Deuteron Polarimetry at COSY

16
Deuteron Polarimetry at COSY David Chiladze IHEPI, Tbilisi State University IKP, Forschungszentrum Jülich

description

Deuteron Polarimetry at COSY. David Chiladze IHEPI, Tbilisi State University IKP, Forschungszentrum Jülich. Outline. Introduction Experimental tools Beam polarimetry Summary & outlook. Introduction: NN Scattering. Characterization requires precise data for P hase S hift A nalyses - PowerPoint PPT Presentation

Transcript of Deuteron Polarimetry at COSY

Page 1: Deuteron Polarimetry at COSY

Deuteron Polarimetry at COSY

David ChiladzeIHEPI, Tbilisi State University

IKP, Forschungszentrum Jülich

Page 2: Deuteron Polarimetry at COSY

2.10.2006 SPIN 2006 2

Outline

Introduction

Experimental tools

Beam polarimetry

Summary & outlook

Page 3: Deuteron Polarimetry at COSY

2.10.2006 SPIN 2006 3

Introduction: NN Scattering

Characterization requires precise data

for Phase Shift Analyses

Current experimental status of NN

data:

pp system (I=1) well-known up to 2.5

GeV (EDDA): Majority of data on

unpolarized, single, and double

polarized observables

np system (I=0) poorly known →

ANKE will provide high-quality data in

forward/backward region Ayy

d/d

np forward

np charge-exchange

np forward

np charge-exchange

ANKErange

ANKErange

Page 4: Deuteron Polarimetry at COSY

2.10.2006 SPIN 2006 4

Introduction: Motivation

Double polarized experiments at ANKE

np spin physics

Single polarized experiment

Polarized charge-exchange reaction dp→(2p)n

Direct reconstruction of the spin-dependent np amplitudes

via measurement of and T20 & T22 (Tn = 0.6 – 1.15 GeV)

Aim of first measurement (Td = 1.2 GeV)

Feasibility of the experiment

Polarimetry standards at ANKE

dt

d

(Proposal #152, “Spin physics from COSY to FAIR”)

Page 5: Deuteron Polarimetry at COSY

2.10.2006 SPIN 2006 5

Experimental tools: COSY

Polarized and unpolarized

proton and deuteron source

Protons up to 2.88 GeV

Deuterons up to 2.23 GeV

Internal and external

experiments

ANKEANKE

EDDAEDDA

LEPLEP

Page 6: Deuteron Polarimetry at COSY

2.10.2006 SPIN 2006 6

L E P

E D D A

Experimental tools: LEP & EDDA

dp → dp

Td = 270 MeV

Ay, Ayy (65° – 95°)c.m.

dC → dC

Td = 75.6 MeV

Ay(40°) = 0.61 ± 0.04S.Kato et al.

Nucl.Inst.Meth. A 238, 453 (1985)

E.J. Stephenson

Deuteron Polarimeter for EDM Search.

K. Sekiguchi et al.

Phys.Rev. C 65, 034003 (2002)

→Spinmode

Pz ideal Pzz idealIntensity[I0]

0 0 0 11 -2/3 0 12 +1/3 +1 13 -1/3 -1 14 +1/2 -1/2 2/35 -1 +1 2/36 +1 +1 2/37 -1/2 -1/2 2/3

Pz ≈ 75 % Pzz ≈ 60 %

Slope = 1.05 ± 0.06Offset = 0.04 ± 0.01

Page 7: Deuteron Polarimetry at COSY

2.10.2006 SPIN 2006 7

Experimental tools: ANKE setup

Td = 1170 MeV

dp → dp

dp → 3Heπ0

dp → dpsp π0

dp → (pp)n

Page 8: Deuteron Polarimetry at COSY

2.10.2006 SPIN 2006 8

Beam polarimetry: Reaction identification

Low branch High branch

dp → dp

dp → dpsp π0 dp → (pp)n

dp → 3Heπ0

mπ0

Page 9: Deuteron Polarimetry at COSY

2.10.2006 SPIN 2006 9

SAID

ANKE

Beam polarimetry: Ay, Ayy measurement

(Tn = 585 MeV)

dp → dp

dp → 3Heπ0

np → dπ0

dp → (pp)n

D. Chiladze et al. Phys. Rev. STAB 9, 050101 (2006) Depolarization less then 4%

ANKEANKE

ANKE

Page 10: Deuteron Polarimetry at COSY

2.10.2006 SPIN 2006 10

Beam polarimetry: CE reaction

dp→(pp)1S0 n

2222

2220 ,,,, TTdqd

Axx (T22)

Ayy (T20)

Td = 1170 MeV

Transition from deuteron to (pp)1S0:

pn np spin flip

Obtain np elementary spin-dependent amplitudes:

Results: Method works at Tn = 585 MeV Application to “uncharted territory”

Next step: Double polarized → Cy,y, Cx,x

(using PIT see talk K. Grigoriev)

Cy,y

Cx,x

D.Chiladze et al. Phys. Let. B 637, 170 (2006)

Page 11: Deuteron Polarimetry at COSY

2.10.2006 SPIN 2006 11

Beam polarimetry: Polarization export

ResultsResults

y I = -0.213 ± 0.005

y III = -0.216 ± 0.006

yy I = 0.057 ± 0.003

yy III = 0.059 ± 0.003

Polarized deuteron beam at 3 energies

Calibration of the beam polarization of arbitrary energy

Super cycle: Td = 1.2 GeV, 1.8 GeV.

Time

II

I III

1.2 GeV 1.2 GeV

1.8 GeV

Energy rampingEnergy ramping y I = y III

yy I = yy III

Page 12: Deuteron Polarimetry at COSY

2.10.2006 SPIN 2006 12

Summary & Outlook

Polarisation standard at 1.2 GeV

Analysing power measurement

Polarisation export technique

Higher beam energy (up to 2.3 GeV)

Double polarized dp→(2p)n reaction→→

Page 13: Deuteron Polarimetry at COSY

2.10.2006 SPIN 2006 13

LEP (Td = 76 MeV) dC → dC

EDDA (Td = 270 MeV) dp → dp

ANKE (Td = 1170 MeV) dp → dp dp → 3Heπ0

dp → dpsp π0

dp → (pp)n

RL

RL

yz NN

NN

A

1

3

2P

PzEDDA = (0.95±0.02)Pz

LEP + (0.04±0.01)

Page 14: Deuteron Polarimetry at COSY

2.10.2006 SPIN 2006 14

Experimental facility

LEP (Td = 76 MeV)

EDDA (Td = 270 MeV)

ANKE (Td = 1170

MeV)

ANKEANKE

EDDAEDDA

LEPLEP

Spinmode

Pz ideal Pzz idealIntensity[I0]

0 0 0 11 -2/3 0 12 +1/3 +1 13 -1/3 -1 14 +1/2 -1/2 2/35 -1 +1 2/36 +1 +1 2/37 -1/2 -1/2 2/3

Page 15: Deuteron Polarimetry at COSY

2.10.2006 SPIN 2006 15

Introduction: np elastic (small angle)

d→

↑ n

↑ p

↑ psp

p

p→

D

dp observables: d/d, T20, T22, Ay,y, ...

np observables: Ay, Ayy

d beam: up to 1.1 GeV for npd target: up to 2.8 GeV for pn

quasi-free

pd→psp (pn)→ →dp→psp (np)→→

np forward

deuteron beam:

deuteron target:

n

Page 16: Deuteron Polarimetry at COSY

2.10.2006 SPIN 2006 16

Introduction: np elastic (large angle)

↓ p

n

dp observables: d/d, T20, T22, Ay,y, ...

np observables: Ay, Ayy, Dyy, Axy,y, ...

quasi-free

dp→(pp)1S0n

→→

pd→(pp)1S0n→→

d→

↑ n

↑ p

↑ psp

p→

D

np charge-exchange

deuteron beam:

deuteron target:

d beam: up to 1.1 GeV for npd target: up to 2.8 GeV for pn