Determination of thermodynamic properties of liquid Ag-In, Ag-Sb, Ag-Sn, In-Sb, Sb-Sn, Ag-In-Sb,...

27
Determination of thermodynamic properties of liquid Ag-In, Ag-Sb, Ag-Sn, In-Sb, Sb-Sn, Ag-In-Sb, Cu-In-Sn and Ag-In-Sn systems by Knudsen effusion Mass Spectrometry A. Popovic and L. Bencze* Jozef Stefan Institute, Jamova 39, SLO-1000 Ljubljana, Slovenia. *Eötvös Loránd University, Dept. of Physical Chemistry, H-1117 Budapest, Pázmány Péter sétány 1/A, Hungary
  • date post

    19-Dec-2015
  • Category

    Documents

  • view

    229
  • download

    1

Transcript of Determination of thermodynamic properties of liquid Ag-In, Ag-Sb, Ag-Sn, In-Sb, Sb-Sn, Ag-In-Sb,...

Determination of thermodynamic properties of liquid Ag-In, Ag-Sb, Ag-Sn, In-Sb, Sb-Sn, Ag-In-Sb, Cu-In-Sn

and Ag-In-Sn systems by Knudsen effusion Mass Spectrometry

A. Popovic and L. Bencze*

Jozef Stefan Institute, Jamova 39, SLO-1000 Ljubljana, Slovenia.

*Eötvös Loránd University, Dept. of Physical Chemistry, H-1117 Budapest, Pázmány Péter sétány 1/A, Hungary

The scheme of a Knudsen cell - mass spectrometer system (FZ Jülich, Germany)

< 20 KEMS laboratories over the world

ION SOURCE

The scheme of single and double the Knudsen cells.

Determination of equilibrium vapour pressure by KEMS:

iii

ij

i totj,ii

ij

totj,j a

IKTIKTp

Inghram, Chupka, 1955

where K is the (general) instrumental sensitivity constant Iij is the intensity of ion i originating from neutral species j i is the isotopic abundance of ion i

i is the multiplier gain factor of ion i (sensitivity constant of the detector for ion i) - in multiplier current measurement mode only ai is the (spectral) abundance of ion i in the mass spectrum i is the total ionisation cross section of species j at the actual electron energy (si depends on j and the ionising electron energy)

K can be determined by calibration using e.g. a reference substance (e.g.pure component) in the next or previous experiment, using internal standard inside the same cell, using isothermal long-term evaporation etc).

*j

jj p

pa pj*: pressure over

the pure component

Determination of activities by KEMS:

1/ by direct pressure calibration (DPC) using pure metals as reference substances in subsequent experiments (the uncertainty can reach as high as 20% due to a the change of sensitivity constant day-by-day),

2/ using a proper internal standard (ISM) being in the same cell,

3/ using twin or multiple Knudsen cell technique (MKC) (some of the compartments are filled with the pure components),

4/ from the change of the oligomer (monomer, dimer, trimer etc.) composition in the vapour (this latter method can be applied in the only case if the metals vaporise in the form of oligomers, such as Sb(g), Sb2 (g), Sb3(g), Sb4 (g)),

5/ applying the mass spectrometric Gibbs-Duhem Ion Intensity Ratio Method (GD- IIRM) that is a modification of the well-known Gibbs-Duhem relationship with MS quantities (i.e. ion intensities),

6/ applying the isothermal evaporation method (IEM) /long-term or total/,---------------------------------------------------------------------------------------------------------------------7/ for ternary alloys, by applying Miki’ s or Tomiska’ s new KEMS methods for the determination of the constants in the power series expression of GE. (Miki: Redlich-Kister expression, Tomiska: TAP expression)

*jjj pap

THERMODYNAMIC PROPERTIES OF MIXING

Activities and the activity coefficients ---> chemical potential change of mixing, excess chemical potential ---->Gibbs energy change of mixing, excess Gibbs energy

The uncertainty of Ei /(E

i)/ is usually lower than +-1 kJ/mol (at 1400 K, assuming an error as factor 1.1 in the values of activities, =1.11 kJ/mol is obtained).--------------------------------------------------------------------------------------Temperature dependence of activities---> partial and integral enthalpy changes of mixing.

Uncertainties: (HEi )~1-2 kJ/mol for partial quantities but in case of

wrong identification of the composition the uncertainty of the integral quantity (HE) can reach as high as ~10 kJ/mol if the partial quantities depend on composition very sharply. The Gibbs-Duhem integration helps against this problem.

0.30 0.35 0.40 0.45 0.50

-70000

-60000

-50000

-40000

-30000

this work, GD this work, GD-IIR this work, direct calibr.

referencecomposition

fH

m/J

.mo

l-1

cAl

AlcFe

0.5(1-c)Ni

0.5(1-c)

Al-Fe-Ni

BINARY SYSTEMS

0.0 0.2 0.4 0.6 0.8 1.0

-7000

-6000

-5000

-4000

-3000

-2000

-1000

0

COST

Moser et al.

Jendrzejczyk et al.

this work

Qi et al.

Ag-In, 1200 K

GE/(

J.m

ol-1)

XAg

0.0 0.2 0.4 0.6 0.8 1.0

-4000

-3000

-2000

-1000

0

Xie et al.

Kato et al.

Oh et al. /COST/

Chevalier et al.

this work

Ag-Sn, 1300 K

G

E/(

J.m

ol-1)

XAg

0.0 0.2 0.4 0.6 0.8 1.0

-6000

-5000

-4000

-3000

-2000

-1000

0

Hultgren(+-840)

this work

Krzyzak et al.

Ag-Sb, 1250 K

G

E/(

J.m

ol-1)

XSb

0.0 0.2 0.4 0.6 0.8 1.0

-4000

-3000

-2000

-1000

0

Ansara et al.

this work

In-Sb, 950 K

G

E/(

J.m

ol-1)

XSb

0.0 0.2 0.4 0.6 0.8 1.0

-9000

-8000

-7000

-6000

-5000

-4000

-3000

-2000

-1000

0

In(l) + Sb(l) = InSb(l) rHo=-12.0 kJ/mol

3 In(l) + Sb(l) = In3Sb(l)

rHo=-16.8 kJ/mol

directly measured fitted to IAMT model

In-Sb, 950 K

m

ixG

/(J.

mo

l-1)

XSb

0.0 0.2 0.4 0.6 0.8 1.0-3000

-2000

-1000

0

Jansson et al.

this work

Sb-Sn, 905 K

G

E/(

J.m

ol-1)

XSb

)]1()[1(

)]12()[1(

])12()12()[1(

])()([

InCu2

n CuInSIn1

n CuInSCu0

n CuInSInCuInCu

CuIn1InSn

0InSnInCuIn

2InCu

2CuSnInCu

1CuSn

0CuSnInCuCu

2InCu

2CuInInCu

1CuIn

0CuInInCu

E

XXLXLXLXXXX

XXLLXXX

XXLXXLLXXX

XXLXXLLXXG

Miki’s method supplemented by us for the calculation of all the 3 ternary L’s:

where GE is the excess Gibbs free energy, expressed in terms of binary and ternary interaction parameters.

YXXXXL

XXXLXXXXLX

G

InSnCuSn2

n CuInS

2InCuSn

1n CuInSInCuCuSn

0n CuInS

InCu

E

)2(

))(()2(

where

)]223([

)]12(42)[1(

])12()12()[21(

)](2[

])()([{

InIn1InSn

0InSnIn

InCu2CuSn

1CuSnCuInCu

2InCu

2CuSnInCu

1CuSn

0CuSnCuIn

InCu2CuIn

1CuInInCu

2InCu

2CuInInCu

1CuIn

0CuInIn

XXLLX

XXLLXXX

XXLXXLLXX

XXLLXX

XXLXXLLXY

ClnlnRCuSn

SnCu

Sn

Cu

InCu

E

XI

XIRTT

X

G

where ICu / ISn is the measured ion intensity ratio of Cu+ to Sn + and C is a constant

Redlich-Kister-Muggianu:

CuSn

SnCulnXI

XIRTYY YYYYsumma

By rearranging and putting similar terms together we finally get that :

InSnCuSn2

n CuInS

2InCuSn

1n CuInSInCuCuSn

0n CuInS

)2(

))(()2(-C

XXXXL

XXXLXXXXLYsumma

The three ternary parameters can finally be found by solving the set of linear equations:

nnn XXXXXXXXXXX

XXXXXXXXXXX

XXXXXXXXXXX

InSnCuSn2InCuSnInCuCuSn

2InSnCuSn22InCuSn2InCuCuSn

1InSnCuSn12InCuSn1InCuCuSn

221

221

221

2CuInSn

1CuInSn

0CuInSn

L

L

L

C

nYsumma

Ysumma

Ysumma

2

1

where ’n’ is the number of the measured compositions. If n>4 the solution of the linear equation system should be replaced with a multiple regression problem.

The method provides the three ternary parameters, and, as input parameters it needs the binary parameters (either from own experiments or from literature) and the measured ion intensity ratio at various compositions for the given temperature. Any ion intensity ratio can be used from the total 3 variations of a ternary systems.

)ln(5.1)(89.0-42.3)726.8(7057)-59473(0 TTTL

)ln(9.1)(14.9-75.1)(40.412518)139125(1 TTTL

)ln(4.1)(51.733.8)436.6(5633)-111387(2 TTTL

The result for Cu-In-Sn, obtained from ICu / ISn of 23 compositions, is as follows:

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cu

Sn

In

Fig1. Measured compositions.

700 800 900 1000 1100 1200 1300 1400 1500

-100

-50

0

50

100

-C

L2

L1

L0

measured temp. range

kJ/m

ole

Temperature /K

700 800 900 1000 1100 1200 1300 1400 1500

-100

-50

0

50

100

L2

L1L

0

kJ/m

ole

Temperature /K

Fig.2. Ternary parameters as a functionof temperature, obtained in this work.

Fig.3. Ternary parameters as a functionof temperature by Liu et al..

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

Raoult's line

Cu-In-Sn system at 1173K Cu/Sn=1 section

solid line: RKM model with KEMS measured ion int. ratiosdashed line: calculated using Liu's ternary parameters (RKM)circle: measured data (EMF) from Yamaguchi at 1200Ktriangle: KEMS (simple mass loss by evaporation)

act

ivity

of

In

mole fraction of In

Fig. 4. Comparison of indium activity data obtained from our own and Liu’ s ternary parameters, from our measured mass loss data and from the measured EMF data of Yamaguchi.

Fig.5. Comparison of the partial excess enthalpy of indium obtained from our own and Liu’ s ternary parameters, from the ion intensity of In vs. temperature directly and by assuming binary parameters only.

0.0 0.2 0.4 0.6 0.8 1.0

-10000

-5000

0

5000

10000

15000

20000

25000

30000

35000

KEMS + RKM model, only binary interaction assumed

Liu et al.

KEMS+RKM modelternary interactionalso assumed

'pure' KEMS (this work)

Cu/Sn=1T=1173K

HIn

E/(

J.m

ol-1

)

mole fraction of Indium

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

Cu

InSn 0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

-5000

-4000

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

-3000

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

-2000

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

-1000

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

-500

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

00.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

-4500

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

-100

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

-5000

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

-4500

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

-4000

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

-3000

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

-2000

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

-1000

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

-500

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

Sn In

Cu

-100

Fig.6a. Iso-curves of the integral excess Gibbs energy at 1173 K, evaluated using our own ternary parameters.

Fig.6b. Iso-curves of the integral excess Gibbs energy at 1173 K, evaluated Liu’ s ternary parameters.

GE of Cu-In-Sn

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

Sn In

Cu

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

+1500

+1000

+500

-500-1000

-1500

-200

0

00

0

+2400

-300

0

Fig.7a. Iso-curves of the integral excess enthalpy at 1400 K, evaluated using our own ternary parameters.

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

-500

-500

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

0

0

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

+500

+500

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

+1000

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

+1500

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

+1700

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

0

0

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

-170

0

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

Sn

Cu

InXIn

Fig.7b. Iso-curves of the integral excess enthalpy at 1400 K, evaluated using Liu’ s ternary parameters

HE of Cu-In-Sn

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

AgIn

Sn

InSnAgSn2AgInSn

2InAgSn

1AgInSnInAgAgSn

0AgInSn)/SnAgInSn(Ag)/SnAgInSn(Ag

)2(

))(()2(-

XXXXL

XXXLXXXXLCYsumma

2SnAgIn

2AgInSn

InSnAgIn1AgInSnSnAgAgIn

0AgInSn)/InAgInSn(Ag)/InAgInSn(Ag

))((

)2()2(-

XXXL

XXXXLXXXXLCYsumma

Two possibilities for getting ternary L’s:

1:

2:

=

nnnXXXXXXXXXXX

XXXXXXXXXXX

XXXXXXXXXXX

InSnAgSn2InAgSnInAgAgSn

2InSnAgSn2

2InAgSn2InAgAgSn

1InSnAgSn1

2InAgSn1InAgAgSn

221

221

221

2CuInSn

1CuInSn

0CuInSn

L

L

L

C

nYsumma

Ysumma

Ysumma

2

1

1:

2:

nnnXXXXXXXXXXX

XXXXXXXXXXX

XXXXXXXXXXX

2SnAgInInSnAgInSnAgAgIn

2

2SnAgIn2InSnAgIn2SnAgAgIn

1

2SnAgIn1InSnAgIn1SnAgAgIn

221

221

221

2CuInSn

1CuInSn

0CuInSn

L

L

L

C

nYsumma

Ysumma

Ysumma

2

1

X

=X

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

-5000

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

-4000

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

-3000

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

-2000

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

ISO-Gex, 1273 K

-1000

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

Ag

InSn

-200

Dataset I, Ag+/In+

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

-5000

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

-4000

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

-3000

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

-2000

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

-1000

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0Ag

InSn

ISO-Gex, 1273 K

-200

Dataset I, Ag+/Sn+

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

-5000

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

-4000

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

-3000

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

-2000

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

-1000

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

ISO-Gex, T=1273 K

InSn

Ag

-200

Dataset II, Ag+/Sn+

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

ISO-Gex, T=1273 K (Miki et al.)

-5000

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

-4000

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

-3000

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

-2000

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0Ag

InSn

-1000

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 0.0

0.2

0.4

0.6

0.8

1.0

-205

our evaluation withMiki’s Ag+/In+ data

GE of Ag-In-Sn

T=1273 K

applying RKM model Gibbs-Duhem*

composition aAg aIn aSn aAg aIn aSn

Ag0.30In0.10Sn0.60 0.154 0.0768 0.603 0.154 0.0794 0.595

Ag0.225In0.10Sn0.675 0.114 0.0785 0.678 0.116 0.0770 0.670

Ag0.35In0.30Sn0.35 0.175 0.2233 0.362 0.178 0.2246 0.357

T=1473 K

applying RKM model Gibbs-Duhem*

composition aAg aIn aSn aAg aIn aSn

Ag0.30In0.10Sn0.60 0.162 0.0788 0.596 0.161 0.0813 0.595

Ag0.225In0.10Sn0.675 0.119 0.0808 0.674 0.120 0.0762 0.678

Ag0.35In0.30Sn0.35 0.188 0.2167 0.358 0.196 0.2201 0.347

*reference composition is Ag0.45In0.10Sn0.45 and the corresponding activities originate from the Ag+/In+ data (applying RKM model)

Activities in Ag-In-Sn

CONCLUSIONS

1. The uncertainties of the ternary Redlich-Kister L-parameters obtained from our Knudsen effusion mass spectrometric data depend on the number of compositions studied. 23 compositions seemed to be sufficient to reach rather low relative uncertainty (the case of Cu-In-Sn). Lower number of compositions (the case of Ag-In-Sn) increases the uncertainties of L’s but the uncertainties of GE and of the activities remain still low.

2. There is a complete mismatch (both in absolute values and temperature trends) between the ternary L-parameters of Cu-In-Sn obtained in this work and those assessed by Liu. This mismatch results in large difference between the values obtained in this work and by Liu in all thermodynamic quantities, in particular in the partial and integral excess enthalpies and excess Gibbs energies.

3. The GE and activity values of Ag-In-Sn obtained from our and Miki’ s KEMS data agree very well but the ternary L-values obtained from this two sources are different. The difference in L’s probably also could be decreased by increasing

the compositions studied.

4. Any ion pair variation (e.g. Ag+/Sn+ or Ag +/In+ in Ag-In-Sn) in the mass spectrum can be chosen in principle for obtaining the thermodynamic properties. The different choices must provide the same values in case of good consistency.

Many thanks to the COST 531 leadership for the support of my STSMs.

ACKNOWLEDGEMENTS

Thank You for Your attention!