“Design of an Autonomous Hovering Miniature Air Vehicle ...· “Design of an Autonomous Hovering

download “Design of an Autonomous Hovering Miniature Air Vehicle ...· “Design of an Autonomous Hovering

of 152

  • date post

    27-Jun-2018
  • Category

    Documents

  • view

    215
  • download

    0

Embed Size (px)

Transcript of “Design of an Autonomous Hovering Miniature Air Vehicle ...· “Design of an Autonomous Hovering

  • Design of an Autonomous Hovering

    Miniature Air Vehicle as a Flying

    Research Platform

    By

    James F. Roberts, B.E (Microelectronic Eng.)

    Submitted in fulfilment of the requirements for the degree of Master of Engineering

    Research

    The University of Sydney

    New South Wales

    Australia

    March, 2007

  • Master of Engineering Research Author: James F. Roberts, March 2007 Page 2

    Project Contact Details:

    MER Student: Name: James F. Roberts University of Sydney Address: Silky Ridge, 104 Stokers Rd Stokers Siding, NSW, 2484 Phone: +61-2-66-779530 Fax: +61-2-66-779100 Email: james.roberts@jimonics.com

    Project Supervisor: Name: Dr KC Wong University of Sydney Address: Room N312 J11 - Aeronautical Engineering Building University of Sydney NSW 2006 Australia Phone: +61 4 1348 2519

    Fax: +61 2 9351 4841 E-mail: kc@aeromech.usyd.edu.au

    Associate Supervisor: Name: Dr Doug Auld University of Sydney Address: Room N310 J11 - Aeronautical Engineering Building University of Sydney NSW 2006 Australia Phone: +61 2 9351 2336 Fax: +61 2 9351 4841 E-mail: d.auld@usyd.edu.au

  • Master of Engineering Research Author: James F. Roberts, March 2007 Page 3

    Table of Contents:

    I. ACKNOWLEDGMENTS: 11

    II. STATEMENT OF ORIGINALITY: 14

    III. EXECUTIVE SUMMARY: 16

    CHAPTER 1 19

    1.0 INTRODUCTION: 19

    1.1 SYSTEM REQUIREMENTS: 22 1.1.1 Platform: 23 1.1.2 Control and sensors: 25

    1.2 RESEARCH AND EDUCATION 27

    CHAPTER 2 29

    2.0 PLATFORM RESEARCH: 29

    2.1 COMMERCIALLY AVAILABLE PLATFORMS: 29 2.2 OTHER RESEARCH PLATFORMS: 32 2.3 PLATFORM CONTROLLABILITY RESEARCH: 36 2.4 ADVANTAGES OF CONTRA ROTATING COAXIAL ROTORS: 40 2.5 PRELIMINARY PLATFORM TESTING: 41

    2.5.1 The AstroFlyer: 41 2.5.2 The AstroWing: 42 2.5.3 The Lampshade: 43 2.5.4 The Flying Motor: 44

    2.6 SELECTED PLATFORM DESIGN: 45

    CHAPTER 3 47

    3.0 SENSOR RESEARCH: 47

    3.1 STABILITY SENSORS: 47 3.2 ALTITUDE SENSORS: 50 3.3 SELECTED SENSORS: 51 3.4 SENSORS: 52

    3.4.1 MEMS 3D Accelerometer: 53 3.4.2 2-Axis Magnetometer: 55 3.4.3 Pressure Altitude: 59

    CHAPTER 4 64

    4.0 PLATFORM STABILITY: 64

    4.1 STABILITY CONTROLLER SELECTION: 65 4.2 PROPORTIONAL INTEGRAL DERIVATIVE CONTROLLER: 65 4.3 LINEAR QUADRATIC REGULATOR CONTROLLER: 66 4.4 NEURAL NETWORK CONTROLLER: 67 4.5 MODEL PREDICTIVE CONTROL CONTROLLER: 67 4.6 CHOSEN CONTROLLER: 68

  • Master of Engineering Research Author: James F. Roberts, March 2007 Page 4

    CHAPTER 5 69

    5.0 SYSTEM DESIGN: 69

    5.1 PLATFORM DESIGN SOLUTION: 69 5.2 PROPULSION SYSTEM: 70

    5.2.1 Mechanical Propulsion Device: 70 5.2.2 Energy Storage Device: 70

    5.3 COLLISION PROTECTION SYSTEM: 71 5.4 PLATFORM CONTROLLABILITY: 72

    5.4.1 Altitude Control: 72 5.4.2 Yaw Control: 73 5.4.3 X & Y Translation Control: 73

    CHAPTER 6 75

    6.0 AVIONICS HARDWARE DESIGN: 75

    6.1 ORIGINAL R/C ELECTRONICS: 75 6.2 DATA ACQUISITION: 77 6.3 CENTRAL PROCESSING UNIT: 78

    6.3.1 Microchip PIC18F252 [43]: 79 6.3.2 Atmel ATMEGA162 [44]: 81 6.3.3 Chosen Processor: 83

    6.4 CONTROL ACTUATORS: 83 6.5 PROPULSION SYSTEM: 86 6.6 COMMUNICATIONS: 86

    6.6.1 9-Xtend [47] (see figure 52): 87 6.6.2 Xbee [48] (see figure 53): 88 6.6.3 Wiport [49] (see figure 54): 89 6.6.4 Chosen Communications System: 90

    6.7 THE MICROBRAIN: 90 6.7.1 Specifications: 90 6.7.2 Schematics: 92 6.7.3 PCB Design: 98

    6.8 EXTERNAL SENSOR CONNECTIVITY: 100

    CHAPTER 7 104

    7.0 AVIONICS SOFTWARE DESIGN: 104

    7.1 EMBEDDED FLIGHT COMPUTER: 105 7.1.1 Microcontroller Initialisation: 105 7.1.2 Sensors: 106 7.1.3 Controllers: 106 7.1.4 Actuators: 108 7.1.5 Main Program Flow: 108

    7.2 EMBEDDED GROUND STATION: 109 7.2.1 Remote Control: 109 7.2.2 Differential Pressure Updates: 109 7.2.3 HMI Sensor Updates: 110 7.2.4 Main Program Flow: 110

    7.3 GROUND STATION HMI: 111 7.3.1 Graphical User Interface (GUI): 111 7.3.2 Displaying Real-time Sensor Data: 111 7.3.3 Configurable High-Level Control: 112

  • Master of Engineering Research Author: James F. Roberts, March 2007 Page 5

    CHAPTER 8 114

    8.0 OPERATIONAL TESTING: 114

    8.1 SENSOR TESTING: 115 8.1.1 MEMS 3D Accelerometer: 115 8.1.2 2-Axis Magnetometer: 116 8.1.3 Pressure Altitude: 117

    8.2 PLATFORM R/C TESTING: 122 8.2.1 Collision Protection System: 123 8.2.2 Test Results: 123 8.2.3 Problems: 123 8.2.4 Solutions: 123

    8.3 YAW CONTROL TESTING: 124 8.3.1 Test Results: 124 8.3.2 Problems: 124 8.3.3 Solutions: 124

    8.4 ROLL & PITCH CONTROL TESTING: 125 8.4.1 Test Results: 125 8.4.2 Problems: 125 8.4.3 Solutions: 125

    8.5 FULL AUTONOMY TESTING: 126 8.5.1 Test Results: 126 8.5.2 Problems: 126 8.5.3 Solutions: 126

    CHAPTER 9 127

    9.0 EXAMPLE APPLICATION: 127

    9.1 PROJECT DESCRIPTION: 127 9.2 RECOMMENDED HARDWARE: 129 9.3 METHOD FOR CALCULATING DISTANCE: 130 9.4 IMPLEMENTING A COLLISION AVOIDANCE ALGORITHM: 131 9.5 AUTO GENERATION OF THE STRUCTURE OF THE MAIN PROGRAM: 132 9.6 POSSIBLE SENSOR PLACEMENT: 132 9.7 RECOMMENDED ANALYSIS: 133

    CHAPTER 10 134

    10.0 CLOSING REMARKS: 134

    10.1 DISCUSSION: 134 10.2 FUTURE WORK: 136 10.3 CONCLUSION: 137

    VI. REFERENCES: 142

    VII. APPENDIX: 146

    1.0 SENSOR SCHEMATICS 147

    2.0 THE MICROBRAIN SCHEMATIC 151

  • Master of Engineering Research Author: James F. Roberts, March 2007 Page 6

    List of Equations:

    Equation 1: Bearing in Radians ........................................................................................ 58 Equation 2: Bearing in Degrees ........................................................................................ 58 Equation 3: Standard Air Density ..................................................................................... 61 Equation 4: Standard Temperature ................................................................................... 61 Equation 5: Standard Pressure .......................................................................................... 61 Equation 6: Standard Humidity ........................................................................................ 61 Equation 7: Sensor Pressure.............................................................................................. 62 Equation 8: Sensor Humidity............................................................................................ 62 Equation 9: Sensor Temperature....................................................................................... 62 Equation 10: Euler Angle - Roll ..................................................................................... 107 Equation 11: Euler Angle - Pitch .................................................................................... 107 Equation 12: Euler Angle - Yaw..................................................................................... 107 Equation 13: Sonar Distance........................................................................................... 128 Equation 14: Distance from ADC Value ........................................................................ 131 Equation 15: Euler Angle Gravity Component............................................................ 135

  • Master of Engineering Research Author: James F. Roberts, March 2007 Page 7

    List of Figures: Figure 1: Proxflyer - Blade Runner [8]............................................................................. 29 Figure 2: Proxflyer Semi-articulated Blades [9]............................................................... 30 Figure 3: X-UFO quad rotor [10]...................................................................................... 30 Figure 4: Twister Bell-47 [11] .......................................................................................... 31 Figure 5: Left - Top rotor semi-articulated stabiliser, Right - Bottom rotor cyclic [13] .. 32 Figure 6: Precession effect [14] ........................................................................................ 32 Figure 7: Coander effect MAV [15] ................................................................................. 33 Figure 8: iStar MAV [17] ................................................................................................. 34 Figure 9: MicroDrone MD4-200 [19]............................................................................... 35 Figure 10: Drexel hovering fixed wing MAV [20]........................................................... 35 Figure 11: Active structure hovering MAV [21] .............................................................. 36 Figure 12: SMA structure deformation [21] ..................................................................... 37 Figure 13: C.G shifting [24].............................................................................................. 38 Figure 14: Control vanes [17] ........................................................................................... 38 Figure 15: Contra-rotating coaxial helicopter with horizontal thrusters [25] ................... 39 Figure 16: Cyclic blade control [27]................................................................................. 39 Figure 17: Asymmetrical Airflow [14] ............................................................................. 40 Figure 18: AstroFlyer Biplane .......................................................................................... 41 Figure 19: AstroWing .........................................