Development of a radiophotoluminescent glass plate detector for small field dosimetry Araki F....

22
Development of a radiophotoluminesce nt glass plate detector for small fi eld dosimetry Araki F. ([email protected] c.jp) Kumamoto University School of Medical S ciences Ikegami T. and Ishidoya T. Asahi Techno Glass Co. Moribe N., Shimonobou T. and Yamas hita Y. Kumamoto University Hospital KUSM KUSM 1

Transcript of Development of a radiophotoluminescent glass plate detector for small field dosimetry Araki F....

Page 1: Development of a radiophotoluminescent glass plate detector for small field dosimetry Araki F. (f_araki@hs.kumamoto-u.ac.jp) Kumamoto University School.

Development of a radiophotoluminescent glass plate detector for small field dosimetry

Araki F. ([email protected])Kumamoto University School of Medical Sciences

Ikegami T. and Ishidoya T. Asahi Techno Glass Co.

Moribe N., Shimonobou T. and Yamashita Y.

Kumamoto University Hospital

Miyazawa M.R-Tech Co.KUSMKUSM

1

Page 2: Development of a radiophotoluminescent glass plate detector for small field dosimetry Araki F. (f_araki@hs.kumamoto-u.ac.jp) Kumamoto University School.

BACKGROUND

• The small field measurements are generally performed using a small active volume diode detector, a small thermoluminescent dosimeter (TLD) or a film dosimeter.

• Recently, a radiophotoluminescent (RPL) glass rod dosimeter (GRD) has also become commercially available.

• However, the output factor measurements of small fields are generally tedious and difficult due to the sharp radial dose fall-off, the small size of the dose plateau region and the lack of lateral electron equilibrium. 2

KUSMKUSM

Page 3: Development of a radiophotoluminescent glass plate detector for small field dosimetry Araki F. (f_araki@hs.kumamoto-u.ac.jp) Kumamoto University School.

• We have been developed a radiophotoluminescent (RPL) glass plate dosimeter (GPD) as a new device for small field dosimetry.

• The GPD is able to measure both the output factor and the dose distribution simultaneously. This device has an advantage over a film dosimeter and other detectors.

3KUSMKUSM

BACKGROUND

Page 4: Development of a radiophotoluminescent glass plate detector for small field dosimetry Araki F. (f_araki@hs.kumamoto-u.ac.jp) Kumamoto University School.

PURPOSE

To estimate the usefulness of GPD developed as a new device for the dosimetry of small radiosurgery fields.

4KUSMKUSM

Page 5: Development of a radiophotoluminescent glass plate detector for small field dosimetry Araki F. (f_araki@hs.kumamoto-u.ac.jp) Kumamoto University School.

• The dose distribution measured with GPD is compared to those of film dosimeters for 2, 5, 9 and 15 mm circular collimators created by a linear accelerator-based radiosurgery system.

• The GPD output factors are evaluated by comparing them to various detectors, including a p-type silicon diode detector, a diamond detector, GRD and an ion chamber for small circular collimators.

• The results measured with GPD are also compared to those of Monte Carlo simulations.

METHODS

5KUSMKUSM

Page 6: Development of a radiophotoluminescent glass plate detector for small field dosimetry Araki F. (f_araki@hs.kumamoto-u.ac.jp) Kumamoto University School.

MATERIALS

RPL glass dosimeter (=2.61, Z =12.04)

Glass plate dosimeter:

30 mm square×1 mm thickness

Glass rod dosimeter (GD-301) :

1.5 mm diameter×8.5 mm length

Film dosimeter

Kodac X-Omat V (XV-2)

GAFCROMIC XR type R 6KUSMKUSM

Page 7: Development of a radiophotoluminescent glass plate detector for small field dosimetry Araki F. (f_araki@hs.kumamoto-u.ac.jp) Kumamoto University School.

Hi-pSi stereotactic field detector (SFD)   0.6 mm diameter×0.06 mm thickness

PTW diamond detector 3.05 mm diameter×0.26 mm thickness

PTW 31002, 0.125 cm3 ion chamber   5.5 mm diameter×6.5 mm length

7KUSMKUSM

MATERIALS

Page 8: Development of a radiophotoluminescent glass plate detector for small field dosimetry Araki F. (f_araki@hs.kumamoto-u.ac.jp) Kumamoto University School.

Incident electron histories to target 5 x 5 cm2 field size 4 MV: 5 x 108

10 MV: 1 x 108

Voxel sizes for DOSXYZ 1 mm x 1 mm x 5 mm

Circular collimator sizes 20 mm, 15 mm, 9 mm, 5 mm, 2 mm

Primary collimator

Flattening filter

Monitor chamber

Mirror

Jaws

Circular collimator

Water phantom

Target

Phasespace 1

Phasespace 2

Electron beam

Monte Carlo modeling for a Varian Clinac 2100C accelerator using EGSnrc code BEAMnrc

KUSMKUSM8

Page 9: Development of a radiophotoluminescent glass plate detector for small field dosimetry Araki F. (f_araki@hs.kumamoto-u.ac.jp) Kumamoto University School.

AE=ECUT=0.700 MeVAP=PCUT=0.010 MeVPhoton interaction forcing: offRayleigh scattering: offVariance reduction technique Electron range rejection: 4 MV target: ESAVE=0.7 MeV other CMs: ESAVE=1.0 MeV 10 MV target: ESAVE=0.7 MeV other CMs: ESAVE=2.0 MeV Selective bremsstrahlung splitting (SBS):

Nmin=40, Nmax=400 Russian roulette of secondary electron: off

Calculation parameters for simulating 4 and 10 MV photon beams

9KUSMKUSM

Page 10: Development of a radiophotoluminescent glass plate detector for small field dosimetry Araki F. (f_araki@hs.kumamoto-u.ac.jp) Kumamoto University School.

Incident electron for 4 MV photon beam

Energy and spread: 4.2 MeV and FWHM of 3%

Radial intensity distribution: FWHM of 1.2 mm

Incident electron for 10 MV photon beam

Energy and spread: 10.3 MeV and FWHM of 3%

Radial intensity distribution: FWHM of 1.5 mm

10KUSMKUSM

Parameters of the electron beam incident on the target for 4 and 10 MV photon beams

Page 11: Development of a radiophotoluminescent glass plate detector for small field dosimetry Araki F. (f_araki@hs.kumamoto-u.ac.jp) Kumamoto University School.

Block diagram of a radiophotoluminescence (RPL) readout system

11KUSKUSMM

Page 12: Development of a radiophotoluminescent glass plate detector for small field dosimetry Araki F. (f_araki@hs.kumamoto-u.ac.jp) Kumamoto University School.

KUSMKUSM

0.00.10.20.30.40.50.60.70.80.91.01.1

- 15 - 10 - 5 0 5 10 15

X- axis (mm)

Rel

ativ

e do

se

GPDXV- IIGAF XREGSnrc

4 MV, 15 mm, depth=5 cm

0.00.10.20.30.40.50.60.70.80.91.01.1

- 15 - 10 - 5 0 5 10 15

X- axis (mm)

Rel

ativ

e do

se

GPDXV- IIGAF XREGSnrc

10 MV, 15 mm, depth=5 cm

12

Comparison of dose profiles between GPD and film dosimeters and EGSnrc

Page 13: Development of a radiophotoluminescent glass plate detector for small field dosimetry Araki F. (f_araki@hs.kumamoto-u.ac.jp) Kumamoto University School.

KUSMKUSM

0.00.10.20.30.40.50.60.70.80.91.01.1

- 12 - 8 - 4 0 4 8 12

X- axis (mm)

Rel

ativ

e do

se

GPDXV- IIGAF XREGSnrc

4 MV, 9 mm, depth=5 cm

0.00.10.20.30.40.50.60.70.80.91.01.1

- 12 - 8 - 4 0 4 8 12X- axis (mm)

Rel

ativ

e do

se

GPDXV- IIGAF XREGSnrc

10 MV, 9 mm, depth=5 cm

13

Comparison of dose profiles between GPD and film dosimeters and EGSnrc

Page 14: Development of a radiophotoluminescent glass plate detector for small field dosimetry Araki F. (f_araki@hs.kumamoto-u.ac.jp) Kumamoto University School.

KUSMKUSM

0.00.10.20.30.40.50.60.70.80.91.01.1

- 8 - 6 - 4 - 2 0 2 4 6 8

X- axis (mm)

Rel

ativ

e do

se

GPDXV- IIGAF XREGSnrc

4 MV, 5 mm, depth=5 cm

0.00.10.20.30.40.50.60.70.80.91.01.1

- 8 - 6 - 4 - 2 0 2 4 6 8

X- axis (mm)

Rel

ativ

e do

se

GPDXV- IIGAF XREGSnrc

10 MV, 5 mm, depth=5 cm

14

Comparison of dose profiles between GPD and film dosimeters and EGSnrc

Page 15: Development of a radiophotoluminescent glass plate detector for small field dosimetry Araki F. (f_araki@hs.kumamoto-u.ac.jp) Kumamoto University School.

KUSMKUSM

0.00.10.20.30.40.50.60.70.80.91.01.1

- 3 - 2 - 1 0 1 2 3

X- axis (mm)

Rel

ativ

e do

se

GPDXV- IIGAF XREGSnrc

10 MV, 2 mm, depth=5 cm

0.00.10.20.30.40.50.60.70.80.91.01.1

- 3 - 2 - 1 0 1 2 3

X- axis (mm)

Rel

ativ

e do

se

GPDXV- IIGAF XREGSnrc

4 MV, 2 mm, depth=5 cm

15

Comparison of dose profiles between GPD and film dosimeters and EGSnrc

Page 16: Development of a radiophotoluminescent glass plate detector for small field dosimetry Araki F. (f_araki@hs.kumamoto-u.ac.jp) Kumamoto University School.

Comparison of energy dependence between GPD and other detectors

KUSMKUSM16

60Co 4 MV 10 MV

SFD 1.000 1.006 0.944

GRD 1.000 1.006 0.987

Diamond 1.000 0.969 0.954

GPD 1.000 1.008 1.015

Page 17: Development of a radiophotoluminescent glass plate detector for small field dosimetry Araki F. (f_araki@hs.kumamoto-u.ac.jp) Kumamoto University School.

Comparison of o output factors between GPD and other detectors

KUSMKUSM

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 5 10 15 20 25

Circular collimator size (mm)

Ou

tpu

t fa

cto

r

Ion chamberSFDGRDDiamondGPDEGSnrc

4 MV

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 5 10 15 20 25

Circular collimator size (mm)

Out

put f

acto

r

Ion chamberSFDGRDDiamondGPDEGSnrc

10 MV

17

Output factors normalized to a 10 x 10 cm2 field

Page 18: Development of a radiophotoluminescent glass plate detector for small field dosimetry Araki F. (f_araki@hs.kumamoto-u.ac.jp) Kumamoto University School.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 5 10 15 20 25

Circular collimator size (mm)

Ou

tpu

t fa

cto

r

Ion chamberSFDGRDDiamondGPDEGSnrc

4 MV

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 5 10 15 20

Circular collimator size (mm)

Ou

tpu

t fa

cto

r

Ion chamberSFDGRDDiamondGPDEGSnrc

4 MV

Energy dependence for a SFD diode detector

18

Output factors normalizedto a 10 x 10 cm2 field

Output factors normalizedto a 20 mm field

KUSMKUSM

Page 19: Development of a radiophotoluminescent glass plate detector for small field dosimetry Araki F. (f_araki@hs.kumamoto-u.ac.jp) Kumamoto University School.

RESULT

• The GRD profiles are found to coincide well with the dose distribution for Kodak XV2 film and GAFCHROMIC XR film dosimeters and Monte Carlo simulations in 4 and 10 MV x-ray beams.

• The GPD response shows little energy dependence in photon energies of a 60Co beam, 4 MV (TPR20,10=0.617) and 10 MV (TPR20,10=0.744) x-ray beams.

• The output factors measured with GPD are in agreement with the diode detector and the GRD with a small active volume, and Monte Carlo simulations. 19

KUSMKUSM

Page 20: Development of a radiophotoluminescent glass plate detector for small field dosimetry Araki F. (f_araki@hs.kumamoto-u.ac.jp) Kumamoto University School.

DISCUSSION

• The GPD system has an advantage over a film dosimeter and other detectors, because it is able to measure both the absolute dose and the dose profiles simultaneously.

• The GRD is expected as a new device for small field and IMRT dosimetry.

KUSMKUSM20

Page 21: Development of a radiophotoluminescent glass plate detector for small field dosimetry Araki F. (f_araki@hs.kumamoto-u.ac.jp) Kumamoto University School.

CONCLUSIONS

KUSMKUSM

• It is found that GPD is a very useful detector for small field dosimetry, in particular, less than 10 mm circular fields.

• Another purpose of this work is to apply more wide glass plate detectors to IMRT dosimetry.

21

Page 22: Development of a radiophotoluminescent glass plate detector for small field dosimetry Araki F. (f_araki@hs.kumamoto-u.ac.jp) Kumamoto University School.

• We would like to thank Varian Oncology Systems for providing detailed treatment head designs to simulate a Varian Clinac 2100C accelerator.

ACKNOWLEDGMENTS

KUSMKUSM22