Design for 2150 Dia 3800 HT

10
Co-Current Scrubber GENERAL DETAILS PAGE: 1 GENERAL DETAILS a project = b Title of the work = c File name for further reference = d Name of the client = e Name of manufacturer = 2 GEOMETRICAL DETAILS a Shell Volume Desired V = 13.8 13.8 M^3 b L/D Ratio L/Di = 1.77 1.77 Ratio c Diameter Di = > 2150 2150.0 mm d Total Height of the CYL. Shell (FRP) Hs = > 3800 3800.0 mm e Tank Shell FRP Wt. Hwt = kg Top/Left Bottom/Left f Cover Height or Length = 416.61458 mm 0.0 mm g Cover Volume = 0 m3 m3 h FRP Weight = 1542.6244 Kg Kg i Total FRP Weight = Kg Kg 3 STORED LIQUID a Assumptions Regarding Stirring = Not Stirred SECTION A :GENERAL DESIGN DETAILS, SAFETY FACTOR AND ALLOWABLE LOADS - MECHANICAL DESIGN Pressure vessel Knexir Consulatant M/S BHAVI PLAST PVT LTD a Assumptions Regarding Stirring = Not Stirred b Density of the liquid r = 1300 Kg/m 3 1.3 g/cm 3 c Design Fluid height (from base line) 3800 mm max F-Ht = 3800 mm max d Fluid Weight L/B Covr Shell R/T Covr Total Consider? > no yes no 'Weight > 0 17937.0 0.0 17937.0 e Total Process Wt. = 17937 Kg 4 PRESSURE/VACUUM a Fluid/Gas in equilibrium with stored Liquid = b Pressure over and above fluid head Pi = 20000.00 = 0.1962000 N/mm 2 c Vacuum Pv = 150.00 = 0.0014715 N/mm 2 5 CYCLIC LOAD: number of Cycles Ns = 3650 Nos/10 years 6 TEMPERATURE a Operating Temp Ot = 70 Deg Cel b Design Temperature Dt = 80 Deg Cel mm W.C mm W.C Dnax ML 4/7/2015 1:55 PM www.bs4994.com [email protected], [email protected] sheet for toris top& bottom 2150dia 3800Ht Knexir

description

d

Transcript of Design for 2150 Dia 3800 HT

Page 1: Design for 2150 Dia 3800 HT

Co-Current Scrubber GENERAL DETAILS PAGE:

1 GENERAL DETAILS

a project =

b Title of the work =

c File name for further reference =

d Name of the client =

e Name of manufacturer =

2 GEOMETRICAL DETAILS

a Shell Volume Desired V = 13.8 13.8 M^3

b L/D Ratio L/Di = 1.77 1.77 Ratio

c Diameter Di = >>>> 2150 2150.0 mm

d Total Height of the CYL. Shell (FRP) Hs = >>>> 3800 3800.0 mm

e Tank Shell FRP Wt. Hwt = kg

Top/Left Bottom/Left

f Cover Height or Length = 416.61458 mm 0.0 mm

g Cover Volume = 0 m3 m3

h FRP Weight = 1542.6244 Kg Kg

i Total FRP Weight = Kg Kg

3 STORED LIQUID

a Assumptions Regarding Stirring = Not Stirred

SECTION A :GENERAL DESIGN DETAILS, SAFETY FACTOR AND ALLOWABLE LOADS

-

MECHANICAL DESIGN

Pressure vessel

Knexir Consulatant

M/S BHAVI PLAST PVT LTD

a Assumptions Regarding Stirring = Not Stirred

b Density of the liquid r = 1300 Kg/m3

1.3 g/cm3

c Design Fluid height (from base line) 3800 mm max

F-Ht = 3800 mm max

d Fluid Weight L/B Covr Shell R/T Covr Total

Consider? > no yes no

'Weight > 0 17937.0 0.0 17937.0

e Total Process Wt. = 17937 Kg

4 PRESSURE/VACUUM

a Fluid/Gas in equilibrium with stored Liquid =

b Pressure over and above fluid head Pi = 20000.00

= 0.1962000 N/mm2

c Vacuum Pv = 150.00

= 0.0014715 N/mm2

5 CYCLIC LOAD: number of Cycles Ns = 3650 Nos/10 years

6 TEMPERATURE

a Operating Temp Ot = 70 Deg Cel

b Design Temperature Dt = 80 Deg Cel

mm W.C

mm W.C

Dnax ML

4/7/2015 1:55 PMwww.bs4994.com

[email protected], [email protected] for toris top& bottom 2150dia 3800Ht Knexir

Page 2: Design for 2150 Dia 3800 HT

Co-Current Scrubber GENERAL DETAILS PAGE:

c HDT of resin used HDT = 100 Deg Cel

7 WHETHER IN-DOOR OR OUT-DOOR = Outdoor

a Wind Pressure*** Pw 200.00

= 0.001962 N/mm2

8 Seismic Coefficient*** Ef = 0.16 No Unit

a *** Numerical value to be verified by approver

9 MATERIALS OF CONSTRUCTION

a Resin =

Heat Distortion Temperature HDT = 100 Degree Cel. resin density

e-r = 2 % 1.10

Furane? = N

CSM WRM SM glass density

b Glass Density = 0.45 0.61 0.04 Kg/m^2 2.54 g/cc

c Fibre Content = 33 45 10 %

Strain at break Coefficient of thermal exp

d Other Parameters = 2 0.0000046 / 0C

Kg/m^2

Isophthalic Resin

e UV protective top coat = [YES]

=

f thermoplastic lining = YES 3 mm of

= 33.20 89 Kg Approx

g Thermosetting lining = NO 0 mats of CSM/RESIN

10 FABRICATION

a Method of manufacturing =

b Construction TOP = CSM

SHELL = CSM/WRM

BOTTOM = CSM

c Post Curing = NO

d Post Curing Temperature = - Degree Cel.

11 DESIGN PROPERTIES CSM WRM Units

a Ultimate Tensile unit strength U 200.00 250.00 N/mm per Kg/m2

glass mat

(p 10, BS4994-87)

b Ultimate Tensile Strength S 89.29 166.67 N/mm2

S = U/Tg

Hand Lay-Up

Resin Rich Coat with UV

GL-PP

4/7/2015 1:55 PMwww.bs4994.com

[email protected], [email protected] for toris top& bottom 2150dia 3800Ht Knexir

Page 3: Design for 2150 Dia 3800 HT

Co-Current Scrubber GENERAL DETAILS PAGE:

c Unit Modulus X 14000.00 16000.00 N/mm per Kg/m2

glass mat

(p 10, BS4994-87)

d Unit modulus of 1 mat X1 6300.00 9760.00 N/mm per Kg/m2

glass mat

e Modulus of Elasticity E 6250.00 10666.67 N/mm for (1 mat as specified at 9b)

E=X/Tg

f Fiber content {wt %} Fc 33.00 45.00 %

(ref p 20, Figure 5 BS4994-87)

g Resin to glass ratio r 2.03 1.22 No Unit

h Layer Thickness Constant TG 2.24 1.50 mm per Kg/m2 glass mat

i Inter Laminar Lap Shear Strength Tou 7.00 6.00 N/mm

j In Plane Poisson's Ratio IPPR 0.30 0.30

k Single mat thickness T-1 1.01 0.92 mm (for 1 mat as specified at 9b)

12 CALCULATION OF SAFETY FACTOR

a Factor for Method of Manufacturing = Hand Lay-Up

K1 = 1.50

b Factor for Strength Loss = yes

Strength Loss = N/A

K2 = 1.20

c Factor for Design Temperature

[1.25-.0125(HDT-20-Dt)] HDT = 100 Degree Cel.

DT = 80 Degree Cel.

K3 = 1.00

d Factor For Cyclic Loading

Number Of Cycles in life time = 3650

[1.1+.9(log N-3)/3] K4 = 1.27

e Factor for Curing Temperature

Post Curing = not post cured

Post Cure TEMPERATURE = - [Degree Cel.]

K5 = 1.50

f Over all Safety Factor K-cal = 10.287 K = 10.29

13 CALCULATIONS FOR ALLOWABLE DESIGN LOADS

CSM WRM

a LOAD LIMITED UNIT LOAD Ul = 19.44 24.30 N/mm per Kg/m2 Reinforcement

[=U/K]

b DESIGN STRAIN

b1 Max allowable resin-strain e-res = 0.200 %

[min of 0.1*e-r and 0.2]

b2 Resin strain limited unit load Urs = 28.00 32.00 N/mm per Kg/m2 Reinforcement

b3 Allowable reinforcement strain e-rein = 0.139 0.152

[(Ul/X)*100] 0.000

b4 Design Strain (reinforcement limited) e-d,rein = %

[minimum of e-l's of csm and wrm]

4/7/2015 1:55 PMwww.bs4994.com

[email protected], [email protected] for toris top& bottom 2150dia 3800Ht Knexir

Page 4: Design for 2150 Dia 3800 HT

Co-Current Scrubber GENERAL DETAILS PAGE:

b5 Over all design strain e-d = 0.139 %

[min of all strains]

c STRAIN LIMITED LOADS

c1 CSM-Strain limited unit load Us = 19.44 22.22 N/mm per Kg/m2 Reinforcement

[=X*e-d/100]

d DESIGN UNIT LOADS

d1 Design Unit Load Ud = 19.44 22.22 N/mm per Kg/m2 Reinforcement

[Minimum among Ul and Us]

e Allowed Unit load per current mat Ud-1 = 8.749 13.554 N/mm (for mats specified at 9b)

4/7/2015 1:55 PMwww.bs4994.com

[email protected], [email protected] for toris top& bottom 2150dia 3800Ht Knexir

Page 5: Design for 2150 Dia 3800 HT

1 DATA

a Shape of top end = Torispherical

b Radius of Dishing Ri = 2150 mm No Error Message

c Knuckle Radius ri = 215.0 mm No Error Message

Enter different value and select from blue cell above =

d Diameter Di = 2150 mm

e Height Ht = 416.6 mm

f Area of the dish (APPROX) Ad = 2.8 m^2

g Volume of dished portion Vd = 0.99 m^3

2 DESIGN FOR INTERNAL PRESSURES

a ht/Di = 0.1938

b t/Di = 0.0288 Assumed Thk = 62.00

c ri/Di = 0.1000

d Shape Factor Ks = 2.52

(Ref table 11, BS4994, 1997)

e Internal Pressure Pi = 0.196200 N/mm^2

f Standard Design Load Pi-std = 200 Kg/m^2

(Load of person working etc) = 0.001962 N/mm^2

g Self Weight SW-d = 9.00 Kg / squire meter

h Pressure due to self weight P-sw = 0.000088 N/mm^2

I Internal Vacuum Pv = 0.001472 N/mm^2

j Design Pressure Pi-d = 0.196288 N/mm^2

(max of Pi, Pi-std)+Psw

k Unit Load due to pressure Qcp = 531.74 N/mm 0.04 2.35

[0.5*Pi*Di*Ks] 0.02 2.65

0.0288 2.517442

l Unit Load due to Vaccum Qcc = 5.26 N/mm

[0.66*Pv*Di*Ks]

Note: Refer equation (44), BS 4994-87

m Design unit Load Q Qd = 531.74 N/mm

(MAX of Qcp and Qcc)

n Number of mats = 60.77845 N/mm

(Qd / U1-csm please also see GENERAL DETAILS 13e) 62

o Current Thickness = 62.50 mm

p t/Di = 0.02906791

q Final no. of mats = 62

r mass for above no of mat = 27.9 kg

5 WEIGHT CALCULATIONS

Weight of TP lining if any = 7.59 Kg

Weight of Chemical Res CSM = 0.000 Kg

Resin for Chemical Res CSM = 0.000 Kg

Weight of mechanical CSM = 78.5 Kg

Resin for mechanical CSM = 159.3 Kg

Surface Mat (SM) = 0.1 kg

Resin for SM and Gelcot = 0.2 Kg

6 APPROX WEIGHT TRANSMITTED

Total weight of the area W-top = 245.7 Kg

SECTION B: TORISPHERICAL TOP

Page 6: Design for 2150 Dia 3800 HT

C: CYLINDRICAL SHELL

Chemical Resistant

1 CSM-WRM balanceCSM - WRM= 1 1 1

SM SM

2 SHELL Above Supp Below Supp

a Number of segments Ns-A = 1 NS-B= 1b Segments starts (from base-line) from = 3800 from= 1300c Support Centre Line (from base-line) To = 1300 To= 0d Segment Length Sl-A = 2500 Sl-B= 1300

SHELL DESIGN 1 6

2. SEGMENT DETAILS

2. 1 Segment, from (mm from base line) = 3800.0 1300.0

to to

2. 2 Segment, to (mm from base line) = 1300.0 0.0

2. 3 Segment length (mm) Hs = 2500.0 1300.0

2. 4 Length from support to free end Hs-W 2500.0 1300.0

2. 5 Stiffner Gap in the segment (mm) L = 2500.0 1300.0

2. 6 Max Fluid Head at lawest point. (mm) Hs-f = 2500 3800

2 7 Fluid weight tensile load on shell Fw-ten = 0 19891

3. DESIGN FOR CIRCUMFERENCIAL UNIT LOAD

3. 1 Unit load d.t. fluid pressure (N/mm) Qcf = 34.27 52.10

[sp gravity*height*dia*9.81/2000000]

3. 2 Unit load d. t. internal pressure, Qcp = 210.92 210.92

[Qcp=Pi*Di/2]

3. 3 Max Circumferential Unit Load Qcm = 245.19 263.01

[Qcm = Qcf+Qcp]

3. 4 Circumferencial Unit Load

due to vaccum, Qcv = 1.58 1.58

[Qcv=Pv*Di/2]

3. 5 Design Circumfer. Unit load Q-fi = 245.19 263.01

[MAXIMUM of Qcv or Qcm]

[Eq 7 of BS 4994-87]

3. 6 Mat requirement for this (Nos) CSM = 13 13

WRM = 11 11

CSMroundup 14 14

WRM 12 12

4. DESIGN OF SHELL OF AXIAL LOAD, 14.3, BS 4994-87

1 Weight Transmitted from.....

4. Top Cover or Bottom Cover (Kg) W1 = 246

Page 7: Design for 2150 Dia 3800 HT

Total weight transmtd from top/bot Wts = 246 0

Self Weight (kg) Wsw = 532 315

Weight of fluid supported in shell Not Applic. 21175

Weight of fluid supported at bottom con 246

Total wt transmitted on the segment Wtb = 778 21737

4. 2 Weight that transilate to axial load(Kg) = 778 21737

Total (N) Wt = 7627 213236

4. 3 Axial Compres./Tensile unit load

due to Weight, Qc-wt = 1.13 31.59

[Wt/(3.145*Di)]

[This is a part of RHS of eq 9, BS 4994-87]

4. 4 Axial Compressive unit

load due to vaccum (N/mm) Qcv = 1.58 1.58

[Pv*Di/4]

4. 5 Total effective pressure pi = 0.196 0.196

contributing to axial stress

4. 6 Axial tensile unit load

due to pressure Qcp = 106.929 106.929

[pi Di / 4]

[This is first part of eq 9, BS 4994-87]

4. 7 Wind horizontal load per unit height

[Pw*Di] Fw = 4.22 4.22

4. 8 Horiz Earth Quake Load per Unit Ht Fe = 0.57 0.57

Ef*density*3.142*Di Squire*9.81/(4,000,000)

[weight per unit ht * Ef]

4. 9 Design horizontal load Fh = 4.22 4.22

max (Fw,Fe)

4. 10 Design Bending Moment due to Mhd = 13182188 3564464

horizontal load

Fh*height^2/2

4. 10 Axial unit tension/compression QM = 3.63 0.98

load due to wind pressure

and earth quake pressure (N/mm)

4 * Mhd / (3.142*Di squire)

[This is middle part of RHS of eq 9, BS 4994-87 ]

QXt = 109.432 139.497

QXc = 6.34 2.56

4. 11 Max Axial Unit Load (N/mm) Qx = 109.43 139.50

MAX(Qcp+QM+/-Qc.wt (tension) and Qcv+QM+/-Qc.wt (compression))

Mat requirement CSM = 7 8

WRM = 5 6

CSMroundup= 2 3

WRM = 0 1

4. 12 Mat Requirement CSM = 14 14

WRM = 12 12

Page 8: Design for 2150 Dia 3800 HT

4. 13 Thickness CSM = 13.10 13.10

WRM = 10.98 10.98

TOTAL = 24.08 24.08

5. DESIGN FOR COMPRESSIVE LOAD (14.3.3, BS 4994-87)

4. 15 OD of the shell OD = 2198.2 2198.2

Pl refer final laminate properties below

5. 1 Assumed mat for compressive load CSM 14.00 14.00

[this should be less than finalised WRM 12.00 12.00

number of mats]

4. 14 Unit modulus of laminate X-lam CSM = 88200 88200

WRM = 117120 117120

TOTAL = 205320 205320

5. 1 Total compressive load on shell Qp = 6.34 2.56

Qcv+QM+Qc.wt for above support

Qcv+QM for below support

5. 2 Thickness to limit permissible tc = 0.45 0.18

compressive load (mm)

Qp = (0.6 tc*X lam)/F Do

5. 3 Mats requirement to meet this CSM = 3 3

thickness WRM = 1 1

[ F Do Qc / (0.6 t Xlam) ]

Final mat Requirement CSM = 14 14

WRM = 12 12

Thickness 24.08 24.08

Xlam 205320.00 205320.00

6. DESIGN FOR EXTERNAL PRESSURE (14.4, BS 4994-87)

6. 1 Total effective External pressure P = 0.001962 0.001962

6. 2 Effective length of the shell L = 2500 1300

[see Fig 8, BS 4994-87]

6. 3 Thickness of shell t-lam = 24.08 24.08

6. 4 X-lam based on final laminate = 205320 205320

6. 5 OD of shell = 2198.2 2198.2

6. 6 Shape Factor S = 1.137 0.591

[L/ Do]

b Factor 1.35(Elam/Fp)^.17 q = 14.337 14.337

6. 7 E-lam = X-lam/t-lam = 8525 8525

6. 8 FACTOR [Refer eq 14 and 15 of F = 4 4

of BS 4994- 87]

6. 9 Minimum Shell Thk to avoid tm = 6.18 4.76

buckling

[Refer eq 15 and 16 of BS 4994- 87]

Page 9: Design for 2150 Dia 3800 HT

6. 10 Mat requirement to meet this CSM = 5 4

WRM = 3 2

CSMroundup= 4 4

WRM = 2 2

6. 11 Design Mats Quantity CSM = 14 14WRM = 12 12

Thickness = 24.08 24.08

Chemical Resistant Layer = 0 0Thickness = 0.00 0.00

Thickness of TP lining 3.00 3.00

Total Thk = 27.1 27.1

6. 12 W-lam (Kg/m^2)

[Number Of Mat*Type Of Mat*W-FI]

CSM FRP = 322.17 167.53

Mechanical Layers WRM FRP = 274.27 142.62

TOTAL = 596.44 310.15

Chemical Layers = 69.04 69.04

Gel coat/Surface mat (Internal) = 2.07 1.08

Surface mat / Resin Coat (External) = 2.07 1.08

Total Wlam = 669.63 381.34

6. 13 Area of the segment (m^2) A-s = 0.68 8.10

6. 14 Weight of Segment (Kg) = 11.3 153.8

6 16 Total FRP weight of Shell = 1051.0

Page 10: Design for 2150 Dia 3800 HT

1 DATA

a Shape of top end = Torispherical

b Radius of Dishing Ri = 2150.000 mm No Error Message

c Knuckle Radius ri = 215.000 mm No Error Message

Enter different value and select from blue cell above =

d Diameter Di = 2150.000 mm

e Height Ht = 416.615 mm

f Area of the dish (APPROX) Ad = 2.813 m^2

g Volume of dished portion Vd = 0.988 m^3

2 DESIGN FOR INTERNAL PRESSURES

a ht/Di = 0.194

b t/Di = 0.0288 Assumed Thk = 62.00

c ri/Di = 0.100

d Shape Factor Ks = 2.520

(Ref table 11, BS4994, 1997)

e Internal Pressure Pi = 0.196 N/mm^2

f Standard Design Load Pi-std = 0.054 N/mm^2

(Load of person working etc) = N/mm^2

g Self Weight SW-d = 9.000 Kg / squire meter

h Pressure due to self weight P-sw = 0.000088 N/mm^2

I Internal Vacuum Pv = 0.00147 N/mm^2

j Design Pressure Pi-d = 0.196 N/mm^2

(max of Pi, Pi-std)+Psw

k Unit Load due to pressure Qcp = 531.745 N/mm 0.04 2.35

[0.5*Pi*Di*Ks] 0.02 2.65

0.0288 2.517442

l Unit Load due to Vaccum Qcc = 5.262 N/mm

[0.66*Pv*Di*Ks]

Note: Refer equation (44), BS 4994-87

m Design unit Load Q Qd = 531.745 N/mm

(MAX of Qcp and Qcc)

n Number of mats = 60.778

(Qd / U1-csm please also see GENERAL DETAILS 13e) 62.000

o Current Thickness = 62.496 mm

p t/Di = 0.0291

q Final no. of mats = 62.000

r mass for above no of mat = 27.900 kg

5 WEIGHT CALCULATIONS

Weight of TP lining if any = 7.847 Kg

Weight of Chemical Res CSM = 0.000 Kg

Resin for Chemical Res CSM = 0.000 Kg

Weight of mechanical CSM = 78.471 Kg

Resin for mechanical CSM = 159.295 Kg

Surface Mat (SM) = 0.113 kg

Resin for SM and Gelcot = 0.228 Kg

6 APPROX WEIGHT TRANSMITTED

Total weight of the area W-top = 245.954 Kg

SECTION B: TORISPHERICAL Bottom