Design a RCC Retaining Wall to Retain Earth Up To

10
QUESTION: Design a RCC retaining wall to retain earth up to a height of 15’. Base of the footing is to be placed 3’ below NSL. Soil has density of120 lb / ft 3 . Angle of internal friction of soil is30 ° . Earth surface that is to be retained is horizontal. Take q all =2500 lb / ft 2 Use f c ' =4000 Psif y =40,000 Psi . SOLUTION: Given that, Heightof Retaining wall above NSL=15 Depthof footingbelow NSL=3 Density of soil , γ soil =120 lb / ft 3 Density of concrete , γ conc . =150 lb / ft 3 Angle of internalfriction,φ=30 ° f c ' =4000 Psi f y =40,000 Psi STEP 1 ASSUMPTION OF SIZES: Base thickness=stem thickness = H 12 H 10 = 15 ’× 12 12 =15 =1.25 Base width = 2 3 H= 2 3 × 15 ' =10 Width of toe= 1 3 × 10 ' =3.3 Width of heel=10 ' 3.3 '1.25 ' =5.45 '

description

DOS design of a retaining wall

Transcript of Design a RCC Retaining Wall to Retain Earth Up To

Page 1: Design a RCC Retaining Wall to Retain Earth Up To

QUESTION: Design a RCC retaining wall to retain earth up to a height of 15’. Base of the footing is to be placed 3’ below NSL. Soil has density of120 lb / ft3. Angle of internal friction of soil is30°. Earth surface that is to be retained is horizontal. Take qall=2500lb / ft2 Usef c

' =4000 Psi∧ f y=40,000 Psi.

SOLUTION:

Given that,

Height of Retaining wall above NSL=15 ’

Depth of footing below NSL=3 ’Density of soil , γ soil=120lb / ft3

Density of concrete , γ conc .=150 lb / ft3

Angleof internal friction , φ=30°f c' =4000 Psi

f y=40,000 Psi

STEP 1ASSUMPTION OF SIZES:

Base thickness=stemthickness= H12

H10

=15 ’×12 ”12

=15”=1.25’

Base width=23

H=23

×15'=10 ’Widthof toe=13

× 10'=3.3 ’

Widthof heel=10'−3.3 '−1.25 '=5.45 '

STEP 2DESIGN OF STEM:

i. Calculation Of Soil Pressure:

Ca=1−sin φ1+sin φ Ca=

1−sin 30°

1+sin 30° =0.33

Pa=12

γ Ca H 2Pa=12

× 120× 0.33 ×15' 2=4455lb

Page 2: Design a RCC Retaining Wall to Retain Earth Up To

ii. Moment & Reinforcement Calculation:

Centroidal distance , y= H3

=15'

3=5 '

M=Pa × y=4455 ×5'=22275lbft M max=1.6 × M=1.6 ×22275

M u=M max=35640 lbft=427680 lbin

ρ=0.85f c

'

f y [1−√1−2 M u

0.85 f c' φb d2 ]

ρ=0.85× 400040000 [1−√1− 2× 427680

0.85× 4000 × 0.9× 12 {×12.52 ¿]Where ,φ=0.9∧b=12 & d=h- 2.5=15 -2.5=12.5 ρ=0.00659

ρmin=200f y

= 20040000

=0.005

ρmax=0.75 ρb=0.75 × β1× 0.85f c

'

f y×( 87000

87000+f y)

ρmax=0.75 × 0.85× 0.85× 400040000

×( 8700087000+40000 )ρmax=0.037

ρmax >ρ>ρmin OK

iii. Selection of bars & spacing:

Vertical Reinforcement On front face of wall:

A st=ρbd A st=0.00659 ×12 ×12.5=0.9885¿2Provide ¿6bars@ 5c/c see Nilson page 726

Temperature & Shrinkage Steel:

A st=ρbh A st=0.002 ×12 ×15=0.36¿2Provide¿3bars@ 3.5 c /c see Nilson page726

iv. Check for shear:

V u=1.6 × PaV u=1.6 × 12

× Ca× γ × (H −d )2V u=1.6 × 12

× 0.33 ×120 × (15 '−1.042' )2

V u=6172.375lb / ft=514.36 lb /¿

v. Capacity of Section:

¿2 φ√ f c' ×bd¿2×0.9×√4000 × 12×12.5¿17076.3 lb

¿ >V uOK

STEP 3

Page 3: Design a RCC Retaining Wall to Retain Earth Up To

CURTAILMENT OF BARS:

Bars are curtailed from top where B.M isM max

2

M u=M max=35640 lbft=427680 lbin Mu

2=

M max

2=213840 lb∈¿

M max

2=1

2×1.6 × γ ×Ca × H1

2×H 1

3213840=1

2× 1.6 ×120 ×0.33 × H 1

2 ×H1

3H 1=27.26 =2.27'≈2.25

According to ACI code, the following value should be added in the curtailed value of steel,

12 12×dia of bar=12× 1=12

0.04 × Ab× f y

√ f c'

=0.04× 0.44× 40000√4000

=11.18

Maximum of above three values is selected, i.e. 12” is selected.So, Curtailment ¿2.25 ’−1’=1.25 ’ from top.

ρ forM max

2,

ρ=0.85× 400040000 [1−√1− 2 ×213840

0.85× 4000 × 0.9× 12 {×12.52 ¿]ρ=0.003295>min . value of temp .∧shrinkage steel i . e .0 .002 A st

' =Areaof curtailed steel

A st' =ρbh=0.003295× 12×15=0.593 ¿2 Areaof steel , A s=ρbd=0.998 ¿2 1

2A s

23

A s

0.494 ¿20.659 ¿2

Page 4: Design a RCC Retaining Wall to Retain Earth Up To

0.659 ¿2 ismore close ¿0.593 ¿2 so curtaileach2nd alternate ¿PLAN & SECTION

According to ACI code provide main steel on the side where there is no loading & provide same temperature and shrinkage steel on load bearing side.

Step 4

STABILITY CHECKS:

There are three stability checks,

i. Check For Overturning Moment

Resisting momentOverturning moment

>2

O .T . M=Pa× y

O .T .M=3743.44 ×4.58 '

O .T .M=17144.96lbft

Sr. # Weight ( Area× Density )lb x“ ft ” Resiting Momentlbft

01 15 ' ×5.45 ' ×1×120=9810 5.452

+1.25+3.3=7.28 ' 71416.8

02 10 ' ×1.25 ' ×1 ×150=1875 102

=5 ' 9375

03 1.75 ' ×3.3 ' ×1 ×120=693 3.32

=1.65 ' 1143.45

04 15 ' ×1.25 ' ×1 ×50=2812.5 1.252

+3.3=3.925 ' 11039.06

∑W =15190.5 lb ∑ M =92974.31

Resisting momentOverturning moment

>2 92974.3122275

=4.17>2OK

1 produces overturning moment & 2, 3 and 4 produces resisting moments.

Page 5: Design a RCC Retaining Wall to Retain Earth Up To

If this check is not OK then increase the thickness of toe, heel or stem as per requirement.

ii. Check For Sliding Force:

Resisting forceSliding force

≥ 1.5Sliding force=Pa=4455 lbResisting moment=μ × ∑W=0.3× 15190.5

Resisting moment=4557.15 lb

Here μ is the coefficient of friction between soil and earth and its value lies between 0.3-0.45.

Resisting forceSliding force

≥ 1.5 4557.154455

=1.02 ≥1.5 NOT OK

So we have to provide key under the base.

Key can be provided in different states as shown below,

Design of Key:

Resisting force=1.5× Sliding forceResisting force=1.5 × 4455Resisting force=6682.5 lbAdditionalresisting force provided ,P p=6682.5−4557.15

Additionalresisting force ¿be provided , Pp=2125.35 lb

Page 6: Design a RCC Retaining Wall to Retain Earth Up To

Additional Resiting force , , Pp=12

× γ ×H 1

2

2× 1

Ca2125.35=1

2× 120×

H 12

2× 1

0.33H 1=3.42' ≈3.5 '

Depth of Key=3.5'−1.25'=2.25 '

iii. Check For Bearing Capacity Of Soil:

a=Stablizing moment−O .T .MStablizing force (∑W ) a=92974.31−22275

15190.5 a=4.65 '

Eccentricity , e=B2−ae=10

2−4.65 '

e=0.35 'e≯= B6

=106

=1.67 '0.35' ≯= 1.67 ' OK

If this check is not OK then increase the length of base “B”

qmax=∑WB× 1

+∑ W ×e

B2

6

≯= qallqmax=15190.5

10+15190.5 × 0.35

102

6qmax=1838.05lb / ft 2≯= qall OK

qmin=∑WB× 1

−∑W × e

B2

6

≮= zeroqmin=15190.5

10−15190.5 ×0.35

102

6qmin=1200.05lb / ft2OK

If this check is not OK then increase “B”.

STEP 5

DESIGN OF TOE & HEEL:

63810

=x1

5.45x1=347.71lb / ft2

63810

=x2

1.25x2=79.75 lb / ft2

63810

=x3

3.3x3=210.54 lb / ft2

Page 7: Design a RCC Retaining Wall to Retain Earth Up To

i. Design Of Toe:

Taking moment about junction of toe and stem.

M u=1.6 ( Moment of bearing capacity )−0.9 ( Moment of concrete∈toe )

M u=1.6 [1627.51 ×3.3× 3.32

×( 12

×210 × 3.3)× 23

× 3.3]−0.9[ (3.3× 1.25× 1× 150 )× 3.32 ]

M u=8705.25 lbft=104462.97 lbin

ρ=0.85f c

'

f y [1−√1−2M u

0.85 f c' φb d2 ]ρ=0.85× 4000

40000 [1−√1− 2 ×104462.970.85× 4000 × 0.9× 12×12.52 ]

Where , φ=0.9∧b=12 & d=h- 2.5=15 -2.5=12.5 ρ=0.00156

ρmin=200f y

= 20040000

=0.005

ρmax=0.75 ρb=0.75 × β1× 0.85f c

'

f y×( 87000

87000+f y )ρmax=0.75 × 0.85× 0.85× 4000

40000×( 87000

87000+40000 )ρmax=0.037

ρmax>ρ>ρmin NOT OK

Selection of bars & spacing:

A st=ρmin bd A st=0.005 ×12 ×12.5 A st=0.75¿2Provide¿5 bars@5 c/

ii. Design of heel:

Taking moment about junction of heel and stem,

M u=1.2 (Concrete∈heel )+1.6 (soil∈heel )

M u=1.2[ (1.25 ×5.45 ×150 ) × 5.452 ]+1.6[ (15 ×5.45 ×1 ×120 ) × 5.45

2 ]Neglecting moment produced due to stresses. It will make our structure safer because it works as a FOS.

M u=46113.13 lbft=553357.56lbin

Page 8: Design a RCC Retaining Wall to Retain Earth Up To

ρ=0.85f c

'

f y [1−√1−2M u

0.85 f c' φb d2 ]ρ=0.85× 4000

40000 [1−√1− 2 ×553357.560.85× 4000 × 0.9× 12×12.52 ]

Where ,φ=0.9∧b=12 & d=h- 2.5=15 -2.5=12.5 ρ=0.00863

ρmin=200f y

= 20040000

=0.005

ρmax=0.75 ρb=0.75 × β1× 0.85f c

'

f y×( 87000

87000+f y )ρmax=0.75 × 0.85× 0.85× 4000

40000×( 87000

87000+40000 )ρmax=0.037

ρmax >ρ>ρmin OK

Selection of bars & spacing:

A st=ρbd A st=0.00863 ×12×12.5 A st=1.295 ¿2Provide ¿6bars@ 4 c/

Temperature & Shrinkage Steel:

A st=ρbh A st=0.002 ×12 ×15 A st=0.36 ¿2Provide ¿3bars@ 3.5 c/

DETAILS OF STEEL IN TOE & HEEL