DGA Methoden Der Zukunft

46
© Siemens AG DGA - Method in the Past and for the Future Ivanka Atanasova-Höhlein

Transcript of DGA Methoden Der Zukunft

Page 1: DGA Methoden Der Zukunft

© Siemens AG

DGA - Methodin the Past andfor the FutureIvanka Atanasova-Höhlein

Page 2: DGA Methoden Der Zukunft

Page 2 May 2012© Siemens AG

Energy SectorIvanka Atanasova-Höhlein

Page 3: DGA Methoden Der Zukunft

Page 3 May 2012© Siemens AG

Energy SectorIvanka Atanasova-Höhlein

Doerenburg introduced the differentiation between electricaland thermal failure mode and introduced ratios for fault gaseswith similar solubility.

Halstead developed the theoretical thermodynamic theory. The ratiosare temperature dependent. With increasing the hotspot the amountof gases increases in the order: methane-ethane-ethylene.

The evaluation scheme of the modern Gas-in-Oil Analysis isdeveloped by Rogers, Mueller, Schliesing, Soldner (MSS).

Development of In-Line Monitoring

1970

1973

1975

1995

Page 4: DGA Methoden Der Zukunft

Page 4 May 2012© Siemens AG

Energy SectorIvanka Atanasova-Höhlein

Change/Ageing

Different phenomena in oil take place like:

dielectric

thermal

dynamic

chemical

! Gas-in-Oil Analysis (DGA = Dissolved Gas Analysis)

Page 5: DGA Methoden Der Zukunft

Page 5 May 2012© Siemens AG

Energy SectorIvanka Atanasova-Höhlein

! Type

! Complexity

! Seriousness

The measurement of dissolved gasesallow the knowledge on

of event

Page 6: DGA Methoden Der Zukunft

Page 6 May 2012© Siemens AG

Energy SectorIvanka Atanasova-Höhlein

Sampling

Page 7: DGA Methoden Der Zukunft

Page 7 May 2012© Siemens AG

Energy SectorIvanka Atanasova-Höhlein

! Perfectly cleaned & Dried

! Free from dust & moisture

! Airtight

! Glass or Metal cans, syringes

Sampling Container

Page 8: DGA Methoden Der Zukunft

Page 8 May 2012© Siemens AG

Energy SectorIvanka Atanasova-Höhlein

! Protect sample from direct light

! Avoid moisture & dust contamination

! Use the sampling containers exclusivelyfor transformer oil sampling

Page 9: DGA Methoden Der Zukunft

Page 9 May 2012© Siemens AG

Energy SectorIvanka Atanasova-Höhlein

1 Handwheel2 Sealing cap3 Safety chain4 Polyamid gasket5 Nut6 Drain valve7 Hose and screw connector8 Sampling bottle9 Overflow vessel

Page 10: DGA Methoden Der Zukunft

Page 10 May 2012© Siemens AG

Energy SectorIvanka Atanasova-Höhlein

Page 11: DGA Methoden Der Zukunft

Page 11 May 2012© Siemens AG

Energy SectorIvanka Atanasova-Höhlein

Required information concerning oil sample(example)Requested analysis: Colour ISO 2049

Appearance IEC 60422

Neutralisation value IEC 62021-1

Breakdown voltage IEC 60156

Water content IEC 60814

Loss factor at 50 Hz IEC 60247

Interfacial tension ISO 6295

PCB-content EN 12766-2

Furananalysis (DGA) IEC 61198

Gas-in-oil-analysis IEC 60567

Please fill in the following data:

Manufacturer: FTNR (Manufacturing No.):

Customer: WNR (Order No.):

Location: Sample No.:

Year of manufacture: Date sample taken.:

Type: Type of oil

Power: Quantity of oil:

Rating: Oil temperature in the sample taken:

Sample taken from: Oil sample valve Oil drainage device OthersA 22/31/40 DIN 42 551

Tank: Top Middle Bottom

conservator Transformer OLTC Bushing

OLTC OLTC tank

Bushing

Others:

Reason for sample taking:

Date of operation fault:

Date of repair :

Date of oil treatment/reclaiming

Routine checkup:

Further informations and previous history:

Sample taker:

Date Name in block letters Company/ Department Phone

Lab information: special features:

Consecutive no.:Date sample received:Date sample analysed:Type of sample container:

Page 12: DGA Methoden Der Zukunft

Page 12 May 2012© Siemens AG

Energy SectorIvanka Atanasova-Höhlein

Extraction of Gasesfrom the Oil

Page 13: DGA Methoden Der Zukunft

Page 13 May 2012© Siemens AG

Energy SectorIvanka Atanasova-Höhlein

DGA. Toepler Pump

Page 14: DGA Methoden Der Zukunft

Page 14 May 2012© Siemens AG

Energy SectorIvanka Atanasova-Höhlein

DGA. Partial Degassing

Page 15: DGA Methoden Der Zukunft

Page 15 May 2012© Siemens AG

Energy SectorIvanka Atanasova-Höhlein

DGA. Headspace at Ambient Temperature

Page 16: DGA Methoden Der Zukunft

Page 16 May 2012© Siemens AG

Energy SectorIvanka Atanasova-Höhlein

DGA. Headspace at 70°C

Page 17: DGA Methoden Der Zukunft

Page 17 May 2012© Siemens AG

Energy SectorIvanka Atanasova-Höhlein

Gaschromatographic Analysis

Page 18: DGA Methoden Der Zukunft

Page 18 May 2012© Siemens AG

Energy SectorIvanka Atanasova-Höhlein

Gaschromatographic Analysis

CarrierGas

Detector

Detectorgas

Sampleinjection

Page 19: DGA Methoden Der Zukunft

Page 19 May 2012© Siemens AG

Energy SectorIvanka Atanasova-Höhlein

! Partial discharges

! Electrical discharges

! Charcoal coating of contacts

! Accelerated cellulosic degradation

! Local overheating

! Untightness of OLTC tank

! Catalytic reactions of materials

! Additional information from BHR gas

Failures which can be identified by DGA

Page 20: DGA Methoden Der Zukunft

Page 20 May 2012© Siemens AG

Energy SectorIvanka Atanasova-Höhlein

! Incipient Failures

! Long lasting temperatures < 150 °C

Failures which can not be identified by DGA

Page 21: DGA Methoden Der Zukunft

Page 21 May 2012© Siemens AG

Energy SectorIvanka Atanasova-Höhlein

Interpretation Schemes

Page 22: DGA Methoden Der Zukunft

Page 22 May 2012© Siemens AG

Energy SectorIvanka Atanasova-Höhlein

Duvals Triangle

Page 23: DGA Methoden Der Zukunft

Page 23 May 2012© Siemens AG

Energy SectorIvanka Atanasova-Höhlein

Patterns

Partial DischargesElectrical Discharges Thermal Problem

Page 24: DGA Methoden Der Zukunft

Page 24 May 2012© Siemens AG

Energy SectorIvanka Atanasova-Höhlein

MSS Scheme

22130Local overheating and partial discharge22111Local overheating and discharge22/3101Local overheating over 1000 ºC22100Local overheating from 300 ºC to 1000 ºC21000Local overheating up to 300 ºC0n.i.031Partial discharge with low energy0n.i.031Partial discharge with high energy12/3122Discharge of low energy12/3112Discharge of high energy00000Normal ageing of insultans

Number sequencesDiagnosis23132! 10.0031223.0 to < 10.0121111.0 to < 3.0110010.3 to < 1.010000<0.3

[CO2][CO]

[C2H4][C3H6]

[C2H4][C2H6]

[H2][CH4]

[C2H2][C2H6]

Ratio numbersRatio ranges

n.i. = not indicative

Page 25: DGA Methoden Der Zukunft

Page 25 May 2012© Siemens AG

Energy SectorIvanka Atanasova-Höhlein

IEC Scheme

Page 26: DGA Methoden Der Zukunft

Page 26 May 2012© Siemens AG

Energy SectorIvanka Atanasova-Höhlein

In case of quotient information it must be clear, that quotientsare only representative, if following values of the fault gases(in ppm) are exceeded:

C2H2 ! 1

H2 ! 15

" [CXHY] x=1;2;3 ! 50

CO ! 80

CO2 ! 200

Page 27: DGA Methoden Der Zukunft

Page 27 May 2012© Siemens AG

Energy SectorIvanka Atanasova-Höhlein

MSS-Code 00120

N2

O2

CO2

COC3H6

C3H8

C2H2

C2H4

C2H6

CH4

H2

61662Nitrogen18222Oxygen1903Carbon dioxide

253Carbon monoxide4824Propylene

401Propane57Acetylene

8323Ethylene2013Ethane8008Methane1967Hydrogen

ppmFault gas

DGAExample – thermal Problem

Page 28: DGA Methoden Der Zukunft

Page 28 May 2012© Siemens AG

Energy SectorIvanka Atanasova-Höhlein

N2

O2

CO2

COC3H6

C3H8

C2H2

C2H4

C2H6

CH4

H2

58084Nitrogen11805Oxygen6158Carbon dioxide1047Carbon monoxide1012Propylene

83Propane25Acetylene

1726Ethylene295Ethane

1041Methane537Hydrogen

ppmFault gas

MSS-Code 00120 Manufacturing year 1970360 MVACarbon deposits on PLTC Contacts

Page 29: DGA Methoden Der Zukunft

Page 29 May 2012© Siemens AG

Energy SectorIvanka Atanasova-Höhlein

N2

O2

CO2

COC3H6

C3H8

C2H2

C2H4

C2H6

CH4

H2

44120Nitrogen6743Oxygen2431Carbon dioxide1196Carbon monoxide1320Propylene

58Propane8236Acetylene2813Ethylene

243Ethane1758Methane4973Hydrogen

ppmFault gas

Gas-in-Oil AnalysisTurn-to-Turn Fa

MSS-Code 21121

Page 30: DGA Methoden Der Zukunft

Page 30 May 2012© Siemens AG

Energy SectorIvanka Atanasova-Höhlein

CO2

COC2H2

C2H4

C2H6

CH4

H2

995Carbon dioxide450Carbon monoxide

4Acetylene2187Ethylene

703Ethane2481Methane1060Hydrogen

ppmFault gas

DGAThermal Problem with Partial Discharges

MSS-Code 00101 Manufacturing year 1991234 MVA, 330 kVDefective welding joint

Page 31: DGA Methoden Der Zukunft

Page 31 May 2012© Siemens AG

Energy SectorIvanka Atanasova-Höhlein

N2

O2

CO2

COC3H6

C3H8

C2H2

C2H4

C2H6

CH4

H2

23700Nitrogen5180Oxygen

222Carbon dioxide67Carbon monoxide

< 1Propylene< 1Propane< 1Acetylene< 1Ethylene< 1Ethane

1Methane488Hydrogen

ppmFault gas

DGACatalytical Effects

MSS-Code ?3??0 Manufacturing year 1977Closed type Color 0,5 / Acidity 0,01

Page 32: DGA Methoden Der Zukunft

Page 32 May 2012© Siemens AG

Energy SectorIvanka Atanasova-Höhlein

N2

O2

CO2

COC3H6

C3H8

C2H2

C2H4

C2H6

CH4

H2

52000Nitrogen24600Oxygen

1920Carbon dioxide143Carbon monoxide50Propylene

5Propane288Acetylene81Ethylene

5Ethane25Methane

128HydrogenppmFault gas

DGAUntight OLTC

MSS-Code 22122

Page 33: DGA Methoden Der Zukunft

Page 33 May 2012© Siemens AG

Energy SectorIvanka Atanasova-Höhlein

Ratios

Absolute Values

Gas increase

rates

Trend

DGADiagnostic Importance in Service

Page 34: DGA Methoden Der Zukunft

Page 34 May 2012© Siemens AG

Energy SectorIvanka Atanasova-Höhlein

IEC 60599 (VDE 0370-7)

60"

280

CommunicatingOLTC

2"20

No OLTC

2800"

14000

400"

600

20"90

60"

280

30"

130

50"

150All transformers

CO2COC2H6C2H4CH4H2C2H2

Absolute Values

Page 35: DGA Methoden Der Zukunft

Page 35 May 2012© Siemens AG

Energy SectorIvanka Atanasova-Höhlein

a) Eliminates the effect of the oil volume

b) Eliminates some effects of sampling

c) Especially interesting is the ratio formation for faultgases which exhibit similar solubilities, but theirdevelopment is temperature dependent –e. g. the thermodynamic considerations of Halstead.

Ratios

Page 36: DGA Methoden Der Zukunft

Page 36 May 2012© Siemens AG

Energy SectorIvanka Atanasova-Höhlein

Thermodynamcal considerations of Halstead

Page 37: DGA Methoden Der Zukunft

Page 37 May 2012© Siemens AG

Energy SectorIvanka Atanasova-Höhlein

272,90,250,400,330,360,01Alltransformers

CO2COC2H6C2H4CH4H2C2H2

Gas Increase Rates –information on seriousness of failure

! 90% gas increase source: Cigre TF11 in ppm/dayGas increase rates are temperature and volume dependent

Page 38: DGA Methoden Der Zukunft

Page 38 May 2012© Siemens AG

Energy SectorIvanka Atanasova-Höhlein

0

100

200

300

400

500

600

1.7.08 11.7.08 21.7.08 31.7.08 10.8.08 20.8.08 30.8.08 9.9.08

Sampling date

ppm

CO

2

0

10

20

30

40

50

60

70

80

90

100

ppm

H2,

CO

,CH

4, C

2H

4, C

2H

6, to

p oi

l (°C

)

Carbon Dioxide

Hydrogen

Methane

Carbon Monoxide

Ethane

Ethylene

top oil temp °C

Development of the Fault Gases After Two Months of On-Line Monitoring

Trend Analysis

Page 39: DGA Methoden Der Zukunft

Page 39 May 2012© Siemens AG

Energy SectorIvanka Atanasova-Höhlein

0

5

10

15

20

25

30

35

40

1.7.08 11.7.08 21.7.08 31.7.08 10.8.08 20.8.08 30.8.08 9.9.08

Sampling date

top

oil (

°C)

0

1

2

3

4

5

6

Rat

io C

2H4/C

2H6,

CH

4/H

2

Top oil Temperature (°C)

C2H4/C2H6

CH4/H2

0

5

10

15

20

25

30

35

40

1.7.08 11.7.08 21.7.08 31.7.08 10.8.08 20.8.08 30.8.08 9.9.08

Sampling date

top

oil (

°C)

0

1

2

3

4

5

6

Rat

io C

2H4/C

2H6,

CH

4/H

2

Top oil Temperature (°C)

C2H4/C2H6

CH4/H2

! Trendanalysis is important not only with absolute values,but also with the ratios.

Trend Analysis

Page 40: DGA Methoden Der Zukunft

Page 40 May 2012© Siemens AG

Energy SectorIvanka Atanasova-Höhlein

# Early failure recognition# Diagnosis is only possible with the sofisticated types – where IEC

ratios can be built

Cigre TF 15 DGA did a comparison between On-Line monitoringsystems and Off-Line analyses. The brochure is on the way.Evaluated are:" Precision" Longterm stability" RepeatabilityIn case of" Routine concentrations, d.h. 5 * Detection Limit" Low Concentrations, d. h. 2-5*Detection Limit

On-Line Monitoring

Page 41: DGA Methoden Der Zukunft

Page 41 May 2012© Siemens AG

Energy SectorIvanka Atanasova-Höhlein

# Necessary in case a problem has been identified

# Often, however, difficult to maintain

# Interfaces can lead to problems

# Able to deliver important informationin a short time

# Does not automatically lead to higher reliability

Recommendation of Cigre A2.27for On-LineMonitoring

Page 42: DGA Methoden Der Zukunft

Page 42 May 2012© Siemens AG

Energy SectorIvanka Atanasova-Höhlein

! Temperature

! Current, Voltage

! OLTC

! Oil level

! Gas-in-Öl Analysis

! Humidity in oil

! Bushings

! Acoustic Signals

! Magnetic Circuit

! Coolers

What can be measured on-line:

Page 43: DGA Methoden Der Zukunft

Page 43 May 2012© Siemens AG

Energy SectorIvanka Atanasova-Höhlein

More Data does not mean automaticallymore Information

Data Explosion1) (Total Exabytes)

1) Exa = 1016 = 10 Mil of Billions

2002 2003 2004 2005 2006 2007

200

0

50

100

150

Page 44: DGA Methoden Der Zukunft

Page 44 May 2012© Siemens AG

Energy SectorIvanka Atanasova-Höhlein

Transformer Failure Rate

Failure atComissioning

Constant failure rate

Failure becauseof aging

$ Failure rate

Aging / years %

Page 45: DGA Methoden Der Zukunft

Page 45 May 2012© Siemens AG

Energy SectorIvanka Atanasova-Höhlein

# Further development of the On-Line analysiswith decision criteria

# Gas-in-oil analysis in OLTC

# Gas-in-oil analysis in alternative insulation fluidsand high temperature insulating materials

Future Developments

Page 46: DGA Methoden Der Zukunft

© Siemens AG

Thank youfor your attention!