC-MR : Design and Construction Rules for

Mechanical Components of FBR Nuclear Islands,” Paris.

Byme, T.P., Gadala, M.S. and Leger, M. (19851, ”Hydrogen

Redistribution Due to Temperature Gradients in Zirconium Alloys-a

Finite Element Approach,” 8th International Conference on Structural

Mechanics in Reactor Technology, Vol. B, pp. 123-129.

Cheong, Y.M., Gong, U.S., Choo, K.N., Kim, S.S. and Kim, Y.S. (2001),

”Formation and Growth of Hydride Blisters in Zr-2.5Nb Pressure

Tubes,” Journal of the Korean Nuclear Society, Vol. 33, No. 2, pp.

192-200.

Chow, C.K., Coleman, C.E., Hosbons, R.R., Davies, P.H., Griffiths, M.

and Choubey, R. (1990), ”Fracture Toughness of Irradiated Zr-2.5%Nb

Pressure Tube from CANDU Reactor,” AECL.

Crandall, S.H., Dahl, N.C. and Lardner, T.J. (1978), “An Introduction to

the Mechanics of Solids,” 2nd Edition, McGraw-Hill, Inc.

CRNL (19871, ”Fuel Channel Technology Seminar, Vol I, 11”.

- 34

CSA (1994), "Periodic Inspection of CANDU Nuclear Power Plant

Components," CAN/CSA N285.4.

Domizzi, G., Enrique, R., Ovejero-Garcia, J. and Buscaglia, G.C. (19961,

"Blister Growth in Zirconium Alloys: Experimentation and Modeling,"

Journal of Nuclear Materials, Vol. 229, pp. 36-47.

Hopkins, J.R., Price, E.G., Holt, R.A. and Wong, H.W. (19981, "Fuel

Channel Fitness-For-Service," Proceeding of ASME Pressure Vessels

and Piping Conference, San Diego, California, Vol. 360, pp. 207-214.

Jovanovic, M., Stem, A., Kneis, H., Weatherly, G.C. and Leger, M.

(1988), "Thermal Diffusion of Hydrogen and Hydride Precipitation in

Zr-Nb Pressure Tube Alloys," Canadian Metallurgical Quarterly, Vol.

27, NO. 4, pp. 323-330.

Miller, A.G. (1988), "Review of Limit Loads of Structures Containing

Defects," International Journal of Pressure Vessels and Piping, Vol. 32,

pp. 191-327.

Penny, R.K. and Marriot, D.L. (19951, "Design for Creep," 2nd Edition,

Chapman & Hall.

Shoukn, M. and Chan, A.M.C. (1987), "On the Thermal Analysis of

Pressure TubeLalandria Tube Contact in CANDU Reactors," Nuclear

Engineering and Design, Vol. 104, pp. 197-206.

Varias, A.G. and Massih, A.R. (ZOOO), "Simulation of Hydrogen

Embrittlement in Zirconium Alloys under Stress and Temperature

Gradients," Journal of Nuclear Materials, Vol. 279, pp. 273-285.

- 35 -

*HEADING

HEAT TRANSFER(TEMPERATURE) ANALYSIS FOR DIFFUSION

ANALYSIS

*PREPRINT,MODEL=NO,ECHO=NO,HISTORY =NO

*RESTART,WRITE,FREQ =500

*NODE

1,090 17,0.69,0

31,1.25,0

401,17,0 ******************* 50001,0,3.9

50017,0.69,3.9

5oO31 ,I .25,3.9

50401,17,3.9 ******************* 13OOO1,0,11.1

13oO17,0.69,11.1

13OO31,1.25,11.1

*NGEN,NSET=SAM-LOW

1,17,1

17,31,1

3 1,401,l

36 -

*NGEN,NSET=SAM-UPP

50001,50017,l

5OO17,5OO31,1

5OO31,50401,1

*NFILL,NSET=SAMPLE

SAM-LOW,SAM-UPP,100,500

*NSET,NSET=COLD-LOW,GEN

50001,50017,l

50017,50031,l

*NGEN,NSET=COLD-UPP

130OO1,13OO17,1

13OO17,13OO3 1,l

*NFILL,NSET=COLD

COLD-LOW,COLD-UPP,160,500

*ELEMENT,TYPE=DCAX8

1,1,3,1 OO3,1OO1,2,503,1OO2,501

2OO00,50001,5OOO3,51003,51001,5OOO2,50503,51002,50501

*ELGEN,ELSET=EL-SAMPLE

1,200,2,1,50,1000,200

*ELGEN,ELSET=EL-COLD

2OOO0,15,2,1,80,1000,15

*ELSET,ELSET=H-BLOCK,GEN

1,200,l

200,10000,200

*ELSET,ELSET=H-AIR1,GEN

*ELSET,ELSET=H- AlR2,GEN

9816,1OOOO,l

*ELSET,ELSET=H-COLD-U,GEN

21 185,21199,l

*ELSET,ELSET=H-COLD-R,GEN

- 37 -

20014,21199,15

*NSET,NSET=S AM-LEFT,GEN

1,50001,500

*NSET,NSET=COLD-LEFT,GEN

5OOO1,13ooO1,500

*SOLID SECTION,MAT=AL,ELSET=EL-COLD *MATERIAL,NAME=AL

*DENSITY

271OE-9

*CONDUCTIVITY

200

*SPECIFIC HEAT

0.932347707E6

*SOLID SECTION,MAT=ZR,ELSET=EL- SAMPLE

*MATERIAL,NAME=ZR

*DENSITY

WOE-9

*CONDUCTIVITY

21.5

*SPECIFIC HEAT

0.285E6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . **TEMPERATURE ENTERED IN KELVIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . *PHYSICAL CONSTANTS,ABSOLUTEZ=O

*FILE FORMAT, ZERO INCREMENT

*INITIAL CONDITIONS,TYPE=TEMP

COLD,473.15

SAMPLE,663.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

- 38 -

*STEP,INC=999999

*HEAT TRANSFER,DELTMX=20

1E-20,600000,10,500

*FILM

H-BLOCK,F1,688.15,0.981

H- AIR1 ,F2,298.15,0.021

H-AIR2,F3,298.15,0.021

H-COLD-U,F3,293.15,0.021

H-COLD-R,F2,298.15,0.021 980 1 ,F3,473.15,1673.625

9802,F3,473.15,1450.475

9803,F3,473.15,1227.325

9804,F3,473.15,1004.175

9805,F3,473.15,781.025

9806,F3,473.15,557.875

9807,F3,473.15,334.725

9808,F3,473.15,111.575

*NODE PRINT,NSET=SAMPLE,FREQ=50 NT

*NODE FILE,FREQ=l

NT

*EL PRINT,FREQ=O

*EL FILE,POSITION=AVERAGED AT NODES,FREQ=O

*END STEP

39 -

*HEADING

HYDROGEN DIFFUSION ANALYSIS FOR CANDU PRESSURE

TUBE

*PREPRINT,MODEL=NO,ECHO=NO,HISTORY =NO

*RESTART, WRITE,FREQ= 10

*NODE

1,070 17,0.69,0

31,l. 25,O

40 1 , 17,O ******************* 50001,0,3.9

50017,0.69,3.9

50031,1.25,3.9

50401,17,3.9 ******************* 130001,0,11.1

130017,0.69,11.1

130031,1.25,11.1 *NGEN,NSET=SAM-LOW

1,17,1

17,31, 1

31,401 , 1

*NGEN,NSET=SAM-UPP

50001,50017,l

5OO17,50031 , 1

5OO31,50401,1

*NFILL,NSET= SAMPLE

-- 40 -

SAM-LOW,SAM-UPP, 100,500 *NSET,NSET=COLD-LOW,GEN 5OOO1,50017,1 5OO17,5OO31,1 *NGEN,NSET=COLD-UPP 13OOO1,13OO17,1 130017,130031,l *NFILL,NSET=COLD COLD -LOW, C OLD - UPP, 160,500 *ELEMENT,TYPE=DCAX8 1,1,3,1OO3,1OO1,2,503,1OO2,501 20000,50001,5OOO3,51OO3,51001,5OOO2,50503,51002,50501 *ELGEN,ELSET=EL-SAMPLE 1,2OO,2,1,5O,lOOO,2OO

*ELGEN,ELSET=EL-COLD 2OOOO,15,2,1,80,1OOO,15

*ELSET,ELSET=H-BLOCK,GEN

1,200,l

200,1oooo,200

*ELSET,ELSET=H-AR1,GEN

*ELSET,ELSET=H-AIRZ,GEN 9816,1oooO,1

*ELSET,ELSET=H-COLD-U,GEN

21185,21199,l *ELSET,ELSET=H-COLD-R,GEN 20014,21199,15 *NSET,NSET=SAM-LEFT,GEN 1,50001,500 *NSET,NSET=COLD-LEFT,GEN 50001,13OOO1,500

- 41 -

*PHYSICAL CONSTANTS,ABSOLUTEZ=O

*SOLID SECTION,MAT=AL,ELSET=EL-COLD *MATERIAL,NAME=AL

*CONDUCTIVITY

200 *SOLUBILITY

1

*DIFFUSIVITY

0

*KAPPA,TYPE=TEMP

0

*SOLID SECTION,MAT=ZR,ELSET=EL-SAMPLE *MATERIAL,NAME=ZR

*CONDUCTIVITY

21.5

*SOLUBILITY

1

* DIFFUS IVITY

0.000007454,,423.15

0.000023624,,473.15

0.000060054,,523.15

0.000129727,,573.15

O.oOO387261,,663.15

0.000498760,,688.15

*KAPPA,TYPE=TEMP

951 88.57944,16000,423.15

851 29.551 71,16OOO,473.15

76993.30477,16000,523.15

70276.62460,16oOO,573.15

60738.96915,16OOO,663.15

-- 42 -

58532.36560,160OO,688.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . **TEMPERATURE ENTERED IN KELVIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . *INITIAL CONDITIONS, TYPE=TEMPERATURE, FILE=TEMPER,

STEP=l, INC=O

*INITIAL CONDITIONS, TYPE=CONCENTRATION

SAMPLE,300

COLD,O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * STEP,INC =999999

*MASS DIFFUSION, STEADY STATE

0.001,0.OO1

*NODE PRINT,FREQ=O

*NODE FILE,FREQ=O

NNC

CFL

RFL

*EL PRINT,FREQ=O

*EL FIL,E,FREQ=O

ESOL

SOL

CONC

SOL

ISOL

MFL

*END STEP

*STEP,INC=999999

*MASS DIFFUSION,DCMAX=2000

50,6OOOOO, ,500,

- 43 -

*TEMPERATURE,FILE=TEMPER,BINC= 1 ,BS?'EP= 1

*NODE PRINT,FREQ=O

*NODE FILE,FREQ =O

NNC

CFL

RFL

*EL PRINT,FREQ=O

*EL FILE,FREQ=O

ESOL

SOL

CONC

SOL

ISOL

MFL

*END STEP

-- 44

*HEADING

CANDU Pressure Tube Deflection Analysis

Ro=55mm, Rm/t=lO

Pipe Length : 5 5 0 m

Uncracked Pipe Analysis : Elastic-Plastic Analysis

alpha=l, n=3

Unit : N, m, MPa

*RESTART,WRITE,FREQ =999999

*PREPRINT,MODEL=NO,HISTORY =NO,ECHO=NO

*NODE

9

233,49.76 190476,0,0

1033,49.76 19O476,78.1658 1720,O

1049,49.76190476,156.3316344,0

12233,49.76190476,0,50

13033,49.7619O476,78.16581720,50

13049,49.7619O476,156.33 16344,5O

172233,49.76190476,0,200

173033,49.76190476,78.16581720,2OO

173049,49.76190476,156.3316344,200

332233,49.76190476,0,35O

333033,49.76190476,78.16581720,350

333049,49.76190476,156.3316344,350

732233,49.76190476,0,550

733033,49.76 1 90476,78.1658 1720,550

733049,49.76190476,156.3316344,550

*NGEN,NSET= ARCBOUND

233,1033,50

*NGEN,NSET=LINE1033

-- 45

1033,1049,l

*NSET,NSET=VERTICLl

ARCBOUND,LINE1033

*NGEN,NSET=VERTICLZ

12233,13033,50

13033,13049,l

*NFILL,NSET=MIDDLE

VERTICLl ,VERTICL2,4,3000

*NGEN,NSET=RGHTEDGE

172233,173033,50

173033,173049,l

*NFILL,NSET=RIGHT

VERTICLZ,RGHTEDGE,8,20000 *NGEN,NSET=LLl

332233,333033,50

333033,333049,l

*NFILL,NSET=RIG

RGHTEDGE,LL1,8,2OOOO

*NGEN,NSET=PIlZ

732233,733033,50

733033,733049,l

*NFILL,NSET=PI

LLi,mz,zo,zoooO

*NSET,NSET= ALLIN

MIDDLE,RIGHT,RIG,PI

*NCOPY, CHANGE NUMBER=4000000, OLD SET=ALLIN,

REFLECT=MIRROR, NEW SET=ALLOUT

52.38095238, -5, -5,52.38095238, -2, -5

52.38095238, -5, -2

*NFILL,NSET= ALL

- 46 -

ALLIN,ALLOUT,4,1OOOOOO

*NSET,NSET=Al,GEN

233,1033,50

1033,1049,l

*NSET,NSET= A2,GEN

4000233,4001033,50

4001 033,4001 049,l

*NFILL,NSET= A

Al,A2,4,1000000

*NSET,NSET=Bl,GEN

233,12233,3000

l2233,172233,2ooOO

172233,332233,2oooO

332233,732233,2oooO

1049,13049,300O

13049,173049,20OOO

173049,333049,2oooO

333049,733049,20000

*NSET,NSET=BZ,GEN

4000233,4012233,3000

4012233,4172233,2oooO

4172233,4332233,20000

4332233,4732233,20000

4001049,4013049,3000

401 3049,4173049,2oooO

4 173049,4333049 ,Zoo00 4333049,4733049,20000

*NFILL,NSET=B

B1 ,B2,4,100OOOO

*ELEMENT,TYPE=C3D20R

47 --

1033,1033,7033,6933,933,200 1 033,2OO7033,2OO6933,2OOO933,4033,

6983,3933,983,2oO4033,2006983,2OO3933,2OOO983,1001033,1OO7033,

1006933,1000933

1049,1049,7049,7047,1047,2OO1049,2OO7049,2007047,2OO1047,4049,

7048,4047,1048,2OO4049,2OO7048,2OO4047,2OO 1 048,100 1049,1OO7049,

lOO7047,1oO1047

13033,13033,53033,52933, 12933,2013033,2053033,2052933,2012933,

33033,52983,32933, 12983,2033033,2052983,2032933,2012983,1013033,

1053033,1052933,lO 12933

13049,13049,53049,53047,13047,20 13049,2053049,2053047,201 3047,

33049,53048,33047,13048,2033049,2053048,2033047,2013048,1013049,

1053049,1053047,1013047

173033,173033,2 13033,2 12933,172933,Z 173033,221 3033,22 12933,Z 172933,

193033,212983,192933,172983,2193033,2212983,2192933,21729~,1173033,

1213033,121 2933,1172933

173049,173049,2 13049,2 13047,173047,2173049,22 13049,2213047,2 173047,

193049,213048,193047,173048,2193049,2213048,2193047,2173048,1173049,

1213049,1213047,1173047

333033,333033,373033,372933,332933,2333033,2373033,2372933,2332933,

353033,372983,352933,332983,2353033,2372983?2352933,2332983,

1333033,1373033,1372933,1332933

333049,333049,373049,373047,333047,2333049,2373049,2373047,2333047,

353049,373048,353047,333048,2353049,2373048,2353047,2333048,

1333049,1373049,1373047,1333047

*ELGEN,ELSET=TIPMI

1033,2,2oooO00,1~,8,- 100, - lOO,2,6000,4500

*ELGEN,ELSET=LOWRIGHT

1049,2,2000000,1000000,8,-2,-2,2,6000,4500

*ELGEN,ELSET = CONNECT

13033,2,2000000,1oooO00,8,-100,-1,4,400OO,4oOOO

- 4 8 -

13049,2,2000000,1000000,8,-2,-2,4,40000,40000

*ELGEN,ELSET= STIFF

173033,2,2OOoooO, 1OOOOOO,8,- 100, - 1,4,40000,4oooO

173049,2,2000000,10oooO0,8,-2,-2,4,40000,40000 333033,2,2000000,1000000,8,-100,-1,10,40000,40000

333049,2,2OOoooO, loOOOOO,8, -2,- 2,10,40000,4OOOO

*ELGEN ,ELSET =ALLIN

1033,8,-1oO, -1OO,2,6OOO,45OO

1049,8, -2, -2,2,6OOO,45OO

13033,8,-100,-1,4,4oooO,4oooO 13049,8,-2, -2,4,4oooO,4oooO

173033,8,-100,-1,4,4OOOO,40000 173049,8,-2,-2,4,40OOO,40000

333033,8,- 100,-1,10,4OOO0,40000

333049,8,-2, -2,10,4~,40OOO

*ELSET,ELSET= ALL

TIPM1,LO WRIGHT,CONNECT,STIFF

*ELSET,ELSET= AA,GEN

693026,693033,l

693035,693049,Z

1693026,1693033,l

1693035,1693049,2

*NMAP,NSET= ALL,TY PE=CY LINDRICAL

O,O,O,O,O,-15

0,15,-10

1,l. 15139844,l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * ** * ** ** * * * * * **For Applying Moment** * *** * ** ** * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . *NSET,NSET=PIlZ-O,GEN

49

4732233,4733033,50

4733033,4733049,l

*NODE

9999999,0,0,550

*NFILL,NSET=DISP4

PIlZ,PI12-0,4,1000000

*MPC

BEAM,DISP4,9999999 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . *SOLID SECTION,ELSET= ALL,MATERIAL= TP316

*MATERIAL,NAME=TP316

*DEFORMATION PLASTICITY

19oooO,0.3,165,3,1 *BOUNDARY

A3 B,1 4001049,Z

* STEP,INC=99999

*STATIC ,DIRECT

0.03,l

*CLOAD

9999999,4,-10000000

*EL PRINT,POSITION=CENTROIDAL,FREQ=O s ,E

*EL FILE ,POS ITION = CENTROIDAL, FREQ = 0

S,E,SINV,PE

*NODE PRINT,NSET=DISP4,FREQ= 1

U *NODE FILE,NSET=DISP4,FREQ=l

U

- 50 -

*END STEP

*HEADING

CANDU Pressure Tube Creep Deflection Analysis (Validation)

Actual pressure tube

Tube length (2L) : 6 4 O O m m

Loading condition : Pure bending (M/ML=O.l)

Creep law : Norton creep law

Unit : N, 111111, MPa

*RESTART,WRITE,FREQ=99999 *PREPRINT,MODEL=NO,HISTORY =NO,ECHO=NO

*NODE

Ro=56.2mm, Ri=52mm, Rm=54.lmm, t=4.2mm

233,52,0,0

1033,52,81.681409,0

1049,52,163.362818,0

12233,52,0,500

13033,52,81.681409,5OO

13049,52,163.362818,5OO

172233,52,0,1000

173033,52,8 1.68 1409,1000

173049,52,163.362818,1000

332233,52,0,2000

333033,52,81.681409,2OOO

333049,52,163.3628 18,2000

732233,52,0,3200

733033,52,81.681409,3200

733049,52,163.3628 18,3200

*NGEN,NSET=ARCBOUND

233,1033,50

52 -

*NGEN,NSET=LINE1033

1033,1049,l

*NSET,NSET=VERTICLl

ARCB OUND ,LINE 1033

*NGEN,NSET=VERTICLZ

12233,13033,50

13033,13049,l

*NFILL,NSET=MIDDLE

VERTICL 1 ,VERTICL2,4,30OO

*NGEN,NSET=RGHTEDGE

172233,173033,50

173033,173049,l

*NFILL,NSET=RIGHT

VERTICLZ,RGHTEDGE,8,20000

*NGEN,NSET=LLl

332233,333033,50

333033,333049,l

*NFILL,NSET=RIG

RGHTEDGE,LL1,8,2oooO

*NGEN,NSET=PIlZ

732233,733033,50

733033,733049,l

* NFILL ,NSET = PI

LLl ,P112,20,20000

*NSET,NSET=ALLIN

MIDDLE,RIGHT,RIG,PI

*NCOPY, CHANGE NUMBER=4000000, OLD SET=ALLIN,

REFLECT=MIRROR, NEW SET=ALLOUT

54.1,-5,-5,54.1,-2,-5

54.1,-5,-2

- 53 -

*NFILL,NSET= ALL

ALLIN,ALLOUT,4,1000000

*NSET,NSET=Al,GEN

233,1033,50

1 033,1049,l

*NSET,NSET=A2,GEN

4000233,400 1033,50

400 1033,400 1049,l

*NFILL,NSET= A

A1 ,A2,4,1ooOOOO

*NSET,NSET=Bl,GEN

233,12233,3000

12233,172233,2oooO

172233,332233,20000

332233,732233,2oooO

1049,13049,300O

13049,173049,2oooO

173049,333049,20000

333049,733049,20000

*NSET,NSET=B2,GEN

4000233,4012233,3000

4012233,4172233,20000

4172233,4332233,20000

4332233,4732233,20000

4001049,4013049,3000

401 3049,4173049,2OOO0

41 73049)4333O49,2ooOO

4333049,4733049,2oooO

*NFILL,NSET=B

B1 , B 2 , 4 , 1 m O

- 5 4 -

*ELEMENT,TYPE=C3D20R

1033,1033,7033,6933,933,2001033,2007033,2006933,2000933,4033,

6983,3933,983,2OO4033,2006983,2OO3933,2OOO983,1OO1033,1OO7033,

1006933,1OOO933

1049,1049,7049,7047,1047,2OO1049,2OO7049,2007047,2OO1047,4049,

7048,4047,1048,2OO4049,2OO7048,2OO4047,2001048,1OO1049,1OO7049,

lOO7047,1OO1047

1 3033,13033,53033,52933,12933,201 3033,2053033,2052933,20 1 2933,

33033,52983,32933,12983,2033033,2052983,2032933,2012983,1013033,

1053033,1052933,1012933

13049,13049,53049,53047,13047,2013049,2053049,2053047,20 13047,

33049,53048,33047,13048,2033049,2053048,2033047,2013048,1013049,

1053049,1053047,101 3047

173033,173033,213033,212933,172933,2173033,2213033,2212933,2172933,

193033,212983,192933,172983,2193033,2212983,2192933,2172983,1173033,

1213033,1212933,1172933

173049,173049,Z 13049,213047,173047,2 173049,22 13049,ZZ 13047,Z 173047,

193049,213048,193047,173048,2193049,22 13048,2193047,2 173048,1173049,

12 13049,lZ 13047,1173047

333033,333033,373033,372933,332933,2333033,2373033,2372933,2332933,

353033,372983,352933,3329~,2353033,23729~,2352933,2332983,

1333033,1373033,1372933,1332933

333049,333049,373049,373047,333047,2333049,2373049,2373047,2333047,

353049,373048,353047,333048,2353049,2373048,2353047,2333048,

1333049,1373049,1373047,1333047

*ELGEN,ELSET=TIPMI

1033,2,20ooOOO, 1000OOO,8, - 100,- lOO,2,60Oo,4500

*ELGEN,ELSET=LOWRIGHT

1049,2,20ooOOO, 1OOOOOO,8,-2, -2,2,6OOO,4500

*ELGEN ,ELSET = CONNECT

- 55 -

13033,2,200oooO, lOOOOOO,8,- 100, - 1,4,40000,4ooOO 13049,2,2oooOOO, 10OOO00,8, -2,-2,4,4oooO,4OOOO *ELGEN,ELSET=STIF'F 173033,2,2ooOOOO, lOOOOOO,8,- 100, - 1,4,40000,4oooO 173049,2,2OOOOOO, 1OOOOOO,8, - 2, -2,4,4OOO0,4ooOO 333033,2,2oOOoOO,looOOOO,8,- 100,- 1,10,40000,40000

333049,2,2OOO000,1~0,8, -2, -2,10,4OOO0,4oooO *ELGEN,ELSET=ALLIN 10333- 100,- 1OO,2,6OOO,45OO

1049,8, - 2, -2,2,6OOO,45OO 13033,8,-100,-1,4,40000,4oooO

13049,8,-2,-2,4,4OOO0,40000 173033,8,- lOO,-1,4,4ooOO,4oooO 173049,8, -2, -2,4,4oooO,4OOOO 333033,8,-1OO,-1,10,4oooO,4OOO0

3330493-2, -2,10,4oooO,40OOO *ELSET,ELSET= ALL TIPMI,LOWRIGHT,CONNECT,STIFF *ELSET,ELSET=AA,GEN 693026,693033,l 693035,693049,Z 1693026,1693033,l 1693035,1693049,Z *NMAP,NSET= ALL,TYPE=CYLINDRICAL

O,O,O,O,O, - 15 0,15,-10 1,l. 101841914,l

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

- 56 -

*NSET,NSET=PIl2_0,GEN

4732233,4733033,50

4733033,4733049,l

*NODE

9999999,0,0,3200

*NFILL,NSET=DISP4

PI12,PI12-0,4,1OOOOOO

*MPC

BEAM,DISP4,9999999 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . *SOLID SECTION,ELSET=ALL,MATERIAL=CANDU *MATERIAL,NAME=CANDU *** ** **** * * * *** * * * *** * *TP316 high temperature** * *** *** * * * * *** * * *ELASTIC

91700,0.4 ***************CREEP LAW********************************+*

* CREEP,LAW = STRAIN

1E-16,5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . *BOUNDARY

A73

4001049,Z

* STEP,INC =99999

*STATIC

1 7 1 *CLOAD

9999999,4,- 1425941 332

*EL PRINT,POSITION=CENTROIDAL,FREQ=O e

- 57 -

*EL FILE,POSITION=CENTROIDAL,FREQ=O s,e,sinv,pe

*NODE PRINT,NSET=DISP4,FREQ= 1

U

*NODE FILE,NSET=DISP4,FREQ= 1

U

*END STEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * STEP,INC =99999

* VISCO,CETOL=IE-4

0.0001,5oooO

*RESTART,WRITE,FREQ=99999 *EL PRINT,POSITION=CENTROIDAL,FREQ=O e

*EL FILE,POSITION=CENTROIDAL,FREQ=O s,e,sinv,pe

*NODE PRINT,NSET=DISP4,FREQ= 1

U

*NODE FILE,NSET=DISP4,FREQ=l

U

*END STEP

- 58

KAERI/CM-549/200 1

BIBLIOGRAPHIC INFORMATION SHEET

Performing Org. Report No.

Sponsoring Org. Report No.

Standard Report No. INIS Subject Code

I I KAERI/CM-549/2001 I

Publication Place

Seoul

Page 58 p.

I I I T i t l e / Subtitle

Development of Aging Assessment Technology for CANDTJ Pressure Tubes

KAERI

Ill. & Tab. Yes(()), No ( ) Size 21 X 29.7 Cm.

Publisher

~~~

Project Manager and DeDartment

Performing Organization

Sungkyunkwan University

~~

Young-Jin Kim (Sungkyunkwan University, School of Mechanical Engineering)

Contract No.

Researcher and Yun-Jae Kim, Nam-Su Huh, Sang-Log Kwak and Kyu-Ho Lee

(Sunglqunkwan University, School of Mechanical Engineering)

Note I Open( ), Restricted(O),

Classified l - Class Document Report Type

,bstract (15-20 Lines)

This research project attempts to resolve two issues related to integrity assessment of CANDU pressure tubes: (1) FE nalysis of blister formation and growth, and (2) engineering estimation scheme to predict creep deflection of pressure 1beS.

Results for blister formation and growth can be summarised as follows. Comparing the results from the FE analysis eveloped within this project, with experimental data shows some differences ranging from 10-57%. Such differencr :suits from two possible sources. One source is neglecting two phase diffusion. The present FE analysis considen nly single phase diffusion, and thus blister grwoth can not be accurately modeled. The other source would b herent errors associated with experimental measurement. Thus it has been concluded that further efforts should b lade on two phase diffusion modeling. For developing mechanistic model of creep deflection, the proposed reference stress based model is simple to use xtensive validation against creep FE results shows that the proposed model is also quite accurate. More importan jpect of the proposed method is that it can be easily generalized to more complex problems. Thus it is believed thai

Le present results provide a sound basis for sagging assessment of CANDU pressure tubes.

_ _ _ _ _ ~ ~

Subject Keywords (About 10 words)

CANDU Pressure Tube, CalandIia Tube, Blister, Hydrogen Diffusion,

Plastic and Creep Deflection, Reference Stress