DESIGN OF COOLING TOWER.docx

download DESIGN OF COOLING TOWER.docx

of 17

Transcript of DESIGN OF COOLING TOWER.docx

  • 8/14/2019 DESIGN OF COOLING TOWER.docx

    1/17

    DESIGN OF COOLING TOWER

    DESIGN CONDITIONS:

    Cooling Tower Type COUNTER FLOW INDUCED DRAFT

    Water Temperature

    Leaving C25

    Entering C30

    Air Condition

    Leaving WBCDBC 98,38

    Entering RHDBC %65,26

    Make-up Water

    Temperature C26

    Barometric Pressure kPa325.101

    Note:

    (1)The practical cooling range 21 tt is C 7.166.5 (Morse, 1990) p 122(2)For cooling towers the rating conditions are C35 entering water, C4.29

    leaving water, and C9.23 wet bulb of the outdoor air (Wang, 2001) p 10.50

    (3) In most cases, the temperature of the water leaving the tower will be Fto 107

    above wet bulb temperature of the entering air (Dossat, 1978)p 333

  • 8/14/2019 DESIGN OF COOLING TOWER.docx

    2/17

    Calculation Procedure:

    Amount of water to be handled by the cooling tower, mcw

    sec74.13

    sec78.1096.2

    kgm

    kgm

    mmm

    cw

    cw

    condensercw

    compressorcwcw

    Air Properties Using Psychometrics Chart

    At RHandC %6526

    airdryofkgmoistureofkg

    HRkg

    KJh 0136.0;61 44

    At RHandC %9832

  • 8/14/2019 DESIGN OF COOLING TOWER.docx

    3/17

    airdryofkg

    moistureofkgHR

    kgKJh

    0297.0;108 55

    Mass of Air, ,am

    Energy Balance on the cooling tower

    3421

    4321 &

    hhmtCpmttCpm

    mmmmmm

    amwwmwcwcw

    acw

    mww

    cwcwamw

    tCp

    ttCpmhhmm 2134

    1.642.243174.0

    26187.4

    2530187.4sec

    74.1361108

    00

    00

    eqmm

    CCkg

    KJ

    CCkg

    KJkgkg

    KJm

    m

    amw

    a

    mw

    Mass Balance

    Mass entering = Mass leaving

    2.0161.0

    )0136.00297.0()..(

    ..

    34

    43

    eqmm

    mRHRHmm

    RHmmRHmmm

    amw

    aamw

    awawmw

  • 8/14/2019 DESIGN OF COOLING TOWER.docx

    4/17

    Substituting eq.1 to eq.2

    642.243174.00161.0 aa mm

    aa mm 0161.04317.0642.2

    sec36.6 kg

    ma

    Mass of Make-up water, 5wm

    From Equation 2

    waterofkgkg

    m

    mm

    w

    aw

    sec1023.0

    sec36.60161.0

    0161.0

    5

    5

    Volume flow rate of air, aV

    KPaKPaPsatRHPsKPaPsatRHandCAt

    18595.2363.365.0

    363.3,%6526

    MRTPV

    3

    0

    0

    18595.2325.101

    273262871.0sec

    36.6

    mKNorKPa

    KKkg

    KJkg

    PP

    TRmV

    SB

    aaaa

    sec507.5 3m

    Va

    Where: R.H= relative humidity

    vaporwaterofpressurepartialP

    CatpressuresaturationP

    V

    Sat

    26

  • 8/14/2019 DESIGN OF COOLING TOWER.docx

    5/17

    Volume flow rate of air, wV

    From Refrigeration Engineering by Mc Intire P. 495. cross-sectional area of

    induced draft fan is found by allowing gpm/ft3.0 2

    t =2

    3025= 27.5 C @ 27.5 C

    3512.996

    m

    kgw

    Therefore,

    Volume flow rate ( w ) =3

    512.996

    sec74.13

    m

    kg

    kgM

    w

    w

    =min1

    sec60

    003785.0

    1

    sec0138.0

    3

    3

    xm

    galx

    m

    = 218.57 gpm

    Cooling tower range, C.T.R.

    C.T.R. = Ctt o521

    Cooling tower approach, C.T.A.

    At 26 Co and 65% RH ; Ct owb 75.18

    C.T.A. = Ctt owb 25.675.18251

  • 8/14/2019 DESIGN OF COOLING TOWER.docx

    6/17

    Cooling tower efficiency, C.T.E.

    C.T.R. = %10075.1830

    2530%100

    1

    21 xxtt

    tt

    wb

    = 44.4 %

  • 8/14/2019 DESIGN OF COOLING TOWER.docx

    7/17

    PIPING SYSTEM FOR COOLING TOWER

    Design Condition:

    Mass flow rate cooling water

    Compressor sec96.2 kg

    Condenser sec78.10 kg

    water = 996.512 kg/ 3m ; f @ Ct

    o

    ave 5.27

    Water Velocity, v = 1.83 m/sec (range: 1.5 to 2.1m/sec)

    Solving for the total amount of cooling water, TcwQ

    sec/1097.2/512.996

    sec/96.2 333

    mxmkg

    kgQcompressor

    sec/1082.10/512.996sec/78.10 333 mxmkg

    kgQcondenser

    condensercompressorTcw QQQ

    sec/)1082.101097.2( 333 mxxQTcw

    sec/01379.0 3mQTcw

  • 8/14/2019 DESIGN OF COOLING TOWER.docx

    8/17

    PIPE SIZE FOR THE SUPPLY AND RETURN PIPES

    From cooling tower pool to tee-run

    vDQTcw2

    4

    sec83.1

    4sec01379.0 2

    3 mD

    m

    D= 0.0979 m = 97.9 mm

    USE: 100 mm NPS schedule 40 (from Table 7-2 Dimensions of steel pipe by

    Wilbert F. Stoeker, P 136)

    OD = 114.3 mm ID = 102.3 mm

    From tee-run to condenser inlet

    vDQcondenser2

    4

    sec83.1

    4sec1082.10 2

    33 mDm

    x

    D= 0.08676 m = 86.76 mm

    USE: 100 mm NPS schedule 40 (from Table 7-2 Dimensions of steel pipe by

    Wilbert F. Stoeker, P 136)

    OD = 114.3 mm ID = 102.3 mm

  • 8/14/2019 DESIGN OF COOLING TOWER.docx

    9/17

    From tee-run to compressor inlet

    vDQcompressor2

    4

    sec83.1

    4sec1097.2 2

    33 mDm

    x

    D= 0.04545 m = 45.45 mm

    USE: 50 mm NPS schedule 40 (from M.E.T.C. Steel Pipe Dimensions, P 114.)

    OD = 73.03 mm ID = 62.65 mm

  • 8/14/2019 DESIGN OF COOLING TOWER.docx

    10/17

    COOLING WATER PUMP

    Design Data:

    Type Centrifugal

    Capacity, QP 0.01379 m3/sec

    Average water temperature, tave 27.50C

    Water density, 996.4129 kg/m3

    Main pipe 100 mm NPS

    Capacity, QT 0.01379 m3/sec

    Condenser pipe 100 mm NPS

    Capacity, Qcond

    0.01082 m

    3

    /sec

    Compressor pipe 50 mm NPS

    Capacity, Qcomp 0.00297 m3/sec

    Static head, hS 2 m

  • 8/14/2019 DESIGN OF COOLING TOWER.docx

    11/17

    Friction Heads,hf

    kpLfactorcorrectioneTemperaturdropessurelengthequivalentTotalh ef Pr

    For the main line, 100 mm NPS, Schedule 40, from cooling tower to Tee of

    condenser

    Straight Pipe ------------------------------------------------------------ 6.42 m

    2 900elbow ------------------------------------------------------------ 6 m

    1 Standard tee ------------------------------------------------------------ 4.16 m

    1 Gate valve ------------------------------------------------------------ 0.52 m

    1 Check valve ------------------------------------------------------------ 9.15 m

    __________

    Total length 26.25 m

    For the condenser line, 100 mm NPS, Schedule 40, from condenser tee to

    condenser inlet

    Straight Pipe ------------------------------------------------------------ 2.23 m

    1 Standard tee ------------------------------------------------------------ 5.18 m

    1 gate valve (open) --------------------------------------------------- 0.52 m

  • 8/14/2019 DESIGN OF COOLING TOWER.docx

    12/17

    1 900elbow ------------------------------------------------------------ 3.0 m

    ____________

    Total length 10.93 m

    For the condenser tubes, 25 mm NPS, Schedule 40

    Straight Pipe ------------------------------------------------------ 279 m

    3 Close return bend --------------------------------------------- 49.41 m

    ____________

    Total length 328.41 m

    For the compressor line, 50 mm NPS, Schedule 40, from condenser tee to

    compressor tee

    Straight Pipe ------------------------------------------------------------ 3.8 m

    1 Standard tee ------------------------------------------------------------ 0.9 m

    1 gate valve (open) --------------------------------------------------- 0.09 m

    1 900elbow ------------------------------------------------------------ 0.6 m

  • 8/14/2019 DESIGN OF COOLING TOWER.docx

    13/17

    ____________

    Total length 5.39 m

    From Compressor Tee to compressor inlet, 50 mm NPS, Schedule 40

    Straight Pipe ------------------------------------------------------------ 3.0 m

    1 Standard tee ------------------------------------------------------------ 0.9 m

    1 gate valve (open) --------------------------------------------------- 0.09 m

    ____________

    Total length 3.99 m

    For the compressor jacket water line, assume equivalent length of 2 m inside

    the compressor cooling water system.

    From Figure 76, Pressure drop for water flowing in schedule 40 steel pipes,

    Refr igeration and Ai r-conditioning by Stoecker & Jones, page 138.

    For 100 mm pipe & 7.89 L/sec, p= 220 Pa / m

  • 8/14/2019 DESIGN OF COOLING TOWER.docx

    14/17

    For 100 mm pipe & 7.65 L/sec, p= 370 Pa / m

    For 50 mm pipe & 2.97 L/sec, p= 400 Pa / m

    For 25 mm pipe & 0.24 L/sec, p= 1300 Pa / m

    From Figure 7 7, Multiplying factors for pressure drops to correct for

    temperature, Refri gerati on and Air -conditioning by Stoecker & Jones, page 139.

    For taveof 27.50C & 1.52 m/sec water velocity, k= 0.98

    Therefore the friction heads hf, are equal to,

    ofmkPa

    OHofmxkPaPax

    m

    Paxmhf

    21 5756.01017.06595.55.659,598.0

    22025.26

    omkPa

    OHofmxkPaPax

    m

    Paxmhf

    22 403.01017.0963.3218.963,398.0

    37093.10

    mkPa

    OHofmxkPaPax

    m

    Paxmhf

    23 55.421017.039.4184.394,41898.0

    130041.328

    ofmkPa

    OHofmxkPaPax

    m

    Paxmhf

    24 2148.01017.0112.288.211298.0

    40039.5

  • 8/14/2019 DESIGN OF COOLING TOWER.docx

    15/17

    HofmkPa

    OHofmxkPaPax

    m

    Paxmhf

    25 159.01017.0564.108.156498.0

    40099.3

    OHofmkPa

    OHofmxkPaPax

    m

    Paxmhf 2

    26 3.01017.098.2298998.0

    15252

    Also the total friction head hfT,is equal to,

    hhhhhhh ffffffSf 654321 443.0159.02148.055.42403.05756.0

    Total friction head,hfT

    Assuming the supply line equal to the discharge line,

    SfTf hh 2

    Therefore,

    OHofmOHofmh Tf 22 4.882.442

    Total Pumping Head,HT

    OHofmhhH SfTT 24.9024.88

  • 8/14/2019 DESIGN OF COOLING TOWER.docx

    16/17

    Water Horsepower,Whp

    hp

    hpkW

    mmkNmHQW TwaterPhp 4.16

    746.0

    4.9081.9sec01379.0

    746.0

    33

    Motor Power,Pm

    p

    hpm

    m

    hpp

    WPPW

    ;

    Using 75 % pump efficiency,

    hphp

    Pm 86.2175.0

    4.16

    For standard motor sizes, use 25 hp electric motor for the cooling water pump.

  • 8/14/2019 DESIGN OF COOLING TOWER.docx

    17/17