Design and Operational Testing on Thryristor Module for the SVC Kemps Creeek_siemens

download Design and Operational Testing on Thryristor Module for the SVC Kemps Creeek_siemens

of 6

Transcript of Design and Operational Testing on Thryristor Module for the SVC Kemps Creeek_siemens

  • 8/9/2019 Design and Operational Testing on Thryristor Module for the SVC Kemps Creeek_siemens

    1/6

     

    1321

    DESIGN AND O PERATIONAL TESTING ON THYRISTOR MODULES FORTHE SVC KEM PS CREEK

    B Endres G.Thiele

    Siemens AG

    Erlangen.Germany

    I.Bonfant i

    A b s tr a c t Th e p ap e r de a ls w i th th e d e s ig n a n d o p e ra t i o n a l

    test ing o f va lves fo r the

    SVC

    t o b e i n s ta l l e d a t K e mp s Cre e k

    Substation in Austral ia The most impo rtan t design pr inciples and

    features o f the thyr is tor modules are g iven

    O p e r a t i o n a l te s ts ca r r i e d o u t o n th e th y r i s to r mo d u le s a re

    descr ibed, fo r th is test p rogram, notew or thy test c i rcui ts h ave

    b e e n se t u p to p e r fo rm b o t h

    TSR

    and TSC fau l t cur rent tests wi t h

    h igh test va lues and special wave forms Test resu l ts and test

    circuits are presented Dielectr ic tests carried out on th e valve and

    valve structure are no t included

    Keywords: SVC, t h y r i s t o r va l ve, o p e ra t i o n a l te s ts ,

    TSC

    f a u l t

    curren t test, TCRflSR fau lt current test

    G.

    Testi

    CESl

    Mi lan, I ta ly

    INTRODUCTION

    The in terconnect ion o f the South Austra l ian power system wi th

    the previously in terconnected V ictor ia and New South Wales

    system

    i s

    scheduled to take p lace in 1990

    To

    avo id degrad ing o f

    the po wer transfer capabi l i ty of the existing Victor ia New South

    Wales system, tw o Static Var C ompensators (SVC) wi l l be instal led

    in the Sydney area a t Kemps Creek

    /1/

    Each SVC consists of t w o Thyristor Swit ched Capa citors (TSC)

    ra te d a t 100 (TSC1) and 50 (TSCZ) MVAr and one Thyr is tor

    Switched Reactor (TSR) rated at 100 MVAr TSR and

    TSC

    valves

    have similiar structural arrangeme nts Concerning TSR, a 3-phase

    valve tower consisting of 3 water -coo led thyr is tor m odules (one

    modu le per va lve) , one on top o f the o ther , was used As

    t

    the

    TSC valves, tw o series-connected modules provid e one phase and

    there fore the 3-phase ar rangement consists o f two va lve tow ers

    The

    SVC

    valves were subjected in 1988 to an extensive type test

    program Die lectr ic tests were car r ied out o n the va lve structure

    a n d o n th e val ve s Fu n c t i o n a l te s ts we r e p e r fo rme d o n th e

    thyr is tor modules o f TSC and TSR by using special ly designed

    pow er circuits

    Th is paper deals wi th these funct iona l tests To d iscuss test

    results and test circuits, it is necessary

    to

    d e a l w i th th e va l ve

    design pr inc iples Deta i led in forma t ion i s g i v e n o n t h e p o w e r

    circuits and o n the w ay o f ob taining fau lt current stresses on TSR

    an d TSC valves

    90 l nr 041-4 PWFB

     

    paper recommended and approved

    by the I Sub sta tion s Committee o t h e I Power

    Engineering Society for presentation

    a t

    the IEEE/PES

    1990 Winter Meeting Atlanta Georgia February

    Manuscrip t submi tted August 31 1989:

    made available for printing November 17 1989.

    -

    8 1990.

    SVC

    GENERAL DESCRIPTION AND MA IN D ATA

    As ment ioned above, the SVC in Kemps Creek consists of t w o

    ident ica l un i ts fo r re l iab i l ity considera t ions The requ i red power

    of the comple te SVC was f ixed a t 300 MVA r capaci t ive and 200

    MV Ar inductive Each SVC unit comprises one

    TSR

    a n d t w o TSCs

    and

    i s

    e q u ipp e d w i th

    i t s

    ow n step-down t ransformer The TSR

    ra te d p o we r

    is

    100 MVAr , the TSCs provide 100 a n d 50 MVAr,

    respectively

    Thus a un i fo rm step

    size

    of about 50 MVAr

    is

    achieved over the

    ent i re contro l range

    of

    t h e t w o SVCs (-2OOMVAr / + 300MVAr)

    In order to avo id harmonic genera t ion

    it

    was decided to use a

    TSR instead of a Thyristor Control led R eactor (TCR) The general

    conf igura t ion o f one

    SVC is

    i l lustra ted in F igure

    1

    330

    k V

    150 MVA

    LT SC l

    k

    T S C l

    TSC

    1

    100 M V A r

    4

    A

    TSCZ

    TSC 2

    50

    M V A r

    f LTSR

    SR

    LTSR

    100 M V A r

    f LTSR

    f

    LTSR

    TSR

    100 M V A r

    Flq . l :S impl i f ied s ing le l ine d iagram of one SVC

    M AI N STRESSES CONSIDERED FOR VALVE DESIGN

    The transient stresses considered for th e valve design i nclu de

    those occuring at load rejection, severe 3-phase and single-phase

    system faults, TSR and TSC mis f i r i n g , e tc , o r r e su l t i n g f r o m a

    combinat ion o f these events

    TSC o ve rvo l ta q e ca u se d b y l o a d r e j e c t i o n . Un d e r n o rma l

    cond i t ions th e SVC i s requ i red to provide capaci t ive load i f the

    system voltage drops belo w a specified level and induc tive load i f

    the system voltage

    is

    beyond th is leve l A f te r load re ject ion the

    transient v oltage r ises e g

    f r o m 0

    7

    p U

    t o 1

    3

    p U Request fo r

    inductive load means instantaneous b locking of t h e

    TSC

    va lve

    af ter load re ject ion , t ransient overvo l tages may then force the

    capacito r vo l tage up to abou t 2 5 p

    U

    Since the recovery voltage

    of the valve

    i s

    the sum of the dc vo l tage a t the capaci to r and the

    system voltage, valve peak voltages of abo ut

    4

    p U are possible A

    va lve d e s ig n a l l o w in g fo r su ch h i g h vo l ta g e s wo u ld n o t b e

    economical

  • 8/9/2019 Design and Operational Testing on Thryristor Module for the SVC Kemps Creeek_siemens

    2/6

     

    1322

    The valve vo l tage can be redu ced by m eans o f a r res t o rs

    connected across th e capacitor ban k an d across the valve. The

    arran gem ent of these arresters is also shown in Figure

    1 .

    Misf ir inq of TSC valves: By the special arrester arran geme nt

    shown in Figure 1 the valve vol tage w i l l be l im i ted to sui table

    values.even in case of a TSC misfiring. Misfiring of a TSC can at

    wors t occur whe n the system vol tage and th e ca'pac itor bank

    voltage are in phase opposit ion. Although misf ir ing of the valve

    in i t iated by mal funct ion of the cont ro l sys tem is unl ikely , the

    valve design must al low for th e stress caused by mis f ir ing witho ut

    a risk of valve damage.

    In the case of m is fi r ing, th e rate-of - rise of t he fa ul t current w i l l

    be l imi ted by the series reactor to prevent the thyr is tor valve

    from being overstressed.

    - - - - - - - -

    Valve misf ir ing

    I

  • 8/9/2019 Design and Operational Testing on Thryristor Module for the SVC Kemps Creeek_siemens

    3/6

     

    1323

    THYRISTOR VALVE AND MOD ULE DESIGN

    To al low f or th e steady-state conditions as we l l as the transient

    stresses on the valve, and considering test safety margins, the TSR

    si li con w i th a wafer d iameter o f 100 mm and vo l tage ra t ings o f

    5 5 kV in fo rw ard and reverse d irect ion .

    To transmit valve con trol signals from th e valve base electronics

    at ea r th potent ia l t o each thyr is tor , the TSC an d TSR valves a re

    connected wi th a f ib re opt ic system as re liab ly used for HVDC

    valves

    A

    description can be found in

    /3/ )

    F r o n t v i e w

    ' or

    electronics

    l h y r i s i o r m o d u l t

    Duct

    l o r l i g h t

    Snunber c a p a c i l

    wa t e r

    c o o e a

    ,

    snubner

    r e r i s i

    guides

    S i d e

    v i e w

    T hyr is t o r

    e le c t r o n m

    d \

    F l q V a l v e o w er

    valve i s designed wi th

    1 1

    thyr istor levels, whereas the TSC valves

    have 22 thyr istor levels in series The TSR th ree-phase va lve

    shown in Figure

    5

    consists o f three m odules arranged one above

    the o ther in the fo rm o f a tow er , whereas the TSC- three-phase

    va lve consists o f t w o such towers

    TSR

    and TSC modu les are ident ica l except fo r t he adop ted

    snubber circuits

    A

    v ie w o f t h e t h y r i s t o r m o d u l e

    i s

    sh o wn i n

    Figure

    6

    Thyristor module

    A

    t h y r is t o r m o d u l e c o m p r i s e s t w o a n t i p a r a l l e l s t a c k s o f

    thyrist ors Each stack consists of

    1 1

    thyr istors Each antipa ral lel

    pair of thyr istors forms a thyr istor level with a paral lel-connected

    snubber e lement Fur thermore the thyr is tors are each provided

    wi th an electronic card, which gives fi r ing signals to th e thyr istor

    gate e lectrode and checkback s igna ls to a m oni tor ing system

    Cross cur rent t ransformers are f i t ted betwe en the two stacks The

    thyristors used for this projec t are made from neutro n-irradia ted

    Powe r supply for thyr istor electronics: The p owe r supply via cross

    cur rent t ransformer is wo r th to b e n o t ice d .

    Thyristor

    I Cross curre nt electro nics

    PS U): Power

    supply via voltage

    or snubber circuit

    PS(I): Power

    supply via current

    -

    Snubber circuit

    Optical f iber

    transm ission

    f i r ing and

    moni tor ing

    signals

    d i rect on

    Pr inc i ia l d iagram of power supp ly fo r thyr is tor e lectron ics

    In addition t o the energy extra ction via the snubber circuit as

    u se d i n th e ca se

    of

    HV DC va l ve s o r TCR va l ve s , cu r re n t

    t r a n s fo r m e r s ar e us ed t o p r o v i d e p o w e r f o r t h e t h y r i s t o r

    e lectronics dur ing the on-sta te per iod o f TSR or TSC valves B y

    plac ing these t ransformers in the cross connect ion o f t he tw o

    stacks, a compact thyr is tor module is a ch ie ve d Th e p r i n c i p a l

    d iagram of his powe r supp ly ar rangement

    is

    shown in F igure 7

    Valve control: The fi r ing of the valves is control led by signals

    from the valve base electronics The principle used for f i r ing the

    valves is f i r inq on request

    O n c e t h e t u r n - o n s i g na l h a s b e e n a p p l i e d t o t h e t h y r i s t o r

    electronics (TE), no periodic repeti t ion is requ i red because the

    th y r i s to r e l e c t r o n i cs th e mse l ve s g e n e ra te g a te p u l se s i f t h e

    fo l low ing cond i t ions are fu l f i l led

    -Sufficient thyr istor voltage and correct polar i ty

    - In terna l power supp ly provided a t the TE

    In th is case a shor t ga te pu lse o f e g 50 ps

    is

    genera ted

    I t i s

    possible to substi tute a f i r ing system using long pulses by one

    u s i n g t h e p r i n c i p l e o f f i r i n g o n r e q u e s t w i t h o u t a n y

    disadvantages In case of cC)mmutation fro m fo rw ard t o reverse

    d i rect ion in the cur rent mode, the f i r ing pu lse fo r the reverse

    d i rect ion is g e n e r a t ed i m m e di at e ly , t h e r e f o r e n o d e a d t i m e

    occurs in the valve current

    S p ec ial a t te n t i o n wa s p a id to t r a n s ie n t i n ru sh c u r re n t w i th

    mul t ip le zero crossings and a lso to t he t ransi t ion f rom the on-

    s ta te to th e o ff - s tate o f th e va lve , wh e re p a r t i a l tu rn -o f f o f th e

    va lve cou ld occur To prevent damage to th e va lve in case o f

    par t ia l tu rn-o f f , act ive e lectron ic backup t r igger c i rcu i ts and

    BOD circuits are pro vided

  • 8/9/2019 Design and Operational Testing on Thryristor Module for the SVC Kemps Creeek_siemens

    4/6

     

    1324

    The act ive e lectronic backup t r igge r c i rcu i t opera tes dur ing th e

    o n - s ta te a n d h e h o ld o f f i n te r va l l o f th e th y r i s to r Du r i n g th e o f f

    s ta te o f th e va lve , the e lectron ic backup t r igger c i rcu i t is inactive.

    ther e for e h igh vo l tage capab i l i ty

    is

    ach ieved

    T o t a k e ca re o f t h e p a r t ia l t u r n o f f p h e n o m e n a , a d v l d t

    pro tect io n c i rcu i t is inc luded Th is c i rcu i t becomes active f rom the

    e n d o f th e a c tu a l co n d u c ti n g i n te r va l u p to th e e n d o f th e h o ld

    of f in terva l l The dv/d t p ro tect ion c i rcu i t genera tes a pro tect ive

    fir ing pulse if the posi tive ra te-o f- r ise o f th e thyr is tor recovery

    vo l ta g e e xcee d s th e r e sp o nse l e ve l B y r e s t r i c t i n g th e d v / d t

    p r o t e c t i o n t o t h e h o l d - o f f i n t e r v a l l , e

    g

    s o m e

    100

    ps

    n o

    d e g r a d in g o f va l ve w i th s ta n d ca p a b i l i t y fo r v o l ta g e imp u lse s

    occurs at b locking stage

    Pr inc ip le o f TSC va lve overvo l taqe pro tect ion

    As

    descr ibed

    above, valve arresters (SR-arresters) and capacitor arresters (CC-

    arresters) are used This offe rs some advantage s

    - CC arrester act ion dur in g misf i r ing lowers the capacito r vo l tage

    and thus th e va lve vo l tage I t a lso reduces the cu r rent ra te-o f- r ise

    af te r misf i r ing and thus th e thyr is tor tu rn-o f f s tress ing Lower ing

    the d i /d t a lso reduces the vo l tage overshoot a t tu r n-o f f

    -The

    SR

    arrester pro tects the va lve aga inst overvo l tage s The

    arrester level is set be low the sum of the ind iv idua l p ro tect ive

    f i r i n g l e ve l s Th e re fo re

    it i s

    p o s s i b l e t o u s e a n i n d i v i d u a l

    pro tect ive f i r ing system for each thyr is tor w i tho ut increasing the

    r isk o f misf i r ing due to the act iva t ion o f th is pro tect ion on a l l

    thyr is tors in case o f h igh overvo l tages Figure 2 shows

    SR

    and CC

    arrestor ac tion durin g TSC mis-fi r ing

    In case o f the va lve be ing f i red wi th t he ar rester in opera t ion .

    th e ar rester cur rent comm utates to the thyr is tors To prev ent

    thyr is tor dam age due t o h ig h d i id t s t ressing, the va lve ar rester is

    arrange d n para l le l wi th he va lve and the TSC va lve reactor (see

    Fig 1)

    Principle of TSR valve ove rvolt aqe protec tion No arrester

    is

    used

    for th e TSR In case th e voltag e capabi l i ty of t he TSR val ve

    i s

    exceeded, the ind iv idua l p ro tect ive f i r ing system p ro tects t he

    va lve by f i r ing a l l thyr is tors Th is unco ntro l led f i r ing in i t ia te d by

    the pro tect ive f i r ing system is one o f the possib i l i t ies o f TSR

    mis fir ing Unde r worst-case conditions it ma y l e a d to a cu r re n t

    value twic e as high as in contro l led circumstances This possibil i ty

    is considered in he TSR valve design and h ence no valve arrester

    is

    necessary

    The above overvo l tage pro tec t ion cr i te r ia were used also dur ing

    the opera t iona l ests.

    VAL VE TESTING

    The Kemps Creek thyr is tor va lves we re sub jected in 1988 to an

    extensive type test p rogram Di f f e ren t d ie lectr ic and opera t iona l

    tests we re carr ied out o n the valve an d on valve sections Special

    test circuits were used to p roduce mis fir ing stress on TSC valves

    and to app ly fau l t cur rent t o he TSR modules

    Some of the ests are specific for t he Kem ps Creek project, others

    prove he va lve design fo r o ther app l ica t ions as we l l

    Dielectric tests

    On valve structure: These tests were carr ied

    o u t o n t h e s a m e

    structura l a r rangement as used in th e rea l p lan t , there fo re it was

    necessary to carry ou t these tests o n a valve tow er as described in

    Figure

    S

    The va lve structure was sub jected

    to

    he fo l low ing tests

    -valve terminals

    to

    g ro u n d te s t w i th a c vo l ta g e a n d w i th a c

    vo l tage super imposed on a dc vo l tage

    - l igh tn ing impulse test be tween va lve te rmina ls and ground.

    B e twe e n va lve te rm in a l s : Tw o d i f fe re n t t yp e s o f te s ts we re

    car r ied out :

    4est swi th ac vo l tage and wi t h ac vo l tage super imposed on a

    dc voltage.

    -swi tch ing im pulse tests w i th waveforms 20/200ps and

    250125oops.

    Al l

    d ie le c t r ic te sts we re e xe cu te d a t th e te s t l a b o ta to r i e s o f

    Siemens GWE

    Operat iona l ests

    S y n t h et i c c i r c u i t t e s t s T o p r o v e t h e t u r n - o n a n d t u r n - o f f

    behaviour o f the va lve as we l l as the com mutat ion f rom forwa rd

    to reverse cur rent in tu r n on m ode, a synthet ic test c i rcu i t as

    described in

    8

    was used Figure 8 demonstra tes the wavefo rm

    achieved by this test circuit Tests have been perform ed a t the

    Siemens GWE factory

    I

    U

    L

    /

    1 7

    4

    .

    Turn- Changeover

    Turn-

    o n f r om t o - o f f

    Flq.8:

    Synthetic test circuit

    Severa l tests were car r ied o ut us ing power c i rcu i ts a t the CESl test

    labora to ry a t Mi lano, I ta ly

    A

    survey o f the p er form ed tests togethe r wi t h m ain test values

    i s

    g i ve n i n Ta b le l , wh i ch a lso i n d ica te s th e te s t c i r cu i ts a n d te s t

    ob jects used, as we l l as the num ber o f thyr is tors exposed The

    numbe r o f thyr is tors was chosen as appropr ia te fo r the requ i red

    test va lues and th e capab i l i t ies o f th e test fac il i ties

    Speci fica lly designed e lectron ic in ter faces we re se t up o prov ide

    th e f i r ing s igna ls. as genera ted by the

    CESl

    contro l system, t o the

    va lve base e lectron ic o f th e test ob ject in the pro per way an d to

    synchronise al l th e diffe re nt test sequences

    TSC combined heat- run and loss-determinat ion est The purpose

    o f t h i s t e s t wa s t o d e m o n s tr a te t h e a b i l i ty o f t h e v a lv e t o

    with stan d the m ost severe steady-state stresses The test circuit 1

    used in hiscase

    i s

    shown in Figure

    9

    The test c i rcu i t uses the same ar rangem ent wh ich w i l l be used a t

    Kemps Creek,

    I

    e a valve arrester

    is

    connected across the valve

    and the cur rent- l imi t ing reactor

    A capacitor arrester is u se d to

    1

    1

  • 8/9/2019 Design and Operational Testing on Thryristor Module for the SVC Kemps Creeek_siemens

    5/6

     

    TEST

    1

    2

    3A

    36

    3C

    4 A

    4 6

    4c

    SA

    58

    6

    7

    8

    9

    1325

    Kind of test Test Steady state perio d Mis firing current Transie nt recovery voltage Test object Remarks

    characteristic

    Overload

    ircuit Preload

    No Load Dura- Load

    Load

    Dura- MIS-

    Misfiring

    Current First Firstjump M a x D u ra . V a l v e Thyriv

    Number

    load cur- tion

    volt.

    cur- tion tiring

    currenW

    rising

    jump

    incl

    vo l tage

    l ion t y p e

    to r in o f

    volt- rent age rent angle

    loop

    ON/ overshoot series thyristor

    age

    duration OFF under l e ve ls

    kV A, min kV Arm, sec *e l

    k V k V k V

    sec test

    tes led

    TSCheat -runandloss-

    3520

    35

    . . . 4 2

    7 8 35 6 0 T S C l 11 11

    determination t e s t

    TSCper iod ic f i r ing

    est 1

    10.70

    3770 10

    .

    - . 4 2 7 2 34

    60 TSC

    1 7 22

    TSC19kA faultcurrent 3750 lo 12,95 4iso 130

    19.2kA

    ,2mr 23Alus 18 3 2 . 6 39 60 TSC

    1

    9 1 1

    with subseq.blocking

    with subseq.blocking 4 2ms 12Alus circuit

    TSC19kA

    faultcurrent

    1060 3 s 5 0

    3o

    35so 5,2 iso 20.lkA

    .4mr

    29Alus8Alus 2 3 9

    3 5 4

    37.3 0 3 T I C 9

    9

    with subreq.blocking

    ~ i ~ f ~ ~ ~ s ~ ~ u ~ l ~ ~ ~ ~ ~ ~ t10.70 3710 10

    11.96 3700

    5 85 3 , 3nrr

    7kA 2 9 N u s

    oAlus 20 33 39 30 T S C l 9

    20

    T S C 3 2 k A

    fau l tcurrent 2

    1 0 9 0 3 6 2 0 20

    13

    5 3300 5 90 3 ,0 ms

    2 k A

    35Alus3Alus 1 8 8 29.1 39 2 3 T S C I 9

    9

    with subseq. blocking

    TSC36kA faultcurrent 2

    10.30

    3550 30

    12.6

    3450 5 90 36'4 kA 57Nus 19.6 2 7 8 4 0 4 0 . 3 T S C I

    10

    10

    with

    subseq.

    blocking 2.3ms 37Nus

    'SC'gkA

    fau'tcurrent 1 10.67 3770 6 10.67 3770 105 1B '6kA i2pJus 32 4 0 .3 3 7 4 20 TSC

    1 9

    1 1 a t p r e l o a d

    TSCAC-minimumtest 1 2 . 4 636 5 .

    800

    - 7

    6

    60

    TSC

    1 11 11

    TSC

    1

    TSCAC-minimumtest 1

    2 5 450

    S

    - 560 . 7 6

    60 T S C 2

    11

    11 T S C 2

    T S R h e a t m n a n d l o s r -

    1080

    3720

    32

    .

    .

    15 25

    I 5

    60

    T S R 11

    11

    determination tes t

    TSRperiodicfiringtest 76 4020 . . .

    T SR

    fault

    cur ren t

    with

    subsequentbiocking 4 10.50 3815

    10

    17.3

    4875

    c rea~ i ng i o2800~ w i t h i n 22

    23.5

    2 4

    5

    60 T S R 10 10

    (dc-trapped current)

    TSR AC-minimumtest

    3

    4 80

    550,

    I

    6 8 7.7

    6 8 60 TSR

    11

    1 1

    15 20 15 60 T S R 5 10

    Starting

    with

    6BOOA de-

    140 ms. f inal

    peak

    10.5kA

    Table 1: Program of operationa l tests

    S R

    arrester

    a

    arrester I

    -Test circuit 1

    l imi t the vo l tage a t the capaci to r bank The ar resters used are

    special ly designed and adap ted to he avai lable test faci l it ies

    Du r i n g h e te s t seq u en ce th e i n l e t a n d o u t l e t te mp e ra tu re o f th e

    coo l ing wate r was recorded as we l l as the wate r f lo w

    So

    it was

    possible to ver i fy the energy d iss ipation o f the thyr is tor m odule

    TSC per iod ic f i r inq test : The a im o f th is test was to de mon stra te

    the behaviour o f the va lve in temporary over load cond i t ions The

    supp ly vo l tage was set by the t ra nsform er , so some thy r is tors

    w e r e s h o rt e d o u t t o a c h i ev e t h e r e q u i re d h i g h t e s t v o l t a g e

    stressing per thyr is tor leve l dur ing the t ransi t ion f rom th e o n-

    sta te to the o f f -s ta te o f the va lve Precharg ing o f th e capaci to r

    bank was car r ied ou t before per iod ic f i r ing o f th e va lve began

    The va lve was f i red whe n the system vo l tage wave was a t

    i t s

    m a x i m u m B y u s i n g t h i s p r o c e d u re , c u r r e n t o s c i l l a t i o n s

    depend ing on the resonance f requency o f approx

    150 Hz

    cou ld

    be avo ided

    TSC fau l t cur rent test The aqm of th is test

    wa s to d e m o n s t ra te

    the va lve

    s

    fau l t cur rent capab i l i ty as we l l as the prop er vo l tage

    l im i t i n g a c t i o n o f th e SR and CC arresters

    In a first stage, tests no 3A. 3 8 a n d 4 A we re e xe cu te d Th e a im o f

    th e 1 9 kA te s t was to r e a ch 1 9 kA m is f ir i ng cu r re n t p e a k w i th a

    tu rn -o f f d i /d t o f 20 Nps a n d a vo l ta g e j u mp ( A V ) of a b o u t 8 5 %

    o f th e ma x imu m vo l ta g e Th e a im o f th e h i g h cu r re n t te s t wa s to

    reach

    3 2

    kA peak

    In test 4A. a

    2 7

    kA peak cur rent resu l ts f rom a h igher network

    imp e d an ce Th e n e two rk d i d n o t b e h a ve l i ke a s imp le se r i es

    inductance as was assumed

    in

    previous calculations T he sh unt

    capacit ive components o f the network produced d is tor t ion o f the

    mis f ir i ng cu r re n t a n d o f th e r e co very vo lta g e A t te s t 3 A . th e

    vo l ta g e j u mp wa s th e re fo re l o we re d to

    50%

    o f t h e m a x i m u m

    recovery vo l tage In add i t ion the test

    3 8

    wa s n o w e xe cu te d o n

    the pre load c i rcu i t A h igh vo l tage jump o f about 80 % o f t h e

    ma x imu m vo l ta g e wa s n o w a ch ie ve d , b u t th e ( di/dt ), ,f wa s

    l o w e r e d t o 1 2 p s

    The test circuit used i s shown in F igure 10 I n a d d i ti o n t o t h e

    circuit as shown in Figure 9, a second power supp ly was insta l led

    Afte r reach ing steady sta te therma l cond i t ions. changeover t o

    th e over load c i rcu it was executed by ope n ing CB

    1

    and closing

    CB

    2

    Th e n th e va lve wa s ke p t a g a in i n f i r in g co n d i t i o n fo r a fe w

    seconds to recover the drop in junct ion temp eratu re occur ing

    d u r i n g t h e s w i tc h in g o p e r a t i o n F i n a ll y t h e m i s f i r i n g w a s

    e xe cu te d Th e ch an g eo ve r f r o m th e p re lo a d to th e o ve r l o a d te s t

    c i rcu i t requ i red about 200 ms The over load c i rcu it was fed f r om a

    shor t c i rcu it power t ransforme r

    Th e sp ec i fi ed m is f i ri n g cu r re n t wa s o b ta i n e d b y d e la y i n g th e

    f i r i n g imp u lse to h e i n s tan t wh e re th e su p p ly vo l ta g e was o f th e

    p ro p e r ma g n itu d e a n d i n o p p o s i t io n to th e ca p a c i to r vo l ta g e

    Preceding calcu la t ions were car r ied out w i th bot h the NETOMAC

    --

  • 8/9/2019 Design and Operational Testing on Thryristor Module for the SVC Kemps Creeek_siemens

    6/6

      326

    SR

    arrester

    T 2

    CC

    arrester

    -

    Fiq.10: Test circu it 2

    /2/ and th e EMTP program t o coordinate the tes t results for e g

    di /dt and voltage jump at the end of misf i r ing wi th the requi red

    values In the same way c i rcui t e lements w ere dimens ioned,

    especial ly th e voltage characterist ic an d energy capa bil i ty of the

    arresters

    Resul ts of th is f i rs t tes t series led t o a rearrangeme nt of the tes t

    c i rcui t A ne wly d imens ioned CC arrester was instal led and the

    inductance a t the o verload circu it was reduced as far as possible

    Wit h the redes igned tes t c i rcui t a second ser ies of tes ts was

    started in ApriVMay 1989

    To come c lose to th e high vol tage jum p and di /dt value, the 19

    kA tes t was repeated (tes t 3C) The resul twas now a high di idt o f

    27 7AJps togeth er wi th a h igh vol tage jump o f approx 24 kV

    A fa ul t current of 32 kA peak was appl ied ( test 48) and f inal ly by

    removing the valve reactor X2 a 36kA faul t current tes t was made

    possible (test 4c) The 32 kA est

    i s

    depicted in Figu re 11

    1 8 9 k V I Di v

    6 0 XAlDir

    2.0

    ,nr/Dt

    Fiq.11: 32 kA fau lt current test

    TSC

    ac minimum voltaqe test: The purpose of this test was to

    demonst rate the minimum ac vol tage and current requi red t

    ensure the proper operat ion of the thyr is tors and aux i l iary

    circuits. Due t o the low er rate d current of TSC 2, another typ e of

    c ross current t ransformer was used. Therefore tw o di f feren t types

    o f

    TSC

    modules were tes ted.

    The level of minimum current was res t r ic ted by the energy

    necessary o r the ope rat ion o f the thyristor electronics.

    TSR heat - run and loss-determinat ion tes t :Hea t - run and loss -

    deter mina t ion tests were executed wit h test circuit 3 (Figure 12).

    Reactor bank X1 was used to adjust the specif ied current. A test

    current of approx. 3700Armswi th a durat ion o f abou t 30 minutes

    demonst rated the valve 's s teady-s tate capabi l t it y . Measurements

    we re carried o ut as described for the heat-ru n test on TSC valves.

    F igure 13 demonst rates the behav iour

    o f t he va lve a t t u rn -o f f

    MB

    CB

    1

    net -

    wo rk Test object

    -/-' I

    Fiq.12: Test circuit 3

    (overshoo t ) as we l l as comut a t i on f rom f o rw ard t o reverse

    current dur ing the on-s tate of the valve.

    9.1

    kVID iv

    6.0

    k Oiu

    5.0

    ~ Y D W

    Fiq 13 TSR hea t run test

    TSR

    per iod ic f i r i nq t es t Temporary over load capab i l i t y was

    demonst rated by apply ing 4020 Arms to the valve The iequi red

    high block ing vol tage per thyr is tor level was reached by reduc ing

    the number of thyr is tor levels to 5

    TSR fau lt current test: In case of misf ir ing or in case of ne two rk

    faults, current waves may occur with temporary absence of zero

    crossings, sometimes called dc-trapped current The aim o f this

    t es t was t o demons tra te t he va l ves ' w i t hs t and ab i l i t y i n t h i s

    event A compromise was necessary t o def ine the tes t values The

    most severe stresswas assumed to be the blocking o f the valve at

    l 0 5 0 0 A

    6800 A

    I 4875 A

    3815A,,,

    r

    -

    -

    -

    - -

    loop

    I

    1 0 m i n 3 0 0 m s

    f

    Recovery voltage /

    Fiq 14: Test sequen ce fo r overcu rren t test o n TSR

    (shown for one valve di rec t ion)

    max imum junc ti on t emper a t u re There f o re a t es t wave was

    selected which shif ts the junct ion tem perature of the thyr is tors at

    valve turn -of f c lose to the calculated max imum value This tes t

    wave isshown in F igure 14

    Figure 15 shows the special test circuit used

    The comp lete test sequence

    is

    as follow s:

    -Star t w i th operat ion on preload c i rcuit w i th 3815 Arms (10

    min) to obtain s teady-s tate hyr is tor junc t ion tem perature

    -

    Commut a tion t o over load c i r cu i t by ope n ing

    CB

    1 a n d

    closing

    CB

    2 (commu tat ion t im e approx 300ms)