Determining an observer’s latitude and longitude: A primer

10
Determining an observer’s latitude and longitude: A primer

description

Determining an observer’s latitude and longitude: A primer. Longitude. Iowa City 91.5 W. Longitude lines At equator: 360 o = 2 R e  1 o = 111 km (~69 miles) At latitude : 1 o = 111 km · cos( ) ~ 83 km (~51 miles) at Iowa City ( = 41.5 o) Note: - PowerPoint PPT Presentation

Transcript of Determining an observer’s latitude and longitude: A primer

Page 1: Determining an observer’s latitude and longitude: A primer

Determining an observer’s latitude and longitude: A primer

Page 2: Determining an observer’s latitude and longitude: A primer

Longitude

Longitude lines • At equator: 360o = 2Re 1o = 111 km (~69 miles)• At latitude : 1o = 111 km · cos() ~ 83 km (~51 miles) at Iowa City ( = 41.5o)

• Note:• A statute mile (‘mile’) is 1.61 km or 5,280’• A nautical mile is distance subtended by 1 arcminute in latitude (=1’ longitude at equator), and is 6076’ (1.15 statute miles)

Iowa City91.5 W

Page 3: Determining an observer’s latitude and longitude: A primer

Latitude

Iowa City (41.5o N)

Page 4: Determining an observer’s latitude and longitude: A primer

Solar declination vs day of year

Mar 21 Sep 21

Page 5: Determining an observer’s latitude and longitude: A primer

Determining latitude using solar zenith angle, declination

ZA

Zenith

Sun

Horizon

Latitude

sun

Latitude = ZA + sun Latitude = ZA + sun

Page 6: Determining an observer’s latitude and longitude: A primer

Determining latitude using a gnomon and noon transit of the Sun

Example: At solar transit (~noon) on Sep 1 an observer measures solar zenith angle of 71.9o

What is the observer’s latitude?

El = 71.9o , so ZA = 19.1o

sun = 4.2o [Sep 1, from AA or equation]

= sun + ZA = 23.3o N

Gnomon (Greek ‘one who knows’)

Page 7: Determining an observer’s latitude and longitude: A primer

Determining longitude from UT at solar transit

λ(W ) = tobs _ transit (UT ) − tephemeris _ transit (DOY )

Example: Observe solar transit at 18:23:30 UT on Sept 18. What is observer’s longitude?

From AA (Section C) , on Sept 18, teph = 11:54:18 UT, so:

λ =18 : 23 : 30 −11 : 54 :18 = 06 : 29 :12 = 97o18 ' W

Page 8: Determining an observer’s latitude and longitude: A primer

Latitude, longitude using stars

Latitude: same as Sun, only easier- declination does not vary with day of year (but must take into account precession for accurate measurements

Longitude: Analogous to the Solar case, we obtain longitude by reference to Greenwich, in this case, the local sidereal time at Greenwich

The ‘Greenwich sidereal time’ is the local sidereal time at Greenwich, which can be determined by looking up (in the AA) the GST at midnight for the observing date (GST0, table B) and adding the UT1.0027 (to account for different rates of sidereal vs solar clocks).

Example: On June 1, 2007 an observer sees Aldebaran transit at elevation 78.2o from the southern horizon at 4:23:20 UT. Where is the observer?

λ =GST −α = GST 0 +UT ⋅1.0027 −α

Page 9: Determining an observer’s latitude and longitude: A primer

Position from stellar transit: Example

Page 10: Determining an observer’s latitude and longitude: A primer

What favorite stars do mariners use?

4 Kings: Four bright stars spaced near the celestial equator (so they can be seen on both N nd S hemispheres) Aldebaran (Taurus, winter evening) Fomalhaut (Pisces, fall evening Antares (Scorpio, summer evening) Regulus (Leo, spring evening)