DETAILED EVALUATION OF CFD PREDICTIONS AGAINST LDA MEASUREMENTS FOR FLOW ON AN AEROFOIL A. Benyahia...

30
DETAILED EVALUATION OF CFD PREDICTIONS AGAINST LDA MEASUREMENTS FOR FLOW ON AN AEROFOIL A. Benyahia 1 , E. Berton 1 , D. Favier 1 , C. Maresca 1 , K. J. Badcock 2 , G.N.Barakos 2 1 L.A.B.M., Laboratoire d’Aérodynamique et de Biomécanique du Mouvement, UMSR 2164 of CNRS and University of Méditerranée, 163 Avenue de Luminy, case 918, 13288 Marseille Cedex 09, France 2 University of Glasgow, Department of Aerospace Engineering? Glasgow G12 8QQ, U.K

Transcript of DETAILED EVALUATION OF CFD PREDICTIONS AGAINST LDA MEASUREMENTS FOR FLOW ON AN AEROFOIL A. Benyahia...

Page 1: DETAILED EVALUATION OF CFD PREDICTIONS AGAINST LDA MEASUREMENTS FOR FLOW ON AN AEROFOIL A. Benyahia 1, E. Berton 1, D. Favier 1, C. Maresca 1, K. J. Badcock.

DETAILED EVALUATION OF CFD PREDICTIONS AGAINST LDA MEASUREMENTS FOR FLOW ON AN

AEROFOIL

A. Benyahia 1, E. Berton 1, D. Favier 1, C. Maresca 1, K. J. Badcock 2, G.N.Barakos 2

1 L.A.B.M., Laboratoire d’Aérodynamique et de Biomécanique du Mouvement, UMSR 2164 of CNRS and University of Méditerranée,

163 Avenue de Luminy, case 918, 13288 Marseille Cedex 09, France

2 University of Glasgow, Department of Aerospace Engineering? Glasgow G12 8QQ, U.K

Page 2: DETAILED EVALUATION OF CFD PREDICTIONS AGAINST LDA MEASUREMENTS FOR FLOW ON AN AEROFOIL A. Benyahia 1, E. Berton 1, D. Favier 1, C. Maresca 1, K. J. Badcock.

• Introduction and objectives

• Experimental methodology: LDV measurements

• Numerical methodology: PMB approach

• Results and discussion

• Conclusions and prospects

Presentation Outline

Page 3: DETAILED EVALUATION OF CFD PREDICTIONS AGAINST LDA MEASUREMENTS FOR FLOW ON AN AEROFOIL A. Benyahia 1, E. Berton 1, D. Favier 1, C. Maresca 1, K. J. Badcock.

• The detailed knowledge of the boundary-layer response to unsteadiness induced by oscillating models is of major interest in a wide range of aeronautical applications.

• This work concerns an experimental and numerical investigation of the unsteady boundary-layer on a NACA0012 aerofoil oscillating in pitching motion.

• The experimental part of the present study is based on the Embedded Laser Doppler Velocimetry, developed at LABM for unsteady boundary-layer investigation.

• From the numerical point of view, simulations were performed using the PMB solver developed at GU based on a RANS approach of turbulence.

Introduction and objectives

Page 4: DETAILED EVALUATION OF CFD PREDICTIONS AGAINST LDA MEASUREMENTS FOR FLOW ON AN AEROFOIL A. Benyahia 1, E. Berton 1, D. Favier 1, C. Maresca 1, K. J. Badcock.

• Introduction and objectives

• Experimental methodology: ELDV measurements

• Numerical methodology: PMB approach

• Results and discussion

• Conclusions and prospects

Presentation Outline

Page 5: DETAILED EVALUATION OF CFD PREDICTIONS AGAINST LDA MEASUREMENTS FOR FLOW ON AN AEROFOIL A. Benyahia 1, E. Berton 1, D. Favier 1, C. Maresca 1, K. J. Badcock.

V

(t) = 0 + cos ( t )

(b) Pitching motion

Forced unsteadiness law

model

optical fibres

pitching fore-and-aft

particules seeding tube

0,5

mU

laser source

S2 Luminy wind-tunnel-Experimental Set-up

Page 6: DETAILED EVALUATION OF CFD PREDICTIONS AGAINST LDA MEASUREMENTS FOR FLOW ON AN AEROFOIL A. Benyahia 1, E. Berton 1, D. Favier 1, C. Maresca 1, K. J. Badcock.

Embedded Laser Doppler Velocimetry Method (ELDV)

• Embedded optical head linked with the model

• Reference frame linked with the moving surface

• Focal length f = 400 mm• Survey along the chord

(x direction)• Survey along the normal

(y direction)Optical fibres

Beam-expander 45¡ mirror

Measuring volume

tn

0U°

vu

ymin = 0,2 mm

ymax = 145 mm

Optical head

Oscillating model

turntable

Page 7: DETAILED EVALUATION OF CFD PREDICTIONS AGAINST LDA MEASUREMENTS FOR FLOW ON AN AEROFOIL A. Benyahia 1, E. Berton 1, D. Favier 1, C. Maresca 1, K. J. Badcock.

Transmiting block

Optical fibers

PM1

Oscilloscop

BSA (Burst Spectrum Analyser)

Postprocessing:

Labview Macintosh

sensor position

IEEE

SETUP SETTINGSMEASUREMENTS

7 8 9

4

1

5

2

6

3

0 +/-.ENTER

SHIFT

1

3.95

9.318

1.00

3.00

4.00

8

0

1560

64

10.67

BSA enhanced

DANTEC

Opticalhead

U V

A and B

TIME/DIV

and DELAY TIME

POWER

A TRIGGER

VOLTS:DIV

CH 1

465 B

OSCILLOSCOPEVOLTS:DIV

CH 2

TRIGGER

Lasersource

000000000

000000000

SETUP SETTINGSMEASUREMENTS

7 8 9

4

1

5

2

6

3

0 +/-.ENTER

SHIFT

1

3.95

9.318

1.00

3.00

4.00

8

0

1560

64

10.67

BSA enhanced

DANTEC

PM2

Color separator

ELDV Acquisition

Page 8: DETAILED EVALUATION OF CFD PREDICTIONS AGAINST LDA MEASUREMENTS FOR FLOW ON AN AEROFOIL A. Benyahia 1, E. Berton 1, D. Favier 1, C. Maresca 1, K. J. Badcock.

data acquisition

t

cycle n

One period

cycle n-1

U

with 1 n Nc (Nc 150)

STEP 1

tT

Data plot on one period STEP 2

Uuniquefictif cycle

cycle unique fictif

tT

Statistic threatment on each intervalSTEP 3

une des 512 cases<U>

<U>

tT

STEP 4 Périodic signal/ Fourrier analyse

256 harmonics~U

u'(t) = U(t) - U(t)~

Unsteady measurements processing

Page 9: DETAILED EVALUATION OF CFD PREDICTIONS AGAINST LDA MEASUREMENTS FOR FLOW ON AN AEROFOIL A. Benyahia 1, E. Berton 1, D. Favier 1, C. Maresca 1, K. J. Badcock.

• Introduction and objectives

• Experimental methodology: LDV measurements

• Numerical methodology: PMB approach

• Results and discussion

• Conclusions and prospects

Presentation Outline

Page 10: DETAILED EVALUATION OF CFD PREDICTIONS AGAINST LDA MEASUREMENTS FOR FLOW ON AN AEROFOIL A. Benyahia 1, E. Berton 1, D. Favier 1, C. Maresca 1, K. J. Badcock.

Parallel Multi-Block (PMB) : RANS approach

for the turlence

Page 11: DETAILED EVALUATION OF CFD PREDICTIONS AGAINST LDA MEASUREMENTS FOR FLOW ON AN AEROFOIL A. Benyahia 1, E. Berton 1, D. Favier 1, C. Maresca 1, K. J. Badcock.

PMB RANS approach principle

0

y

GG

x

FF

t

W ii

• Transport equations

TevuW ,,,

uhuvpuuF i ,,, 2 vhpvuvuG i ,,, 2

xyyxxxyxx qvuF ,,,0Re1 yyyxyyyxy qvuG ,,,0Re

1

ky

v

x

u

x

uTxx

3

2

3

22

ky

v

x

u

y

vTyy

3

2

3

22

y

v

x

uTxy

Page 12: DETAILED EVALUATION OF CFD PREDICTIONS AGAINST LDA MEASUREMENTS FOR FLOW ON AN AEROFOIL A. Benyahia 1, E. Berton 1, D. Favier 1, C. Maresca 1, K. J. Badcock.

• The resolution method

Implicite scheme : 1,,,,

,,

,,1

,, 1

nkjikji

kji

nkji

nkji WR

Vt

WW

Turbulence models: 1 or 2 equations models. Spalart-Allmaras

(SA), k- et SST.

' 'ppp 'uuu 'vvv

PMB RANS approach principle

Page 13: DETAILED EVALUATION OF CFD PREDICTIONS AGAINST LDA MEASUREMENTS FOR FLOW ON AN AEROFOIL A. Benyahia 1, E. Berton 1, D. Favier 1, C. Maresca 1, K. J. Badcock.

• Le modèle SA1

~ fT

31

3

3

1

c

f

~

2

12

21

~~~~.

1~~~

d

fccScDt

Dbb

222

~~

f

dSS

12 1

1

f

f

6

1

63

6

631

cg

cgf rrcrg 6

2 22~~

dSr

135.01 bc 32 622.02 bc 41.0 762.21 c 3.02 c 23 c 1.71 c

PMB RANS approach principle

Page 14: DETAILED EVALUATION OF CFD PREDICTIONS AGAINST LDA MEASUREMENTS FOR FLOW ON AN AEROFOIL A. Benyahia 1, E. Berton 1, D. Favier 1, C. Maresca 1, K. J. Badcock.

• Le modèle k- k

T

kPkkVt

kkT

**.Re

1.

2.Re

1. kPV

t T

95 403 1009* 21 21*

PMB RANS approach principle

Page 15: DETAILED EVALUATION OF CFD PREDICTIONS AGAINST LDA MEASUREMENTS FOR FLOW ON AN AEROFOIL A. Benyahia 1, E. Berton 1, D. Favier 1, C. Maresca 1, K. J. Badcock.

• Le modèle de transport du tenseur visqueux (SST)

12;1max aF

kT

2

22

500;

09.02maxtanh

yy

kF

kPkkVt

kkT

**.Re

1.

kFkPVt T

21

21 12.

Re

1.

4

22

21

4;

500;

09.0maxmintanh

yCD

k

yy

kF

k

202 10;2

max

kCDk

31.01 a 09.0* 41.0

PMB RANS approach principle

Page 16: DETAILED EVALUATION OF CFD PREDICTIONS AGAINST LDA MEASUREMENTS FOR FLOW ON AN AEROFOIL A. Benyahia 1, E. Berton 1, D. Favier 1, C. Maresca 1, K. J. Badcock.

Results

Page 17: DETAILED EVALUATION OF CFD PREDICTIONS AGAINST LDA MEASUREMENTS FOR FLOW ON AN AEROFOIL A. Benyahia 1, E. Berton 1, D. Favier 1, C. Maresca 1, K. J. Badcock.

• Introduction and objectives

• Experimental methodology: LDV measurements

• Numerical methodology: PMB approach

• Results and discussion

• Conclusions and prospects

Presentation Outline

Page 18: DETAILED EVALUATION OF CFD PREDICTIONS AGAINST LDA MEASUREMENTS FOR FLOW ON AN AEROFOIL A. Benyahia 1, E. Berton 1, D. Favier 1, C. Maresca 1, K. J. Badcock.

2 meshes results

Fine mesh, 27501 pointsCoarse mesh, 6975 points

Page 19: DETAILED EVALUATION OF CFD PREDICTIONS AGAINST LDA MEASUREMENTS FOR FLOW ON AN AEROFOIL A. Benyahia 1, E. Berton 1, D. Favier 1, C. Maresca 1, K. J. Badcock.

Lift coefficient

Fixed incidence case

Page 20: DETAILED EVALUATION OF CFD PREDICTIONS AGAINST LDA MEASUREMENTS FOR FLOW ON AN AEROFOIL A. Benyahia 1, E. Berton 1, D. Favier 1, C. Maresca 1, K. J. Badcock.

Turbulence Reynolds Number

k- model with imposed transition at s/c=0.2

Page 21: DETAILED EVALUATION OF CFD PREDICTIONS AGAINST LDA MEASUREMENTS FOR FLOW ON AN AEROFOIL A. Benyahia 1, E. Berton 1, D. Favier 1, C. Maresca 1, K. J. Badcock.

Différents model with or without transition

Turbulence Reynolds Number

Page 22: DETAILED EVALUATION OF CFD PREDICTIONS AGAINST LDA MEASUREMENTS FOR FLOW ON AN AEROFOIL A. Benyahia 1, E. Berton 1, D. Favier 1, C. Maresca 1, K. J. Badcock.

Fully turbulent Transition fixed at s/c=0.2 Transition increasing linéairly between s/c=0.1

and s/c=0.3

Velocity Profiles

Page 23: DETAILED EVALUATION OF CFD PREDICTIONS AGAINST LDA MEASUREMENTS FOR FLOW ON AN AEROFOIL A. Benyahia 1, E. Berton 1, D. Favier 1, C. Maresca 1, K. J. Badcock.

Velocity Profiles

SST model for differents values of k

SST models for differents transition localisations and

k=0.001

Page 24: DETAILED EVALUATION OF CFD PREDICTIONS AGAINST LDA MEASUREMENTS FOR FLOW ON AN AEROFOIL A. Benyahia 1, E. Berton 1, D. Favier 1, C. Maresca 1, K. J. Badcock.

Turbulence Reynolds Number

15 deg: SST model with transition fixed at s/c=0.05

15 deg: SST model fully turbulent

Page 25: DETAILED EVALUATION OF CFD PREDICTIONS AGAINST LDA MEASUREMENTS FOR FLOW ON AN AEROFOIL A. Benyahia 1, E. Berton 1, D. Favier 1, C. Maresca 1, K. J. Badcock.

Turbulence Reynolds Number

Vortex shedding with a characteristic dimensionless frequency of k= 0.51

Page 26: DETAILED EVALUATION OF CFD PREDICTIONS AGAINST LDA MEASUREMENTS FOR FLOW ON AN AEROFOIL A. Benyahia 1, E. Berton 1, D. Favier 1, C. Maresca 1, K. J. Badcock.

12°: k- model fully turbulent

12°: SST model fully turbulent

12°: SSTmodel with transition location at s/c=0.2

Turbulence Reynolds NumberPitching motion, (t)=0+cos(t)0=6deg, 6 deg, k=c/2U=0.188

Page 27: DETAILED EVALUATION OF CFD PREDICTIONS AGAINST LDA MEASUREMENTS FOR FLOW ON AN AEROFOIL A. Benyahia 1, E. Berton 1, D. Favier 1, C. Maresca 1, K. J. Badcock.

Lift coefficient Pitching motion, (t)=0+cos(t)0=6deg, 6 deg, k=c/2U=0.188

Hysteresis loops

Page 28: DETAILED EVALUATION OF CFD PREDICTIONS AGAINST LDA MEASUREMENTS FOR FLOW ON AN AEROFOIL A. Benyahia 1, E. Berton 1, D. Favier 1, C. Maresca 1, K. J. Badcock.

Velocity Profiles

SST model with transition located at s/c=0.2 an k-model fully turbulent

Page 29: DETAILED EVALUATION OF CFD PREDICTIONS AGAINST LDA MEASUREMENTS FOR FLOW ON AN AEROFOIL A. Benyahia 1, E. Berton 1, D. Favier 1, C. Maresca 1, K. J. Badcock.

• Introduction and objectives

• Experimental methodology: LDV measurements

• Numerical methodology: PMB approach

• Results and discussion

• Conclusions

Presentation Outline

Page 30: DETAILED EVALUATION OF CFD PREDICTIONS AGAINST LDA MEASUREMENTS FOR FLOW ON AN AEROFOIL A. Benyahia 1, E. Berton 1, D. Favier 1, C. Maresca 1, K. J. Badcock.

• Using such ELDV measurement methods, the boundary-layer behaviour can be fully investigated and characterized in a moving frame of reference.

• Analysis of the effects of forced unsteadiness (due to the pitching motion) on B.L.

• Dependence on turbulence model and transition

• Better agreement with experiment for transitionnal models for static incidence, before stall. Fully turbulent dodels are more adapted for oscillation case

Conclusions