Deutsches Zentrum für Luft- und Raumfahrt e.V.

23
From Sunlight to Electricity Deutsches Zentrum für Luft- und Raumfahrt e.V. German Aerospace Center Institute of Technical Thermodynamics Stuttgart, Germany http://www.dlr.de/tt

Transcript of Deutsches Zentrum für Luft- und Raumfahrt e.V.

Page 1: Deutsches Zentrum für Luft- und Raumfahrt e.V.

From Sunlight to Electricity

Deutsches Zentrum für Luft- und Raumfahrt e.V.

German Aerospace Center

Institute of Technical Thermodynamics

Stuttgart, Germany

http://www.dlr.de/tt

Page 2: Deutsches Zentrum für Luft- und Raumfahrt e.V.

Parabolic TroughConcentrator

From Sunlight to Electricity

Step 1:

Sunlight is Concentrated by Parabolic Mirrors that ContinuouslyFollow the Sun‘s Position on the Sky

Reflector

Absorber Tube

Sun Tracking

Solar Radiation

Page 3: Deutsches Zentrum für Luft- und Raumfahrt e.V.

From Sunlight to Electricity

Step 2:

The Concentrated Solar Heat is Absorbed by a Steel Tube andTransported away by a Fluid that is Circulated within the Tube

Heat Collecting Element withAbsorber Tube and EvacuatedGlass Tube

1 Glass-Metal-Connection 6 Steel Tube2 Glass Envelope 7 Expansion Bellows3 Anti-Reflective Coating 8 Evacuated Space4, 5 Getter 9 Solar Coating

Page 4: Deutsches Zentrum für Luft- und Raumfahrt e.V.

Parabolic Trough Collector Field

From Sunlight to Electricity

Step 3:

The Hot Fluid is Gathered from a Large Field of Solar ConcentratingCollectors and then is Pumped to a Central Heat Exchanger

Page 5: Deutsches Zentrum für Luft- und Raumfahrt e.V.

From Sunlight to Electricity

Step 4:

Within the Heat Exchanger, the Hot Fluid Generates SuperheatedSteam with over 100 bar Pressure

Solar Steam Generator

Page 6: Deutsches Zentrum für Luft- und Raumfahrt e.V.

From Sunlight to Electricity

Step 5:

The Superheated Steam Activates the Turbine and the ElectricityGenerator of a Steam Cycle Power Plant

Page 7: Deutsches Zentrum für Luft- und Raumfahrt e.V.

From Sunlight to Electricity

Option 1:

Solar (only) Electricity Generating System

Thermal PowerCycle

ConcentratingSolar Collector

Electricity

Page 8: Deutsches Zentrum für Luft- und Raumfahrt e.V.

From Sunlight to Electricity

Option 2:

Hybrid (solar & fuel) Electricity Generating System

Thermal PowerCycle

ConcentratingSolar Collector

Electricity

Fuel,Waste,Biomass,Hydrogen

Page 9: Deutsches Zentrum für Luft- und Raumfahrt e.V.

From Sunlight to Electricity

Option 3:

Solar/Hybrid Electricity Generating Systemwith Thermal Energy Storage

Thermal PowerCycle

ConcentratingSolar Collector

ThermalEnergyStorage

Electricity

Fuel

Page 10: Deutsches Zentrum für Luft- und Raumfahrt e.V.

From Sunlight to Electricity

Option 4:

Solar/Hybrid Co-Generation of Electricity and Heatfor Seawater Desalination

Thermal Co-Generation

Cycle

ConcentratingSolar Collector

ThermalEnergyStorage

Electricity

DesaltedWater

Fuel

ThermalDesalination

Plant

Page 11: Deutsches Zentrum für Luft- und Raumfahrt e.V.

From Sunlight to Electricity

Option 5:

Solar/Hybrid Co-Generation of Electricity and Heatfor District Cooling

Thermal Co-Generation

Cycle

ConcentratingSolar Collector

ThermalEnergyStorage

Electricity

Cold WaterDistrict Grid

Fuel

VaporAbsorption

Chiller

Page 12: Deutsches Zentrum für Luft- und Raumfahrt e.V.

From Sunlight to Electricity

Operating Experience:

Parabolic Trough Plants in Kramer Junction, Dagget and HarperLake, California

354 MWe Installed Capacity

Commercial Operation since 1986

More than 1 Billion US$ Turnover

Steam at 390 °C, 100 bar

Page 13: Deutsches Zentrum für Luft- und Raumfahrt e.V.

From Sunlight to Electricity

Recent Highlights:

Direct Steam Parabolic Trough Demonstrationat Plataforma Solar de Almeria, Spain

Demonstration of DirectSuperheated Steam Generationin Parabolic Trough Collectors

Steam at 400 °C, 100 bar(550 °C, 120 bar projected)

Page 14: Deutsches Zentrum für Luft- und Raumfahrt e.V.

From Sunlight to Electricity

Recent Highlights:

Demonstration of Pressurized Air Receiver for Gas TurbineOperation at Plataforma Solar de Almeria, Spain

Demonstration of PressurizedVolumetric Air Receiver for GasTurbines and Combined Cycles

Air at 850 °C, 15 bar(1200 °C, 20 bar projected)

Page 15: Deutsches Zentrum für Luft- und Raumfahrt e.V.

From Sunlight to Electricity

Recent Highlights:

NEVAG‘s Foldable Parabolic Trough Collector „Synthesis Solar“

Less Wind Load,Automatic Washing andWater Recycling inClosed Position

Page 16: Deutsches Zentrum für Luft- und Raumfahrt e.V.

From Sunlight to Electricity

Recent Highlights:

Demonstration of Solarmundo‘s Advanced Solar ConcentratingSystem at Liege, Belgium

Demonstration of Direct SteamGeneration in Fresnel Collector

Steam at 500 °C, 100 barprojected

Page 17: Deutsches Zentrum für Luft- und Raumfahrt e.V.

From Sunlight to Electricity

Solar Thermal Power Projects:

From Basic Information to Commissioning

Project Definition Engineering, Procurement,Construction

Operation

3 M first year second year third year 30 - 40 yearsBasic Project InformationProject AssessmentProject DefinitionPurchase of LandEngineeringProcurementCivil WorksConstructionCommissioningOperation and Maintenance

Page 18: Deutsches Zentrum für Luft- und Raumfahrt e.V.

From Sunlight to Electricity

Project Assessment Phase

Gathering Basic Data and Comparing Investment Opportunities

Basic Project Information

Finance of Project Studies

Solar Resource Assessment

Site Ranking

Comparison of ProjectAlternatives

Site Ranking and SolarEnergy Resource inMorocco

low

high

Page 19: Deutsches Zentrum für Luft- und Raumfahrt e.V.

From Sunlight to Electricity

Project Definition Phase

In-Depth Studies and Decisions on Investment, Technology, Site,Project Consortium and Scheme of Finance

Project Company

Licencing Negotiations

Site Selection

Performance Model

EPC Contract

Project Consortium

Dearator

Gas

Gas

Process SteamConsumer

Condensate Return+ Make-up Water

P100% = 13 MWe

up to 50 t/h (33 MWth)GT 10P100%= 24 MWe

Solar SteamGenerating

System

Gas TurbineGenerator

Steam TurbineGenerator

Condenser +Cooling Tower

Heat RecoveryBoiler

1 3 5 7 9 11 13 15 17 19 21 23

JanFebMarAprMaiJunJulAugSepOctNovDec

n. hour

month

Monthly Mean Hourly Power Supply in MW, 50 MW SEGS, Dori

50-55

45-50

40-45

35-40

30-35

25-30

20-25

15-20

10-15

5-10

0-5

Page 20: Deutsches Zentrum für Luft- und Raumfahrt e.V.

From Sunlight to Electricity

Engineering, Procurement & Construction Phase

Finance, Insurance and Realisationof Power Plant Construction Phase

Construction Loan

Detailed Engineering

Procurement of Equipment

Civil Works & Construction

Commissioning & GridSynchronisation

Page 21: Deutsches Zentrum für Luft- und Raumfahrt e.V.

From Sunlight to Electricity

Operation Phase

Electricity, Desalted Water and District Coolingfrom a Regional Resource with no Pollution or Cost Escalation

Public Utility

Independent Power Producer

Power Purchase Agreement

Acceptable Rate of Return

Build, Own, Operate, Transfer

Page 22: Deutsches Zentrum für Luft- und Raumfahrt e.V.

From Sunlight to Electricity

Economics:

Fuel Resources are replaced by Capital Goods.This means higher Investment.

Investment Structure ofPower Plants with 200 MWCapacity and 190,000 m³/dSeawater Desalination

0

200

400

600

800

1000

1200

Inve

stm

ent

M€

FuelPlant

25 %Solar

80 %Solar

Desalination PlantPower CycleEnergy StorageSolar Field

Page 23: Deutsches Zentrum für Luft- und Raumfahrt e.V.

From Sunlight to Electricity

Economics:

Fuel Resources are replaced by Capital Goods.This means higher Investment and Capital Cost,but lower Fuel Cost and Cost Escalation

Annual Balance ofPower Plants with 200 MWCapacity and 190,000 m³/dSeawater Desalination

Cost:Electricity 0.055 €/kWhWater 1.50 €/m³Fuel Oil 0.80 €/gal

020406080

100120140160180

Bal

ance

M€/

Y

Fuel P

lant

25 % Sola

r

80 % Sola

r

Revenue

Rev. WaterRev. ElectricityFuel CostO&M CostCapital Cost

910

10InterestRate in %/a

CF = 85 %