Design of Aqueduct

30
Design of Aqueduct Input Data canal data Full Supply Discharge = 0.9825 cumecs Full Supply Level = 560.259 m Canal Bed Level = 559.499 m Canal Water Depth (D) = 0.76 m Canal Bed Width (B) = 0.80 m Rugosity coff for concrete (n) = 0.016 side slope = 1.5 :1 bed slope = 1800 free board = 0.4 Drainage Data High Flood Discharge (Q) = 18.00 cumecs High Flood Level = 557.00 m High Flood Depth = 2.00 m General Ground Level = 555.00 m Design of Drainage water way Lacey`s regime Perimeter (P) = = 20.15254 assume clear span b/w pier = 10 m thickness of pier = 1.5 m No. of ways provided = 2 no of piers = 1 water way between abutments (L) = 21.5 m Deisgn of canal water way bed width of canal = 0.80 m = 0.60 m Assume Spaly in contraction = 2 :1 splay in expansion = 3 :1 length of contraction transition = 0.2 m length of expansion transition = 0.3 m = 21.5 m 4.75*(Q 1/2 ) thickness of peir and accordingly no. of ways and no. of piers to provide. No. of piers are one less than no. of ways. let the cnala flumed to (B0) length of flummed rectangular portion of the canal between abutments In the transitions , the side slopes of the section will be warped from 1.5:1 to vertical.

description

design of aqueduct

Transcript of Design of Aqueduct

Page 1: Design of Aqueduct

Design of Aqueduct

Input Datacanal dataFull Supply Discharge = 0.9825 cumecsFull Supply Level = 560.259 mCanal Bed Level = 559.499 mCanal Water Depth (D) = 0.76 mCanal Bed Width (B) = 0.80 mRugosity coff for concrete (n) = 0.016side slope = 1.5 :1bed slope = 1800free board = 0.4

Drainage DataHigh Flood Discharge (Q) = 18.00 cumecsHigh Flood Level = 557.00 mHigh Flood Depth = 2.00 mGeneral Ground Level = 555.00 m

Design of Drainage water way

Lacey`s regime Perimeter (P) == 20.15254

assume clear span b/w pier = 10 mthickness of pier = 1.5 mNo. of ways provided = 2no of piers = 1water way between abutments (L) = 21.5 m

Deisgn of canal water way

bed width of canal = 0.80 m

= 0.60 mAssumeSpaly in contraction = 2 :1splay in expansion = 3 :1

length of contraction transition = 0.2 mlength of expansion transition = 0.3 m

= 21.5 m

Head loss and Bed levels at different sections

At section 4-4

4.75*(Q1/2)

Based on perimeter assume clear span width and thickness of peir and accordingly no. of ways and no. of piers to provide. No. of

piers are one less than no. of ways.

let the cnala flumed to (B0)

length of flummed rectangular portion of the canal between abutments

In the transitions , the side slopes of the section will be warped from 1.5:1 to vertical.

Page 2: Design of Aqueduct

Area of Section (A4) = (B+1.5D)*D

= 1.4744Velocity (V4) = Q/A

= 0.666373 m/s

Velocity Head == 0.022633 m

RL of Bed (given) = 559.499 mRL of Water Surface = 560.259 mRL of T.E.L. = 560.282 m

At section 3-3keeping the same water depth thoughout the channel

Area of Section (A3) =

= 0.456Velocity (V3) = Q/A

= 2.154605 m/s

m2

V2/2g

B0*D

m2

Page 3: Design of Aqueduct

Velocity Head == 0.236612 m

loss of head in expnasion from section 3-3 to 4-4

== 0.064194

RL of T.E.L. = 560.346 mRL of Water Surface = 560.109 mRL of Bed (given) = 559.349 m

At section 2-2

Length of Trough Section = 21.5 m

Area of Trough = 0.456wetted perimeter = 2.12 mHydraulic mean depth = 0.215094 mvelocity in Trough = Q/A

= 2.154605 m/s

== 0.198263 m

RL of T.E.L. = 560.544 mRL of Water Surface = 560.307 mRL of Bed (given) = 559.547 m

At section 1-1

Loss of head in Contraction transition from 1-1 to 2-2

== 0.042796

RL of T.E.L. = 560.587 mRL of Water Surface = 560.564 mRL of Bed (given) = 559.804 m

Design of Transitions

V2/2g

0.3(V32-V4

2)/2g

m2

Froction loss b/w 2-2 to 3-3 (HL) (n2*V2*L)/(R4/3)

0.2(V32-V4

2)/2g

Page 4: Design of Aqueduct

Contraction transitionBy Mitra`s Hyperbolic Transition equation

= 0.60 m

= 0.80 m

= 0.20 mx is the distance at which distance u want bed width

=

x = 0 0.05 0.1 0.15 0.2Bx = 0.6 0.64 0.685714 0.738462 0.8

Expansion transitionBy Mitra`s Hyperbolic Transition equation

= 0.60 m

= 0.80 m

= 0.30 m

=x = 0 0.05 0.15 0.2 0.25 0.3

Bx = 0.6 0.626087 0.685714 0.72 0.757895 0.8

Design of Trough

Tentative thickness of walls = 0.1 mBottom Slab of Trough = 0.15 mClear Width b/w Wall = 0.6 m

Bf

Bn

length of contaction tansition Lf

Bx Bn*Bf*Lf/Lf*Bn-x(Bn-Bf)

Bf

Bn

length of expansion tansition Lf

Bx Bn*Bf*Lf/Lf*Bn-x(Bn-Bf)

The trough will be of 0.6m and wall thickness will be 0.1m. A free board of 0.14m above FSD of 0.76m may be sufficient . Hence the Height of the Trough will therfore be kept equal to 0.76+0.14=0.9m.

The Entire Section will be constrcued in monolithic reinforced concrete & designed by usual strcutural methods.

1 2 3 4

Page 5: Design of Aqueduct

0.80 0.60

0.2 21.5 0.3

TEL RL 560.587 560.544 560.346 560.282Water Surface RL 560.564 560.307 560.109 560.259

Bed Level RL 559.804 559.547 559.349 559.499

TroughContraction Tarnsition

Expansion Tarnsition

1 2 3 4

4321

Canal

Page 6: Design of Aqueduct

AQUEDUCT TROUGH DESIGNNAME OF WORK:- PKN

CANAL DATA FOR AQUEDUCT (Vertical section)1 Discharge 0.9825 cumec 0.9825 cumec 270

2 Bed width 0.80 m 0.60 m

3 water Side slope 1.5 :1 vertical :1

4 F.S.D. 0.76 m 0.76 m

5 Free Board 0.40 m 0.40 m

6 Bed slope 1 in 1800 1 in 1800

7 C.B.L. 559.499 m 559.499 m

2008 F.S.L. 560.26 m 560.259

9 M.W.D. 1.16 m 1.16 m

10 Span 10.00 m 10000 mm

11 Concrete M- 20 wt. of concrete 25000

7 m 13 30012 Steel Inside Out side

150 190

13 Water wt 9800

14 Reinforcement (in wall) Main Vertical 10 90

15 Reinforcement (in Slab) Main 16 110

16 Reinforcement (in wall Beam) Main bottom 20 6

17 Distribution (in wall Beam) two lgd. Strrirps 8 300

18 Trough Wall thickness 270 mm or 0.27

19 Trough Slab thickness 300 mm or 0.30

kg/m3

scbc

sst sst

kg/m3

mm F @

mm F @

mm f

mm F @

pk_nandwana@yahoo,co,in

Page 7: Design of Aqueduct

AQUEDUCT TROUGH DESIGNPKN

FOR AQUEDUCT (Vertical section)TBL 960.26 270600

F.B. 400

10 180

F.S.L. 560.259

8 mm 2 ledge stirrups@ 300

8 140

10 90

FSD 76016 220

16 110

Hench 8 130

10 300

6 20

CBL 559.499 0.12

720

200 200

mm c/c Disty. 8 140 mm c/c

mm c/c Disty. 8 130 mm c/c

Nos. 16 2 Nos.

mm c/c

mtr

mtr

2x 16 mm F top anchor bar

mm F bars@

mm F bars@

mm F bars@

mm F bars@

mm F bars@

mm F bars@

mm F bars@

x Bars F

mm F @

mm F @

Top anchor mm Nos.

Page 8: Design of Aqueduct

15 115 20 45 33 44 18 40 20 41 20 40 18

AQUEDUCT TROUGH DESIGN

NAME OF WORK:- PKN

CANAL DATA

Discharge 0.9825 cumec 0.9825 cumecBed width 0.80 m 0.60 mwater Side slope 1.5 :1 verticalF.S.D. 0.76 m 0.76 mFree Board 0.40 m 0.40 mBed slope 1800 1800C.B.L. 559.499 m 559.499 mF.S.L. 560.26 m 560.259 mM.W.D. 1.16 m 1.16 m

10.00 mNominal Cover 50 mmEffective cover 40 mm

1 Design Constants:- For HYSD Bars Concrete M- 20for water side force

= 150 wt. of concrete = 25000= 7 wt of water = 9800

m = 13m*c

=13 x 7

= 0.37813 x 7 + 150= 1 - 0.378 / 3 = 0.874= 0.5 x 7 x 0.87 x 0.378 = 1.155

for out side force

= 190 wt. of concrete = 25000= 7 wt of water = 9800

m = 13m*c

=13 x 7

= 0.32413 x 7 + 190= 1 - 0.324 / 3 = 0.892= 0.5 x 7 x 0.892 x 0.324 = 1.011

2 DESIGN OF VERTICAL WALL:-

The trough wall is to be designed as a beam having a span of = 10.00 mbetween supports Hence thickness should be equal to span/28

span=

10.00 x 1000= 360 mm say

28 28Max.depth of water = 1.16 m span = 10.00 m

B.M. = =9800 x 1.16 3

=6 6

Effective depth required =BM

=2549 x 1000

=Rxb 1.16 x 1000

Providing thickness "D"= 360 mm cover = 50 mm, Effective depth =

FOR QUEDUCT

Span (Proposed)

sst = N/mm2 N/m3

scbc = N/mm2 N/mm2

k=m*c+sst

j=1-k/3R=1/2xc x j x k

sst = N/mm2 N/m3

scbc = N/mm2 N/mm2

k=m*c+sst

j=1-k/3R=1/2xc x j x k

wh3

Page 9: Design of Aqueduct

Steel required

Ast =BMx1000

=2549 x 1000

= 61150 x 0.892 x 310

using 10 mm bars = A = =3.14 x

4 x 100spacing =A/Ast = 78.50 x 1000 / 61.46 = 1277 mm

Hence Provided 10 mm bars @ 1270 mm c/c half the bars will be curtailed at

= 0.3 -0.1 ( 36 - 10 )

45 - 10

Area of distribution steel required = 0.23 % of x section area =0.23 x

100

Steel of Each face =813

= 4062

using 8 mm bars A = = 3.14 x4 x100

spacing =A/Ast = 50.24 x 1000 / 406.29 = 123.657 mmHence Provided 8 mm bars @ 120 mm c/c Each face

3 Design of Horizontal slabe :-

The trough slab having a span of of = 0.60 mbetween walls Hence thickness should be equal to span/20

span=

0.60 x 1000= 30 mm say

20 20Adopt effective thickness of slab "T" = 100 mm cover = 50 mm Total thickness

Effective span of slab = BW+ depth = 0.6 +Loading

Load of water column = mwd x 9800 = 1.16 x 9800 =Wt of slab = wt of concrete x area of slab = 25000 x 1.00 x 0.1 =

per meter length

Total water pressure on vertical wall= =9800 x 1.16 x 1.16

=2 2

\ Fixing moment at end of slab = 6593 x1.2

+3

Max. possible segging moment = =13868 x 0.96 x 0.96

=8 8

Net B.M. at center of span of slab= = 1598 - 3538 = -1941 kg-m The slab is design for this B.M.

Since tension face is out side = 190 J = 0.892 ,

Effective depth required =BM

=-1941 x 1000

= 43.813 mmRxb 1.011 x 1000

Provided Effective depth 44 mm cover = 50 mm providing thickness

Steel required

Ast =-1940.89 x 1000

= -261190 x 0.89 x 44

using 16 mm bars = A = =3.14 x

mm2

sst x j x D

3.14xdia2

minimum steel to be provided for distribution

mm2

3.14xdia2

wH2

WL2

s st

BMx100/sstxjxD= mm2

3.14xdia2

Page 10: Design of Aqueduct

using 16 mm bars = A =4 x 100

=

spacing =A/Ast = 201 x 1000 / -261 = -768.877 mmHence Provided 16 mm bars @ -760 mm c/c

Area of steel required at end (Near support) =3538 x 1000

=150 x 0.874 x 44

This is < than half the steel provided at the center of span,However, half the bars from the center of the span may be bent up at L/2 meter from supports.

Let us check whether this bending of half bars satisfies the enchorage and devlopments envisaged in

1x

1000 x 201x 190 x

2 -760= -0.98 x N-mm

=13868 x 0.96

= 6657 N2

= - x' - + = -2 2

= Length of support = 360 mm and x' = side cover =

M1=

-0.98 x+

360- 50 +

V 6657 2

= =F x 150

= 46.88 F4 x 0.8

= 46.88 x 16 = 750 mm

or 191 < 750 Thus the requirement is not satisfied

= 0.3 -0.1 ( 94 - 100 )

450 - 100

Area of distribution steel required = 0.30 % of x section area =0.30 x

100

Steel of Each face =283

= 1422

using 8 mm bars A = = 3.14 x4

spacing =A/Ast = 50.24 x 1000 / 141.55 = 355 cmHence Provided 8 mm bars @ 350 cm c/c Each face

4 Design of side wall as Beam :-

live load from slab = total load on slab x bw / 2 = 13868 x 0.6 /Self load = mwd x thick. x wt = 1.16 x 0.36 x

Total Load

Max. possible segging moment= =14600 x 10.00 x 10.00

=8 8

= 190 k = 0.324 J =

Effective depth required =BM

=182505 x 1000

=Rxb 1.011 x 360

Actual depth '= 1.16 + 0.10 = 1.26 or 1260 mmBut providing thickness = 1260 mm - (2 x cover = 80 )=

Steel required

equation M1/V + Lo > Ld

Where M1= Ast x sst x j x d=

10'6

V = shear force at the ends

Lo

ls 3 F 16 Fls

Where Ls

+ Lo

10'6

Ld

F sst4 t bd

minimum steel to be provided for distribution

mm2

3.14xdia2

WL2

using sst N/mm2

Page 11: Design of Aqueduct

Ast =182505.0 x 1000

= 913190 x 0.892 x 1180

using 20 mm bars A = = 3.14 x4 x100

Nomber of Bars = Ast/A = 913 / 314 = 2.91Hence Provided 3 bars of 20

% of steel provided =3 x 314

x 100 = 0.22 %360 x 1180

Shear force =total load x span

=14600 x 10.0

=2 2

Shear stress =

shea force=

73002.0=

Beam Ht. x Beam Dt. 360 x 1180Permissible shear stress for 0.22 % = 0.2

Shear reinforcenment required if < Hence shear reinforcement not required

= 0.20 x 1180 x 360 == = 73002 - 84960 = -11958

= =190 x 1180

-11958

<2.175 x fy x Asy

<2.175 x

B

Hence = 2.51

Hence using 8 mm dia 2 Legged stirrups A = 100.5

= 2.51 x 100.5 = 252 mm subject to a max.

Hence provideed 8 mm Dia 2 legged shear stirrus @

Provide

BMx100/sstxjxD= mm2

3.14xdia2

mm F at Bottom

steel provided tc N/mm2

TV Tc

Vc = shear resistance of concrete = tc.b.d

Vs V - Vc

Spacing of strirrups is given by

Sv

sst .d.AsvAsv

Vs

While maximum permissible spacing of shear stirip is

Sv Asv

mm2

Sv

2 x 12 mm F hoilding bars at the top.

Page 12: Design of Aqueduct

40 16 34 16 34 26

AQUEDUCT TROUGH DESIGN

PKN

for water side force

K = 0.378

J = 0.874R = 1.155

for out side force

K = 0.324

J = 0.892R = 1.011

mm say 360 mm

2549 N-m2549463n-mm

47 mm

mm, Effective depth = 310 mm

N/m3

N/mm2

N/m3

N/mm2

Page 13: Design of Aqueduct

10 x 10= 78.5

4

0.78 m from base

= 0.23 %

360 x 1000= 813

100

8 x 8= 50.2

4

mm say 100 mm

Total thickness = 150 mm0.36 = 0.96 m

11368 N2500 N

13868 N

6593

0.3= 3538 N-m

2

1598 N-m

The slab is design for this B.M.

R = 1.011

mm

providing thickness = 94 mm

16 x 16= 201

mm2

mm2

mm2

mm2

mm2

mm2

Page 14: Design of Aqueduct

4= 201

616

than half the steel provided at the center of span,However, half the bars from the center of the span may be bent up at L/2 meter from supports.

Let us check whether this bending of half bars satisfies the enchorage and devlopments envisaged in

0.892 x 44

x' +

side cover = 50 mm

13 x 16 = 190.5 mm

See table Concrete 3.4 M 20

Thus the requirement is not satisfied

= 0.30 %

94 x 1000= 283

100

8 x 8= 50.2

4

2 = 4160 kg-m25000 = 10440 kg-m

Total Load = 14600 kg-m

182505 Kg-m

0.892 R = 1.011

708 mm

mm1180 mm

mm2

mm2

13 F

mm2

mm2

Page 15: Design of Aqueduct

20 x 20= 314

4say = 3 No.

73002 kg.

0.17

(See Table 3.1)Hence shear reinforcement not required

84960 NN

= -18.75

415 x Asv< 2.51 Asv

360

subject to a max. = 300 mm300 mm c/c

mm2

mm2

N/mm2

N/mm2

Asv Asv

Page 16: Design of Aqueduct

NAME OF WORK:- PKN

270 TBL 758.58 2705000

F.B. 500

10 180

F.S.L. 258.58

8 mm 2 ledge stirrups@ 300

8 140

10 90

FSD 200016 220

16 110

8 130

200 10 300

6 20

CBL 256.58 1.00

300 720

200 200

2x 16 mm F top anchor bar

mm F bars@

mm F bars@

mm F bars@

mm F bars@

mm F bars@

mm F bars@

mm F bars@

x Bars F

Page 18: Design of Aqueduct

Grade of co M-10 M-15 M-20 M-25 M-30 M-35 M-40 bd

1.2 2.0 2.8 3.2 3.6 4.0 4.40.250.500.751.001.25

(N/mm2) (N/mm2) (N/mm2) 1.50M 10 3.0 300 2.5 250 -- -- 1.75M 15 5.0 500 4.0 400 0.6 60 2.00M 20 7.0 700 5.0 500 0.8 80 2.25M 25 8.5 850 6.0 600 0.9 90 2.50M 30 10.0 1000 8.0 800 1.0 100 2.75M 35 11.5 1150 9.0 900 1.1 110 3.00 and above

M 40 13.0 1300 10.0 1000 1.2 120M 45 14.5 1450 11.0 1100 1.3 130M 50 16.0 1600 12.0 1200 1.4 140

Over all depth of slab

k

Grade of co M-10 M-15 M-20 M-25 M-30 M-35 M-40Modular ra

Grade of concrete

Grade of concrete M-15 M-20 M-25 M-30 M-35 M-40

Modular Ratio 18.67 13.33 10.98 9.33 8.11 7.18 Grade of concrete M5 7 8.5 10 11.5 13

93.33 93.33 93.33 93.33 93.33 93.330.4 0.4 0.4 0.4 0.4 0.4

0.867 0.867 0.867 0.867 0.867 0.8670.867 1.214 1.474 1.734 1.994 2.2540.714 1 1.214 1.429 1.643 1.857

0.329 0.329 0.329 0.329 0.329 0.329 M 15

0.89 0.89 0.89 0.89 0.89 0.89 M 200.732 1.025 1.244 1.464 1.684 1.903 M 250.433 0.606 0.736 0.866 0.997 1.127 M 300.289 0.289 0.289 0.289 0.289 0.289 M 350.904 0.904 0.904 0.904 0.904 0.904 M 400.653 0.914 1.11 1.306 1.502 1.698 M 450.314 0.44 0.534 0.628 0.722 0.816 M 50

Table 1.15. PERMISSIBLE DIRECT TENSILE STRESSTable 3.1. Permissible shear stress Table tc in concrete (IS : 456-2000)

100A s

Tensile stress N/mm2

< 0.15

Table 1.16.. Permissible stress in concrete (IS : 456-2000)

Grade of concrete

Permission stress in compression (N/mm2) Permissible stress in bond (Average) for plain bars in tention (N/mm2)Bending acbc Direct (acc)

Kg/m2 Kg/m2 in kg/m2

Table 3.2. Facor k

Table 1.18. MODULAR RATIO

Table 3.3. Maximum shear stress tc.max in concrete (IS : 456-2000)31 (31.11)

19 (18.67)

13 (13.33)

11 (10.98)

9 (9.33)

8 (8.11)

7 (7.18)

tc.max Table 2.1. VALUES OF DESIGN CONSTANTS

Table 3.4. Permissible Bond stress Table tbd in concrete (IS : 456-2000)

scbc N/mm2 tbd (N / mm2)

m scbc

(a) sst = 140

N/mm2 (Fe 250)

kcTable 3.5. Development Length in tension

jc

Rc Grade of concretePc (%)

(b) sst = 190

N/mm2

kc

jc

Rc

Pc (%)

(c ) sst = 230 N/mm2 (Fe 415)

kc

jc

Rc

Pc (%)

Page 19: Design of Aqueduct

Reiforcement %

M-20 M-20bd bd

0.15 0.18 0.18 0.15

0.16 0.18 0.19 0.18

0.17 0.18 0.2 0.21

0.18 0.19 0.21 0.24

0.19 0.19 0.22 0.270.2 0.19 0.23 0.3

0.21 0.2 0.24 0.32

0.22 0.2 0.25 0.350.23 0.2 0.26 0.38

0.24 0.21 0.27 0.410.25 0.21 0.28 0.44

0.26 0.21 0.29 0.470.27 0.22 0.30 0.5

0.28 0.22 0.31 0.550.29 0.22 0.32 0.6

0.3 0.23 0.33 0.650.31 0.23 0.34 0.7

0.32 0.24 0.35 0.750.33 0.24 0.36 0.82

0.34 0.24 0.37 0.88

0.35 0.25 0.38 0.94

0.36 0.25 0.39 1.000.37 0.25 0.4 1.080.38 0.26 0.41 1.160.39 0.26 0.42 1.250.4 0.26 0.43 1.33

0.41 0.27 0.44 1.410.42 0.27 0.45 1.500.43 0.27 0.46 1.630.44 0.28 0.46 1.640.45 0.28 0.47 1.750.46 0.28 0.48 1.880.47 0.29 0.49 2.000.48 0.29 0.50 2.130.49 0.29 0.51 2.250.5 0.30

0.51 0.300.52 0.300.53 0.300.54 0.300.55 0.31

Shear stress tc

100A s 100A s

Page 20: Design of Aqueduct

0.56 0.310.57 0.310.58 0.310.59 0.310.6 0.32

0.61 0.320.62 0.320.63 0.320.64 0.320.65 0.330.66 0.330.67 0.330.68 0.330.69 0.330.7 0.34

0.71 0.340.72 0.340.73 0.340.74 0.340.75 0.350.76 0.350.77 0.350.78 0.350.79 0.350.8 0.35

0.81 0.350.82 0.360.83 0.360.84 0.360.85 0.360.86 0.360.87 0.360.88 0.370.89 0.370.9 0.37

0.91 0.370.92 0.370.93 0.370.94 0.380.95 0.380.96 0.380.97 0.380.98 0.380.99 0.381.00 0.391.01 0.391.02 0.391.03 0.39

Page 21: Design of Aqueduct

1.04 0.391.05 0.391.06 0.391.07 0.391.08 0.41.09 0.41.10 0.41.11 0.41.12 0.41.13 0.41.14 0.41.15 0.41.16 0.411.17 0.411.18 0.411.19 0.411.20 0.411.21 0.411.22 0.411.23 0.411.24 0.411.25 0.421.26 0.421.27 0.421.28 0.421.29 0.421.30 0.421.31 0.421.32 0.421.33 0.431.34 0.431.35 0.431.36 0.431.37 0.431.38 0.431.39 0.431.40 0.431.41 0.441.42 0.441.43 0.441.44 0.441.45 0.441.46 0.441.47 0.441.48 0.441.49 0.441.50 0.451.51 0.45

Page 22: Design of Aqueduct

1.52 0.451.53 0.451.54 0.451.55 0.451.56 0.451.57 0.451.58 0.451.59 0.451.60 0.451.61 0.451.62 0.451.63 0.461.64 0.461.65 0.461.66 0.461.67 0.461.68 0.461.69 0.461.70 0.461.71 0.461.72 0.461.73 0.461.74 0.461.75 0.471.76 0.471.77 0.471.78 0.471.79 0.471.80 0.471.81 0.471.82 0.471.83 0.471.84 0.471.85 0.471.86 0.471.87 0.471.88 0.481.89 0.481.90 0.481.91 0.481.92 0.481.93 0.481.94 0.481.95 0.481.96 0.481.97 0.481.98 0.481.99 0.48

Page 23: Design of Aqueduct

2.00 0.492.01 0.492.02 0.492.03 0.492.04 0.492.05 0.492.06 0.492.07 0.492.08 0.492.09 0.492.10 0.492.11 0.492.12 0.492.13 0.502.14 0.502.15 0.502.16 0.502.17 0.502.18 0.502.19 0.502.20 0.502.21 0.502.22 0.502.23 0.502.24 0.502.25 0.512.26 0.512.27 0.512.28 0.512.29 0.512.30 0.512.31 0.512.32 0.512.33 0.512.34 0.512.35 0.512.36 0.512.37 0.512.38 0.512.39 0.512.40 0.512.41 0.512.42 0.512.43 0.512.44 0.512.45 0.512.46 0.512.47 0.51

Page 24: Design of Aqueduct

2.48 0.512.49 0.512.50 0.512.51 0.512.52 0.512.53 0.512.54 0.512.55 0.512.56 0.512.57 0.512.58 0.512.59 0.512.60 0.512.61 0.512.62 0.512.63 0.512.64 0.512.65 0.512.66 0.512.67 0.512.68 0.512.69 0.512.70 0.512.71 0.512.72 0.512.73 0.512.74 0.512.75 0.512.76 0.512.77 0.512.78 0.512.79 0.512.80 0.512.81 0.512.82 0.512.83 0.512.84 0.512.85 0.512.86 0.512.87 0.512.88 0.512.89 0.512.90 0.512.91 0.512.92 0.512.93 0.512.94 0.512.95 0.51

Page 25: Design of Aqueduct

2.96 0.512.97 0.512.98 0.512.99 0.513.00 0.513.01 0.513.02 0.513.03 0.513.04 0.513.05 0.513.06 0.513.07 0.513.08 0.513.09 0.513.10 0.513.11 0.513.12 0.513.13 0.513.14 0.513.15 0.51

Page 26: Design of Aqueduct

bd M-15 M-20 M-25 M-30 M-35 M-400.18 0.18 0.19 0.2 0.2 0.2

0.25 0.22 0.22 0.23 0.23 0.23 0.230.50 0.29 0.30 0.31 0.31 0.31 0.320.75 0.34 0.35 0.36 0.37 0.37 0.381.00 0.37 0.39 0.40 0.41 0.42 0.421.25 0.40 0.42 0.44 0.45 0.45 0.461.50 0.42 0.45 0.46 0.48 0.49 0.491.75 0.44 0.47 0.49 0.50 0.52 0.522.00 0.44 0.49 0.51 0.53 0.54 0.552.25 0.44 0.51 0.53 0.55 0.56 0.572.50 0.44 0.51 0.55 0.57 0.58 0.602.75 0.44 0.51 0.56 0.58 0.60 0.62

3.00 and above 0.44 0.51 0.57 0.6 0.62 0.63

Over all depth of slab 300 or more 275 250 225 200 175 150 or lessk 1.00 1.05 1.10 1.15 1.20 1.25 1.30

Grade of concrete M-15 M-20 M-25 M-30 M-35 M-401.6 1.8 1.9 2.2 2.3 2.5

10 15 20 25 30 35 40 45 50-- 0.6 0.8 0.9 1 1.1 1.2 1.3 1.4

Plain M.S. Bars H.Y.S.D. Bars

0.6 58 0.96 600.8 44 1.28 450.9 39 1.44 401 35 1.6 36

1.1 32 1.76 331.2 29 1.92 301.3 27 2.08 281.4 25 2.24 26

Table 3.1. Permissible shear stress Table tc in concrete (IS : 456-2000)100A s Permissible shear stress in concrete tc N/mm2

< 0.15

Table 3.2. Facor k

Table 3.3. Maximum shear stress tc.max in concrete (IS : 456-2000)

tc.max

Table 3.4. Permissible Bond stress Table tbd in concrete (IS : 456-2000)

Table 3.5. Development Length in tension

tbd (N / mm2) kd = Ld F tbd (N / mm2) kd = Ld F