Dept. of Power Mechanical Engineering, National Tsing Hua University

1
Dept. of Power Mechanical Engineering, National Tsing Hua University Kai Fei, Chao-Jen Tsai (Research students), Che-Wun Hong (Professor) Thermal Lattice Boltzmann Simulations of Two-Phas Thermal Lattice Boltzmann Simulations of Two-Phas e Flow e Flow in Micro Direct Methanol Fuel Cell Microchannels in Micro Direct Methanol Fuel Cell Microchannels Conclusions Conclusions Simulation Results Simulation Results 2007.6 Introduction Introduction Micro-direct methanol fuel cells (DM FC) are considered a strong competito r of future power sources for portabl e equipment. The advantages are high efficiency, high power density, low o peration temperature and almost zero pollution. Electrochemical Reaction e H CO O H OH CH 6 6 2 2 3 2 2 3/2 6 6 3 O H e HO 3 2 2 2 3/2 2 CH OH O CO HO Anode : Overall : Chemical Reaction Cathode : TOSHIBA, HITACHI, SAMSUNG, LG, SONY, NEC, PANASONIC, Sanyo Electric, IBM, and etc. DMFC DMFC Notebook Computer, Cellular Phone, PDA, MP3 Player, Video Game Console, Digital Camera, and etc. Approach Approach Two-phase flow (Methanol solution/C O 2 bubble) in the microchannels is simulated with the lattice Boltzman n method (LBM) and the thermal latt ice Boltzmann method (TLBM) approac hes. Hydrophilic, geometric and the rmal (Marangoni effect) effects on the bubble dynamics are discussed. Hot Col d Bubble Liquid Marangoni effect : Marangoni effect : Liquid flows from a region of high temperature to a region of low temperature an d exerts an opposite reaction on the bubble to make it move from t he cold region to the warm region. Objective and Motivation Objective and Motivation Carbon dioxide (CO 2 ) bubbles flow i nto the diffusion layer and block the porous media if they cannot be removed efficiently, resulting in a decline of the cell performance. Hence, the bubble transport phenom enon in the microchannels is a maj or issue. Bubble Bubble Methanol solution Methanol solution Microchannel TLBM TLBM 1 , , , , i X c X X X eq i i i i f tt t f t f t f t Lattice Boltzmann equation for flow field : c 0 c 8 c 4 c 3 c 5 c 1 c 2 c 6 c 7 Surface tension : Fluid-solid interaction force : Buoyancy force : , X X X c a f a a a i a G F t tc , X X X c a s a a s w i i F t c G t , , X X c a a b i i F t G tt fluid-fluid interaction strength 0 0 exp X a a fluid-solid interaction strength 1 0 at the wall X c in the fluid w i t Lattice Boltzmann equation for temperatur e field : 1 , , , , i T X c X X X eq i i i i g tt t g t g t g t , , X X a a i i t f t , , , X U X X c a a a i i i t t f t Macroscopic mass density and momentum density Macroscopic temperature : Hydrophilicity Ef Hydrophilicity Ef fect fect , ( ) X j a T F t G T T Temperature effect (the Boussinesq approximation) : X, X, X, i i tT t g t Contact Contact Angle Angle H + H + Proton Methanol solution Anode Cathode Proton exchange membrane Catalyst layer Diffusion layer Carbon dioxide Water Direct Methanol Fuel Cell Oxygen H + H + H + H + H + H + H + H + H + H + CO 2 H 2 O H 2 O H 2 O O 2 O 2 O 2 e - e - e - e - e - e - e - e - e - e - e - e - H 2 O CH 3 OH Electro n Fluid-solid interaction strength vs. contact angle Contact angle vs. bubble velocity Geometric effect Geometric effect Time=12.50ms Time=37.50ms Time=25.00ms Time= 1.75ms Gs = 0.007 -0.007 Gs = -0.007 0.007 Bubble Velocity = 262.65 m/s Bubble Velocity = 274.29 m/s Thermal effect Thermal effect Time=12.50ms Time= 1.75ms Time=25.00ms Time=37.50ms Time=12.50ms Time= 1.75ms Time=25.00ms Time=37.50ms Bubble Velocity = 323.91 m/s Bubble velocity vs. temperature gradient A hydrophilic, divergent channe l with a positive temperature g radient is favorable for bubble removal in the microchannels. T he results provide important in formation for the design of the DMFC. Time=25.00ms Time= 1.75ms Time=39.25ms Inlet Velocity = 40.00 m/s (Bubble Blockage) (Bubble Blockage) Time=25.00ms Time= 1.75ms Time=39.25ms Inlet Velocity = 50.00 m/s Time=29.75ms Time= 1.75ms Time=71.25ms Time=29.75ms Time= 1.75ms Time=71.25ms Inlet Velocity = 250.00 m/s Time=12.50ms Time= 1.75ms Time=25.00ms Time=34.50ms Bubble Velocity = 319.62 m/s Inlet Velocity = 250.00 m/s Time=12.50ms Time= 1.75ms Time=25.00ms Time=34.50ms Bubble Velocity = 335.34 m/s Convergent Microchannel Convergent Microchannel Divergent Microchannel Divergent Microchannel Orificed Microchannel Orificed Microchannel Straight Microchannel Straight Microchannel Geometric Geometric effect effect Straight channel Basic case Convergent channel Divergent channel Hydrophilic Hydrophilic ity effect ity effect Hydrophilic ( ) Less hydrophilic ( ) Increased hydrophilicity ( ) Decreased hydrophilicity ( ) Thermal Thermal effect effect Low temperature ( ) Positive wall temperature gradient ( ) Negative wall temperature gradient ( ) Basic case hydrophilic walls with high temperature ( ) Arrow length represents the degree of the influence (favorabl e adverse) 0.007 a s G 0.007 a s G 0.004, 333 a s G T K 0.007 0.007 a s G 0.007 0.007 a s G 298 T K 35 T K 35 T K K T 35

description

c 6. c 2. c 5. c 3. c 0. c 1. c 7. c 4. c 8. CH 3 OH. e -. e -. e -. e -. e -. e -. e -. e -. e -. e -. e -. e -. H +. H +. H +. H +. H +. H +. H +. H +. H +. H +. H +. H +. O 2. O 2. O 2. Electrochemical Reaction. - PowerPoint PPT Presentation

Transcript of Dept. of Power Mechanical Engineering, National Tsing Hua University

Page 1: Dept. of Power Mechanical Engineering, National Tsing Hua University

Dept. of Power Mechanical Engineering, National Tsing Hua UniversityKai Fei, Chao-Jen Tsai (Research students), Che-Wun Hong (Professor)

Thermal Lattice Boltzmann Simulations of Two-Phase Flow Thermal Lattice Boltzmann Simulations of Two-Phase Flow in Micro Direct Methanol Fuel Cell Microchannelsin Micro Direct Methanol Fuel Cell Microchannels

ConclusionsConclusionsSimulation ResultsSimulation Results

2007.6

IntroductionIntroductionMicro-direct methanol fuel cells (DMFC) are considered a strong competitor of future power sources for portable equipment. The advantages are high efficiency, high power density, low operation temperature and almost zero pollution.

Electrochemical Reaction

eHCOOHOHCH 66223

2 23/ 2 6 6 3O H e H O

3 2 2 23/ 2 2CH OH O CO H O

Anode :

Overall :

Chemical Reaction

Cathode :

TOSHIBA, HITACHI, SAMSUNG, LG,

SONY, NEC, PANASONIC, Sanyo Electric, IBM, and

etc.

DMFDMFCC

Notebook Computer, Cellular Phone, PDA, MP3

Player, Video Game Console, Digital Camera,

and etc.

ApproachApproachTwo-phase flow (Methanol solution/CO2 bubble) in the microchannels is simulated with the lattice Boltzmann method (LBM) and the thermal lattice Boltzmann method (TLBM) approaches. Hydrophilic, geometric and thermal (Marangoni effect) effects on the bubble dynamics are discussed.

Hot ColdBubble

Liquid

Marangoni effect :Marangoni effect : Liquid flows from a region of high temperature to a region of low temperature and exerts an opposite reaction on the bubble to make it move from the cold region to the warm region.

Objective and MotivationObjective and MotivationCarbon dioxide (CO2) bubbles flow into the diffusion layer and block the porous media if they cannot be removed efficiently, resulting in a decline of the cell performance. Hence, the bubble transport phenomenon in the microchannels is a major issue.

BubbleBubble

Methanol solutionMethanol solution

Microchannel

TLBMTLBM

1, , , ,iX c X X Xeq

i i i if t t t f t f t f t

Lattice Boltzmann equation for flow field :

c0

c8c4

c3

c5

c1

c2c6

c7

Surface tension :

Fluid-solid interaction force :

Buoyancy force :

,X X X caf

a a ai

aGF t t c

,X X X cas

a as w i

i

F t cG t

, ,X X ca ab i

i

F t G t t

fluid-fluid interaction strength

0 0expXa a

fluid-solid interaction strength

1

0

at the wallX c

in the fluidw i t

Lattice Boltzmann equation for temperature field : 1

, , , ,iT

X c X X Xeqi i i ig t t t g t g t g t

, ,X Xa ai

i

t f t , , ,X U X X ca a a

i ii

t t f t

Macroscopic mass density and momentum density :

Macroscopic temperature :

Hydrophilicity EffectHydrophilicity Effect

, ( )X jaTF t G T T

Temperature effect (the Boussinesq approximation) :

X, X, X,ii

t T t g t

Contact Contact AngleAngle

H+

H+

Proton

Methanol solution

Anode Cathode

Proton exchange membrane Catalyst layer Diffusion layer

Carbon dioxide

Water

Direct Methanol Fuel Cell

Oxygen

H+

H+ H+

H+

H+

H+

H+

H+

H+

H+

CO2H2O

H2OH2O

O2

O2

O2

e- e- e-e- e- e- e-e- e-e- e- e-

H2OCH3OH

Electron

Fluid-solid interaction strength vs. contact angle

Contact angle vs. bubble velocity

Geometric effectGeometric effect

Time=12.50ms

Time=37.50ms

Time=25.00ms

Time= 1.75ms

Gs = 0.007 -0.007 Gs = -0.007 0.007

Bubble Velocity = 262.65 m/s Bubble Velocity = 274.29 m/s

Thermal effectThermal effect

Time=12.50ms

Time= 1.75ms

Time=25.00ms

Time=37.50ms

Time=12.50ms

Time= 1.75ms

Time=25.00ms

Time=37.50ms

Bubble Velocity = 323.91 m/s

Bubble velocity vs. temperature gradient

A hydrophilic, divergent channel with a positive temperature gradient is favorable for bubble removal in the microchannels. The results provide important information for the design of the DMFC.

Time=25.00ms

Time= 1.75ms

Time=39.25ms

Inlet Velocity = 40.00 m/s (Bubble Blockage)(Bubble Blockage)

Time=25.00ms

Time= 1.75ms

Time=39.25ms

Inlet Velocity = 50.00 m/s

Time=29.75ms

Time= 1.75ms

Time=71.25ms

Time=29.75ms

Time= 1.75ms

Time=71.25ms

Inlet Velocity = 250.00 m/s

Time=12.50ms

Time= 1.75ms

Time=25.00ms

Time=34.50ms

Bubble Velocity = 319.62 m/s

Inlet Velocity = 250.00 m/s

Time=12.50ms

Time= 1.75ms

Time=25.00ms

Time=34.50ms

Bubble Velocity = 335.34 m/s

Convergent MicrochannelConvergent Microchannel

Divergent MicrochannelDivergent Microchannel

Orificed MicrochannelOrificed MicrochannelStraight MicrochannelStraight MicrochannelGeometric Geometric

effecteffect

Straight channelBasic case

Convergent channel

Divergent channel

HydrophilicitHydrophilicity effecty effect

Hydrophilic ( )

Less hydrophilic ( )

Increased hydrophilicity ( )Decreased hydrophilicity ( )

Thermal Thermal effecteffect

Low temperature ( )

Positive wall temperature gradient ( )

Negative wall temperature gradient ( )

Basic case: hydrophilic walls with high temperature ( ) Arrow length represents the degree of the influence (↑favorable;↓ adverse)。

0.007asG 0.007a

sG

0.004, 333asG T K

0.007 0.007asG

0.007 0.007asG

298T K

35T K 35T K

KT 35