Dependence of the Fe II/III EDTA complex on pH

25
March 30, 2004 Ryan Hutcheson University of Idaho 1 Dependence of the Fe II/III EDTA complex on pH Ryan Hutcheson and I. Francis Cheng* Department of Chemistry, University of Idaho Moscow, ID 83844 [email protected]

description

Dependence of the Fe II/III EDTA complex on pH. Ryan Hutcheson and I. Francis Cheng* Department of Chemistry, University of Idaho Moscow, ID 83844 [email protected]. Importance. First study of the pH dependence of Fe II/III EDTA - PowerPoint PPT Presentation

Transcript of Dependence of the Fe II/III EDTA complex on pH

Page 1: Dependence of the Fe II/III EDTA complex on pH

March 30, 2004 Ryan Hutcheson University of Idaho

1

Dependence of the FeII/IIIEDTA complex on pH

Ryan Hutcheson and I. Francis Cheng*Department of Chemistry, University of Idaho

Moscow, ID [email protected]

Page 2: Dependence of the Fe II/III EDTA complex on pH

March 30, 2004 Ryan Hutcheson University of Idaho

2

Importance

• First study of the pH dependence of FeII/IIIEDTA

• Green chemistry – optimization of O2 activation and pH dependence of the Fenton Reaction

• Antioxidants : FeII/IIIEDTA is a good model for low molecular weight biological ligands

Page 3: Dependence of the Fe II/III EDTA complex on pH

March 30, 2004 Ryan Hutcheson University of Idaho

3

0.00E+00

1.00E-04

2.00E-04

3.00E-04

4.00E-04

5.00E-04

6.00E-04

7.00E-04

8.00E-04

9.00E-04

1.00E-03

2 3 4 5 6 7 8 9 10 11

pH

Co

nc

en

tra

tio

n (

M)

FeIIIEDTA Speciation DiagramFeIIIEDTA

FeIIIHEDTA

FeIII(OH)EDTA

FeIII(OH)2EDTA

Page 4: Dependence of the Fe II/III EDTA complex on pH

March 30, 2004 Ryan Hutcheson University of Idaho

4

0.00E+00

1.00E-04

2.00E-04

3.00E-04

4.00E-04

5.00E-04

6.00E-04

7.00E-04

8.00E-04

9.00E-04

1.00E-03

2 3 4 5 6 7 8 9 10 11

pH

Co

nc

etr

ati

on

(M

)

FeIIEDTA Speciation DiagramFeIIEDTA

Free Fe+2

FeIIHEDTA

FeIIH2EDTA

FeII(OH)2EDTA

FeII(OH)EDTA

Page 5: Dependence of the Fe II/III EDTA complex on pH

March 30, 2004 Ryan Hutcheson University of Idaho

5

Electrocatalytic (EC’) Mechanismand Cyclic Voltammetry

FeIII-L + e- FeII-L

FeII-L +H2O2 FeIII-L OH• +OH-

E: O + ne- = RC’: R + Z = O + Y

Regeneration of the FeIIIEDTA within the vicinity of the electrode causes amplification of the CV wave

Page 6: Dependence of the Fe II/III EDTA complex on pH

March 30, 2004 Ryan Hutcheson University of Idaho

6

Conditions

• All scans– 10mL aqueous sol’n purged w/ N2 for 10-15min– 0.1M Buffer - HOAcCl, HOAc, HEPES– 5mV/s sweep rate– BAS carbon disk electrode – BAS Ag/AgCl reference electrode– Spectroscopic graphite rod counter electrode– BAS CV-50w potentiostat

• Cyclic Voltammetric scans of FeIIIEDTA– 1mM FeIIIEDTA

• Catalytic scans (Fenton Reaction)– 0.1mM FeIIIEDTA catalytic scans– 20mM H2O2

Page 7: Dependence of the Fe II/III EDTA complex on pH

March 30, 2004 Ryan Hutcheson University of Idaho

7

Cyclic Voltammagrams of FeII/IIIEDTA

-0.000005

-0.000004

-0.000003

-0.000002

-0.000001

0

0.000001

0.000002

-0.7-0.5-0.3-0.10.10.3

Potential (V)

Cu

rren

t (A

)

-0.000005

-0.000004

-0.000003

-0.000002

-0.000001

0

0.000001

0.000002

-0.7-0.5-0.3-0.10.10.3

Potential (V)

Cu

rren

t (A

)

pH 2

pH 11

pH 5.5

FeIIIEDTA + e- → FeIIEDTA

FeIIIEDTA + e- ← FeIIEDTA

1mM FeIIIEDTA0.1M buffer5mV/s scan rate

Page 8: Dependence of the Fe II/III EDTA complex on pH

March 30, 2004 Ryan Hutcheson University of Idaho

8

0.00E+00

1.00E-04

2.00E-04

3.00E-04

4.00E-04

5.00E-04

6.00E-04

7.00E-04

8.00E-04

9.00E-04

1.00E-03

2 3 4 5 6 7 8 9 10 11

pH

Co

nc

en

tra

tio

n (

M)

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

Po

ten

tial (V

)

E1/2 vs. pH (FeIIIEDTA)FeIIIEDTA

FeIIIHEDTA

FeIII(OH)EDTA

FeIII(OH)2EDTA

E1/2

Page 9: Dependence of the Fe II/III EDTA complex on pH

March 30, 2004 Ryan Hutcheson University of Idaho

9

0.00E+00

1.00E-04

2.00E-04

3.00E-04

4.00E-04

5.00E-04

6.00E-04

7.00E-04

8.00E-04

9.00E-04

1.00E-03

2 3 4 5 6 7 8 9 10 11

pH

Conc

etra

tion

(M)

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

Pote

ntia

l (V)

E1/2 vs. pH (FeIIEDTA)FeIIEDTA

Free Fe+2

FeIIHEDTA

FeIIH2EDTA

FeII(OH)2EDTA

FeII(OH)EDTA

E1/2

Page 10: Dependence of the Fe II/III EDTA complex on pH

March 30, 2004 Ryan Hutcheson University of Idaho

10

O2 Activation

• First example of abiotic RTP oxygen activation able to destructively oxidize organics.

• Oxygen activation is pH dependent.

Noradoun,C., Industrial and Engineering Chemistry Research, (2003), 42(21), 5024-5030.

Page 11: Dependence of the Fe II/III EDTA complex on pH

March 30, 2004 Ryan Hutcheson University of Idaho

11

Reaction Vessel

0.5g Fe; 20 or 40-70 mesh

0.44mM Xenobiotic

10.0 mL water

Air flow

2.0 mL 50/50 hexane/ethyl acetate(extraction only)

Stir bar

0.44mM EDTApH 5.5 – 6.5, unbuffered.

Noradoun,C., Industrial and Engineering Chemistry Research, (2003), 42(21), 5024-5030.

Page 12: Dependence of the Fe II/III EDTA complex on pH

March 30, 2004 Ryan Hutcheson University of Idaho

12

Xenobiotic Oxidation Studies

Ironparticles0.1-1 mm

Fe2+

O2 + 2H+ H2O2

EDTAFeIIEDTA

+

FeIIIEDTA + HO- + HO.

Aqueous Xenobiotic

LMW acidsNoradoun,C., Industrial and Engineering Chemistry Research, (2003), 42(21), 5024-5030.

Page 13: Dependence of the Fe II/III EDTA complex on pH

March 30, 2004 Ryan Hutcheson University of Idaho

13

Proposed O2 Reduction Mechanism by Van Eldik

Van Eldik, R. Inorg. Chem, 1997, 36, 4115-4120

FeIIEDTAH(H2O) + O2 FeIIEDTAH(O2) + H2O

FeIIEDTAH(O2) FeIIIEDTAH(O2-)

FeIIIEDTAH(O2-) + FeIIEDTAH(H2O) FeIIIEDTAH(O2

2-)FeIIIEDTAH + H2O

FeIIIEDTAH(O22-)FeIIIEDTAH + H2O + 2H+ 2FeIIIEDTAH(H2O) + H2O2

2FeIIEDTAH(H2O) + H2O2 2FeIIIEDTAH(H2O) + H2O

*Proposes H2O2 as intermediate*Saw no evidence of H2O2

Page 14: Dependence of the Fe II/III EDTA complex on pH

March 30, 2004 Ryan Hutcheson University of Idaho

14

Van Eldik’s O2 Reduction

Van Eldik, R. Inorg. Chem, 1997, 36, 4115-4120

Page 15: Dependence of the Fe II/III EDTA complex on pH

March 30, 2004 Ryan Hutcheson University of Idaho

15

Structures

O-

O-

O-

N N

O-

Fe

O

O

O

O

NH

O-

O-

O-

NH

FeOH

O

O

O

O

FeIIIEDTA (CN = 7)FeIIIHEDTA (CN = 6)

O-

O-

O-

O- N

N Fe

O

O

O

O

FeIIEDTAFeIIHEDTACN = 7

OctahedralSquare Pyramidal

Monocapped trigonal prismatic (MCP) Pentagonal-bipyramidal (PB)

NO

N

OO

O

Miyoshi, K., Inor. Chem. Acta., 1995, 230, 119-125.Heinemann, F.W., Inor. Chem. Acta., 2002, 337, 317-327.

Page 16: Dependence of the Fe II/III EDTA complex on pH

March 30, 2004 Ryan Hutcheson University of Idaho

16

Structures cont’d

< pH 3

pH 3 – pH 4 > pH 4

PB MCP

Free Fe+2

FeIIEDTAFeIIHEDTA

Miyoshi, K., Inor. Chem. Acta., 1995, 230, 119-125.

Active site

Active site

Page 17: Dependence of the Fe II/III EDTA complex on pH

March 30, 2004 Ryan Hutcheson University of Idaho

17

Fenton Reaction

FeIIIL +e-→ FeIIL E°’=depends on ligand

H2O2 + e- → HO• + OH- E°=0.32V SHE @pH 7

FeIIL + H2O2 → FeIIIL + HO• + OH-

Only iron complexes with E0’ negative of 0.32 V are thermodynamically capable of hydrogen peroxide reduction. However, Fenton inactivity may result from kinetic factors as well.

Page 18: Dependence of the Fe II/III EDTA complex on pH

March 30, 2004 Ryan Hutcheson University of Idaho

18

Electrocatalytic CV

0

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

-0.7-0.5-0.3-0.10.10.3

Potential (V)

Cu

rre

nt

(A)

-0.7-0.5-0.3-0.10.10.3

pH 4pH 3.5

pH 2

pH 2.5

pH 3

pH 4

pH 4.5

FeIIIEDTA + e- → FeIIEDTA

0.1mM FeIIIEDTA20mM H202

0.1M buffer5mV/s scan rate

Page 19: Dependence of the Fe II/III EDTA complex on pH

March 30, 2004 Ryan Hutcheson University of Idaho

19

Fenton Reactivity vs. pH

FeIIEDTAFree Fe+2

FeIIHEDTAFeIIH2EDTA

Each data point was collected 9 times.

0.00E+00

1.00E-05

2.00E-05

3.00E-05

4.00E-05

5.00E-05

6.00E-05

7.00E-05

8.00E-05

9.00E-05

1.00E-04

2 2.5 3 3.5 4 4.5 5

pH

Co

nc

en

tra

tio

n (

M)

0

0.00002

0.00004

0.00006

0.00008

0.0001

0.00012

0.00014

0.00016

0.00018

Cu

rren

t (A

)

Page 20: Dependence of the Fe II/III EDTA complex on pH

March 30, 2004 Ryan Hutcheson University of Idaho

20

Conclusion

• E1/2 of the FeII/IIIEDTA complex depends on pH, corresponding to the pH distribution diagram.

• Fenton reactivity increases around pH 3.5 due to geometric rearrangement of the FeIIEDTA complex (MCP to PB).

Page 21: Dependence of the Fe II/III EDTA complex on pH

March 30, 2004 Ryan Hutcheson University of Idaho

21

Future

• pH dependence of Fenton reactivity at higher pH values

• Expand van Eldik’s O2 activation to higher pH values

Page 22: Dependence of the Fe II/III EDTA complex on pH

March 30, 2004 Ryan Hutcheson University of Idaho

22

Acknowledgments

•National Institute of Health

•National Science Foundation

•University of Idaho

•Malcom and Carol Renfrew

•Dr. Cheng Group

•Dr. Mark Engelmann

Page 23: Dependence of the Fe II/III EDTA complex on pH

March 30, 2004 Ryan Hutcheson University of Idaho

23

Nernst Equations E1/2

• pH 2 to pH 3.5– E1/2(mV) = 83mV – 69.5mV*(pH )

• pH 3.5 to 7– E1/2(mV) = -89.5mV ± 5.6mV

• pH 7 to 9– E1/2(mV) = 202.8mV – 41.8mV*(pH)

• pH 9 to 11– E1/2(mV) = 409.1mV – 64.6mV*(pH)

Page 24: Dependence of the Fe II/III EDTA complex on pH

March 30, 2004 Ryan Hutcheson University of Idaho

24

FeIIIEDTA ModelEDTA-4 + H+ → HEDTA-3 log β = 9.52HEDTA-3 + H+ → H2EDTA-2 log β = 6.13 H2EDTA-2 + H+ → H3EDTA- log β = 2.69H3EDTA- + H+ → H4EDTA log β = 2.00H4EDTA + H+ → H5EDTA+ log β = 1.5H5EDTA+ + H+ → H6EDTA+2 log β = 0.0EDTA-4 + Fe+3 → FeIIIEDTA- log β = 25.1FeIIIEDTA- + H+ → FeIIIHEDTA log β = 1.3FeIIIEDTA- + H20 → FeIII(OH)EDTA-2 + H+ log β = 17.712FeIII(OH)EDTA-2 → FeIII

2(OH)2EDTA2-4 log β = 38.22

FeIII(OH)EDTA-2 + 2H2O → FeIII(OH)2EDTA-3 + 2H+ log β = 4.26H+ + OH- → H2O log β = 13.76Fe+3 + OH- → FeIII(OH)+2 log β = 11.27Fe+3 + 2OH- → FeIII(OH)2

+ log β = 23.0Fe+3 + 3OH- → FeIII(OH)3 log β = 29.77Fe+3 + 4OH- → FeIII(OH)4

- log β = 34.42Fe+3 + 2OH- → FeIII

2(OH)2+4 log β = 24.5

3Fe+3 + 4OH- → FeIII3(OH)4

+8 log β = 49.7

Page 25: Dependence of the Fe II/III EDTA complex on pH

March 30, 2004 Ryan Hutcheson University of Idaho

25

FeIIEDTA ModelEDTA-4 + H+ → HEDTA-3 log β = 9.52HEDTA-3 + H+ → H2EDTA-2 log β = 6.13H2EDTA-2 + H+ → H3EDTA- log β = 2.69H3EDTA- + H+ → H4EDTA log β = 2.00H4EDTA + H+ → H5EDTA+ log β = 1.5H5EDTA+ + H+ → H6EDTA+2 log β = 0.0EDTA-4 + Fe+2 → FeIIEDTA-2 log β = 14.3HEDTA-3 + Fe+2 → FeIIHEDTA- log β = 6.82H2EDTA-2 + Fe+2 → FeIIH2EDTA log β = 13.41FeIIEDTA-2 + OH- → FeII(OH)EDTA-3 log β = 18.93FeII(OH)EDTA-3 + OH- → FeII(OH)2EDTA-4 log β = 13.03Fe+2 + OH- → FeII(OH)- log β = 4.2Fe+2 + 2OH- → FeII(OH)2 log β = 7.5Fe+2 + 3OH- → FeII(OH)3

- log β = 13Fe+2 + 4OH- → FeII(OH)4

-2 log β = 10