Design of in vitro Synthetic Gene...

26
15 June 2010 Elisa Franco Richard M. Murray Design of in vitro Synthetic Gene Circuits IWBDA

Transcript of Design of in vitro Synthetic Gene...

Page 1: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

15 June 2010

Elisa FrancoRichard M. Murray

Design of in vitro Synthetic Gene Circuits

IWBDA

Page 2: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

Programming large scale circuits

Elisa Franco, Caltech2

y = uG

1 + KG

y = G(u−Ky)

G→∞ ⇒ y =1K

u

G

K

u y+−

?

Page 3: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

Bottom-up approach:In vitro molecular programming

Elisa Franco, Caltech3

OBJECTIVES:

Design and synthesis of biologically plausible feedback loops

Understand and implement design principles

Use few components: DNA and enzymes (off the shelf)

DESIGN

input

ou

tpu

t

MODELING

M1 + M2

k+1

k−1

M3

M3 + M4

k+2

k−2

M5

dc

dt= νER(c)...

Page 4: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

Elisa Franco, Caltech

In this talk

In vitro genetic circuits: our tool kit

4

Programming a reaction network for rate regulation

Interconnecting modules

Insulating devices

Page 5: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

Elisa Franco, Caltech

Simplification of feedback loops:Transcription is switched on and off without transcription factors

In vitro genetic circuits: the key ideas Kim and Winfree Nature MSB06

5

ON

OFF

+ activator

T7 promoter

Switching: by toehold mediated branch migration - Yurke 03

+

+

k+k-

35 basesC=A’

C=A’

A

B

35 bases

25 bases

A

B

∆G-60kcal/mol

∆G-40kcal/mol

OFF ON

ACTIVATOR

INHIBITOR

TRANSCRIPTION

Page 6: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

Elisa Franco, Caltech

Design and specification of parts

Enzymes off the shelf:

T7 RNA polymerase RNase H

6

SOFTWARE:

• Maximize (-∆G) of desired interactions

• Minimize (-∆G) of unwanted interactions

toehold 4-10 bases

Consensus domain 17-20 bases

T7 promoter 17 bases

Transcribed domain

TerminatorFunctional domain

Activator

Page 7: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

Elisa Franco, Caltech

Programming a simple biochemical network

Produce reactants R1, R2 R1, R2 >> output P R1 + R2

k+

k−

PT1

k1 R1

T2k2 R2

Objective: steady flow of P

7

Constraints: avoid bottlenecks and waste of resources

IDEAS:

Negative feedback Positive feedback

Design network to decrease excess species

Design network to stimulate production of less abundant species

Page 8: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

Elisa Franco, Caltech

Self repression based flow regulation

8

T1

R1

R2

T2

P

[R1] > [R2]

[R2] > [R1]

• Reactants: transcripts

• Product: RNA complex

• Transcriptional circuits implementation

• Circuit design:

A1

R1A1’

T1

R2A2’

A2

A1

Monitor fraction of ‘on’ switch

Page 9: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

Elisa Franco, Caltech

Modeling the dynamics

Mass action kinetics

Ti + AikTiAi→ TiAi

Ri + AikRiAi→ RiAi

Ri + TiAikRiTiAi→ RiAi + Ti

Ri + RjkRiRj→ RiRj

Rj + TikRjTi→ RjTi

Enzymatic reactions:RNA polymerase - production of transcriptsRNase H - degradation of DNA/RNA hybrids

Michaelis-Menten kinetics

Rp + TiAi

k+ONii→←

k−ONii

Rp · TiAikcatONii→ Rp + TiAi + Ri

Rp + Ti

k+OF F ii→←

k−OF F ii

Rp · TikcatOF F ii→ Rp + Ti + Ri

Rh + RiAi

k+Hii→←

k−Hii

Rh · RiAikcatHii→ Rh + Ai

Rh + RjTi

k+Hji→←

k−Hji

Rh · RjTikcatHji→ Rh + Ti

Rp + RjTi

k+OF F ji→←

k−OF F ji

Rp · RjTikcatOF F ji→ Rp + RjTi + Ri

Faster

Activation

Inhibition

Output

Unwanted interactions

9

T1

R1

R2

T2

P

[R1] > [R2]

[R2] > [R1]

Page 10: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

---- Model

Data

Experimental results

1 2 3 4 5

Hours

100

50

nM

[T2(0)] 50 nM

[T1(0)] 100 nM

1 2 3 4 5

Hours

100

50

nM

[T2(0)] 100 nM

[T1(0)] 50 nM

1 2 3 4 5

Hours

100

50

nM

[T2(0)] 100 nM

[T1(0)] 100 nM

1 2 3 4 5

Hours

100

200

300nM

[T2(0)] 300 nM

[T1(0)] 100 nM

Enzymes added Feedback activated

Page 11: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

Initial template ratio

Ratio plot

Elisa Franco, Caltech11

1 2 3

1

2

a.u.

a.u.

Steady state template ratio

T1/T2

T2/T1

No feedback

Ideal case

Model

---- Model

Data

Page 12: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

Elisa Franco, Caltech

Cross activation circuit design

Reactants: transcripts

Product: RNA complex

R1I2’

T1

R2I1’I2I1

Transcripts: ‘releaser’ strands for the activators. Possibility of unwanted self inhibition.

A1

I1

12

T1

R1

R2

T2

P

[R1] > [R2]

[R2] > [R1]

Page 13: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

Elisa Franco, Caltech13

Preliminary dataCurrent design is asymmetric

Total template ratio

1 2 3

1

2

a.u.

a.u.

Steady state ‘on’ template ratio

4

3

4

No domain sequestration (ideal)

T2/T1

T1/T2

T1

R1

R2

T2

P

[R1] > [R2]

[R2] > [R1]

Page 14: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

Elisa Franco, Caltech

In this talk

In vitro genetic circuits: our tool kit

14

Programming a reaction network for rate regulation

Interconnecting modules

Insulating devices

Page 15: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

Elisa Franco, Caltech

Interconnections can introduce unwanted dynamics

15

Σyu

xsr

Interconnections introduce parasitic signals

RETROACTIVITY TO INPUTS AND OUTPUTS

Σ

u

y

Del Vecchio et al. Nature MSB 2008

x = f(x, u, s)y = Y (x, u, s)

r = R(x, u, s)

x = f(x, u)

y = Y (x, u)

Page 16: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

Elisa Franco, Caltech

Del Vecchio, Ninfa and Sontag, MSB08; Del Vecchio, Jayanthi, ACC08

Existing theoretical results suggest how to design an insulating device

16

uy = xn

positive scalars1)

Σ : x =

Gf1(x, u)Gf2(x)

...Gfn−1(x)Gfn(x)

3)

Λ : ν =

g1(ν, y)g2(ν)

...gp(ν)

4)

Ω : u = f0(t, u)2)prior to theinterconnection

Ω ΛΣyu

x νsrx = f(x, u, s)y = Y (x, u, s)r = R(x, u, s)

Σ :x = (x1, ..., xn) ∈ D ⊆ Rn

+

Structural assumptions

5)

u = f0(t, u) + r(x, u)xn = y = Gfn(x) + s(ν, y)

Parasitic signals are additive

6)

r(x, u) = −Gf1(x, u)s(ν, y) = −g1(ν, y)

Conservation laws

Page 17: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

Elisa Franco, Caltech17

Existing theoretical results suggest how to design an insulating device

Stability assumption:

DFx(a, x)The Jacobian:

has all eigenvalues with negative real part in all its domain

F : R+ ×D → Rn

x ∈ Da ∈ R+

F (a, x) = (f1(x, a− x1), f2(x), ..., fn(x))

Define:

Ω ΛΣyu

x νsr

x = f(x, u, s)y = Y (x, u, s)r = R(x, u, s)

Σ : x =

Gf1(x, u)Gf2(x)

...Gfn−1(x)Gfn(x)

Page 18: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

Elisa Franco, Caltech

The insulation property is achieved if the device is sufficiently fast

18

Ω ΛΣyu

x νsr

x = f(x, u, s)y = Y (x, u, s)r = R(x, u, s)

Σ :x =

Gf1(x, u)Gf2(x)

...Gfn−1(x)Gfn(x)

Claim 1 There exist G* sufficiently large such that for any G>G*:

Claim 2There exist G’ sufficiently large such that for any G>G’:

xref(t)− x(t) = O(1/G)

xref(t) s(ν, y) = 0Where is the state of the device when the load is absent, i.e.

u(t) = u(t) +O(1/G) wheredu

dt= f0(t, u)

1

(1 + ∂γ1(u)/∂u)

Low output retroactivity

All proofs are based on timescale separation

Page 19: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

Elisa Franco, Caltech

Can we make an insulator in an in vitro setting?

19

Ω ΛΣyu

x νsrΩ Λ

u

R

Minimizes, r

Rp

Rh

Page 20: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

Elisa Franco, Caltech

• Input U drives a switch• RNA output binds to RNA load

Page 21: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

Elisa Franco, Caltech

Input stage

Reactions for a transcriptional insulator

21

∅ pU (t) U(t) dU (t)

DI + Uk+

IU

k−IU

DIU

DADI + UkAIU

DIU + DA

DA + DTkAT DADT ,

DADT + DIkAIT

DT + DADI ,

DA + DIkAI DADI .

dDDRY (t) = γ h

[ DDRY ]KMH

pRY (t) = α h

[ DADT ]KMP

Core device

∅ pL(t) RL(t),

RY + RL

kY L RY RL

Output stage

Page 22: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

Elisa Franco, Caltech

Structural assumptions: dynamic gain can be tuned

22

U = +pU (t)− dU (t)− k+IU

DIU + k−IU

DIU

−kAIUDADIU

DIU = +k+IU

DIU − k−IU

DIU + kAIUDADIU

DADI = +kAIDADI − kAIUDADIU

DADT = +kAT DADT − kAIT DIDADT

DD = −kDY DDRY + γ h

DDRY

KMH

RY = +α h

DADT

KMP

− kDY DDRY − kY LRY RL

RL = +pL(t)− kY LRY RL

Input

Co

re d

evic

e

Output

x =

Gf1(x, u)Gf2(x)

...Gfn−1(x)Gfn(x)

• Fast toehold kinetics• High enzyme

concentrations/activities

Page 23: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

Elisa Franco, Caltech

Structural assumptions: additive retroactivity and conservation laws

23

U = +pU (t)− dU (t)− k+IU

DIU + k−IU

DIU

−kAIUDADIU

DIU = +k+IU

DIU − k−IU

DIU + kAIUDADIU

DADI = +kAIDADI − kAIUDADIU

DADT = +kAT DADT − kAIT DIDADT

DD = −kDY DDRY + γ h

DDRY

KMH

RY = +α h

DADT

KMP

− kDY DDRY − kY LRY RL

RL = +pL(t)− kY LRY RL

Input

Co

re d

evic

e

Output

u = f0(t, u) + r(x, u)

x =

Gf1(x, u)Gf2(x, u)Gf3(x)Gf4(x)

Gf5(x) + Gs(ν, y)

ν = fν(t) + Gs(ν, y).

Page 24: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

Elisa Franco, Caltech

Structural assumptions: stability

24

DFx(a, x) =P ∅L Q

Jacobian of the dynamics of the core device:

The eigenvalues have negative real part at any equilibrium point.

Lower diagonal

All structural assumptions are verified.

• Claim 1 holds: Low output retroactivity

• Claim 2 holds: Low input retroactivity

Note: Analytical mapping I/O not available, device may work in non linear regime

Page 25: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

Elisa Franco, Caltech25

Simulation results

Low enzyme amounts, bottleneck

High enzyme amounts, time scale separation works again!

Page 26: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

THANKS:Richard Murray, Caltech CDS and BEErik Winfree, Caltech CS, CNS and BE

Institute for Collaborative Biotechnologies (ICB)NSF Molecular Programming Project

Programming synthetic biomolecular systems: embedding engineering principles in the hardware of life

Designing and building biosynthetic systems is today• Easier• Faster• Cheaper

A

BBA

Example: flow control systems

T1

R1

R2

T2

P

[R1] > [R2]

[R2] > [R1]

T1

R1

R2

T2

P

[R1] > [R2]

[R2] > [R1]

• In vitro bio-computational networks

Caltech Jongmin Kim, Fei ChenLund UniversityPer-Ola Forsberg, Chris Sturk,TU MunichEike Friedrichs, Ralf Jungmann, Fritz Simmel

• Scaling up networks, modularity[nM]

Ω ΛΣyu

x νsr