Department of Pharmaceutical Sciences, Mohanlal Sukhadia...

27
Microbial Biofilms Sunita Panchawat * Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur (Rajasthan), India Email: Sunita_pharma2008@rediffmail.com Chapter 1 Current Research in Microbiology 1. Introduction and Historical Perspective Biofilm exhibit two types of growth mode i.e. planktonic cell and sessile aggregate. In biofilm (association of micro-organisms), cells stick to each other on a surface encased within matrix of extracellular polymeric substance produced by bacteria themselves [1]. A Dutch researcher, Antoni van Leeuwenhoek, for the first time observed ‘animalcule’ on surfaces of tooth by using a simple microscope and this was considered as the microbial biofilm discovery [2]. For marine microorganism i.e. bacterial growth and activity were substantially enhanced by the incorporation of a surface to which these microorganisms could attach is known as “bottle effect” observed by Heukelekian and Heller [3]. Zobell observed that the number of bacteria on surfaces was higher than in the surrounding medium [4]. Zo Bell introduced first about multicellular prokaryotic communities on submerged surfaces who stated the presence of adherent microbial associations in all natural environments [5,6]. The extensive physical and chemical analysis of bacterial biofilms did not begin until the late 1960s and early 1970s, when some of the investigators identified the extensiveness of bacterial biofilms. Scanning and transmission electron microscopy was used by Jones et al. to examine biofilms on trickling filters in a wastewater treatment plant and showed them to be composed of a variety of organisms (based on cell morphology). By using a specific polysaccharide-stain such as ruthenium red when coupled with osmium tetroxide fixative to show that the matrix material surrounding and enclosing cells in these biofilms was polysaccharide. In 1973 Characklis studied microbial slimes in industrial water systems and reported that they were not only adhering very closely but also highly resistant to disinfectants such as chlorine. Costerton et al. in 1978 gives a theory of biofilms based on observations of dental plaque and sessile communities in mountain streams that explain the mechanisms whereby microorganisms adhere to living and nonliving materials and the benefits arises by

Transcript of Department of Pharmaceutical Sciences, Mohanlal Sukhadia...

Page 1: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

Microbial BiofilmsSunita Panchawat*

Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur (Rajasthan), India

Email: [email protected]

Chapter 1

Current Research inMicrobiology

1. Introduction and Historical Perspective

Biofilmexhibit twotypesofgrowthmodei.e.planktoniccellandsessileaggregate.Inbiofilm(associationofmicro-organisms),cellssticktoeachotheronasurfaceencasedwithinmatrix of extracellular polymeric substance produced by bacteria themselves [1].ADutchresearcher,AntonivanLeeuwenhoek,forthefirsttimeobserved‘animalcule’onsurfacesoftoothbyusingasimplemicroscopeandthiswasconsideredasthemicrobialbiofilmdiscovery[2].Formarinemicroorganismi.e.bacterialgrowthandactivityweresubstantiallyenhancedby the incorporationofa surface towhich thesemicroorganismscouldattach isknownas“bottleeffect”observedbyHeukelekianandHeller [3].Zobellobservedthatthenumberofbacteriaonsurfaceswashigherthaninthesurroundingmedium[4].ZoBellintroducedfirstaboutmulticellularprokaryoticcommunitiesonsubmergedsurfaceswhostatedthepresenceofadherentmicrobialassociationsinallnaturalenvironments[5,6].

Theextensivephysicalandchemicalanalysisofbacterialbiofilmsdidnotbeginuntilthelate1960sandearly1970s,whensomeoftheinvestigatorsidentifiedtheextensivenessofbacterialbiofilms.ScanningandtransmissionelectronmicroscopywasusedbyJoneset al. toexaminebiofilmsontricklingfiltersinawastewatertreatmentplantandshowedthemtobecomposedofavarietyoforganisms(basedoncellmorphology).Byusingaspecificpolysaccharide-stain such as ruthenium red when coupled with osmium tetroxide fixativeto show that the matrix material surrounding and enclosing cells in these biofilms waspolysaccharide.In1973Characklis studiedmicrobialslimesinindustrialwatersystemsandreportedthattheywerenotonlyadheringverycloselybutalsohighlyresistanttodisinfectantssuchaschlorine.Costertonet al. in1978givesa theoryofbiofilmsbasedonobservationsofdentalplaqueandsessilecommunitiesinmountainstreamsthatexplainthemechanismswherebymicroorganismsadheretolivingandnonlivingmaterialsandthebenefitsarisesby

Page 2: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

2

www.openaccessebooks.com

CurrentResearchinMicrobiologyPanchawatS

thisecologicniche[7-9].

Costerton and Geesey specified that glycocalyx acted as an ionic exchangematrix,trappingnutrientsthatweretransportedintocellsbyhighlyefficientpermeases[10].In1981glycocalyx was characterised as a hydrated polyanionic polysaccharide matrix which isproducedbypolymerasesthatisattachedtothelipopolysaccharidecomponentofthebacterialcellwall. Biofilmproductionofglycocalyxinaqueousenvironmentisprevalentwithorganicandinorganicnutrientsbeingconcentratedatthesolid/liquidinterface.Theglycocalyxprovidesa physical/chemical barrier, offers partial protection against antibacterial agents [11]. Thestructuresofdifferentbiofilmshavedistinctfeaturesbecauseitformsunderdiverseconditionsandcomposedofsingleormultiplespecies.Thestudyrelatedtobiophysical,structuralandchemicalpropertiesofbiofilmhaveledtoausefulbasicconceptof“biofilmmodel”[12].

The important advances of the development andbehavior of biofilmsweremade in1998,whenmoleculargeneticsapproachescombinedwithconfocallaserscanningmicroscopy(CLSM). Traditionally, microbiologists have performed physiological experiments withmicroorganisms grown in liquid monocultures where the cells are “free swimming” orplanktonic[13].Itisnowwidelyacceptedthat99%ofallmicro-organismsattachtoasurfaceandgrowasa bioflim.Animportantsurvivalstrategyformicro-organismsinthehealthcareenvironment is thegrowthof biofilmmode.According to theCenters forDiseaseControlandPrevention,theassociationofbiofilmsisapproximately65%ofall healthcare-associatedinfections.Thus,theirpresenceinmedicaldevices, chronicwounds and surgicalsiteinfectionsisofgrowingconcern[14].

Figure 1:HistoricalDevelopmentofBiofilm

2. Definition

Manynovel,organiccompoundshavebeendevelopedinlastfewyearsthatarereleasedintotheenvironment.Thesecompoundsincludeheavymetals,poly-aromatichydrocarbons,polychlorinated biphenyls, pesticides, chemical fertilizers, detergents, paints, disinfectants,

Page 3: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

3

CurrentResearchinMicrobiology

lubricants, antibiotics and nanoparticles. Many of them are toxic to humans and otherorganisms.Managing the harmful effects of these pollutants is a challenge to sustainabledevelopmentglobally.Usingbiofilmsinbioremediationcanallownewtechnologiestoremainenvironmentallysustainableifintegratedmethodsarecorrectlydevelopedandapplied[15]. Biofilms vary greatly in structure and composition from one environmental condition toanothersothattheyarenoteasilydefined.Microbialbiofilmsareextremelycomplexmicrobialecosystemsconsistingofmicroorganismsattachedtoasurfaceandembeddedinanorganicpolymermatrixofmicrobialorigin.Non-cellularmaterialssuchasmineralcrystals,corrosionparticles,andclayorsiltparticles,bloodcomponentsmayalsobefoundinthebiofilmmatrix.Thereforebiofilmmaybedefinedas“microbialcellsimmobilizedinamatrixofextracellularpolymersactingasan independentfunctioningecosystem,homeostaticallyregulated”[16]. Biofilmisacommunityofbacteriathatattachtoasurfacebyexcretingasticky,sugarysubstancethatencompassesthebacteriainamatrix. Bacteria,fungiandprotistsarethemicroorganismsthatformbiofilms.Biofilmsarecomplexsystemsthataresometimescomparedtomulticellularorganisms.Biofilmshavebeenfoundgrowingonmineralsandmetals.Theyhavebeenfoundunderwater,undergroundandabovetheground.Theycanalsogrowonplanttissuesandanimaltissues, implantedmedicaldevicessuchascathetersandpacemakersetc [17,18].Bacterialbiofilmscanbeconsideredtobeanemergentformofbacteriallife,inwhichcommunallifeiscompletelydifferentfrombacteriathatliveasfree-livingcells[19].Biofilmsmayformonlivingornon-livingsurfacesandcanbeprevalentinnatural,industrialandhospitalsettings[1,20].Themicrobialcellsgrowsonbiofilmarephysiologicallydistinctfromplanktoniccellsofthesameorganism,which,bycontrast,aresingle-cellsthatmayfloatorswiminaliquidmedium[21].ThemorphologicalstructuresofbiofilmareshowninFigure 2[22].

Figure 2ThemorphologicalsimilarityinthestructureofaP. aeruginosa biofilmandaMyxococcus fruitingbodyisevidentinthesetop-downphotographs.Bothorganismsformdistinctaggregatesofcellsthatarewellseparatedfromtheirneighbors.Left:8-h-oldbiofilmofP. aeruginosa grownonPVCplasticat400_magnification.Right:FruitingbodiesofMyxococcus xanthus after6honstarvationagarplatesat5_magnification.Microcoloniesandfruitingbodiesareindicatedbyarrows.

Page 4: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

4

CurrentResearchinMicrobiology

3. Classification of Biofilms [23].

3.1 On basis of its location:

a. Supragingival-Presentcoronaltothegingivalmargin

b. Subgingival-Presentapicaltothegingivalmargin

3.2. On basis of pathogenicity

a. Cariogenic-Generallyacidogenicandgram-positive

b. Periopathogenic-Mostlybasophilicandgram-negative

4. Composition of Biofilm

Abiofilmcomprisesanysyntrophicconsortiumofmicroorganismsinwhichcellssticktoeachotherandalso toasurface.Theseadherentcellsbecomeembeddedwithinaslimyextracellularmatrixthatiscomposedofextracellularpolymericsubstances(EPS).ThecellswithinthebiofilmproducetheEPScomponents,whicharetypicallyapolymericconglomerationofextracellularpolysaccharides,proteins,lipidsandDNA[1,24,25].Theyhavebeendescribed(metaphorically) as “cities for microbes” because they have three-dimensional structureand represent a community lifestyle formicroorganisms [26,27].TheEPShas a complexbiochemical composition, comprising predominantly carbohydrates and proteins, althoughlipidsandextracellularDNA(eDNA)havealsobeenidentified[28],alongwithexogenousinorganicororganicsubstanceswhichmaybecomeentrappedwithintheEPS,forexample,ironormanganese[29].EPSprimarilycomposedofpolysaccharidesandmayvaryinchemicalandphysicalproperties.FortheEPSgram-negativebacteria,someofthesepolysaccharidesareneutralorpolyanionic.Thepresenceofuronicacids(suchasD-glucuronic,D-galacturonic,andmannuronicacids)orketal-linkedpryruvatesconferstheanionicpropertyofEPS[30]. Thispropertyallowsassociationofdivalentcationssuchascalciumandmagnesium,whichhavebeenshowntocross-linkwiththepolymerstrandsandprovidegreaterbindingforceinadevelopedbiofilm[31].AbiofilmisanimmobilemicrobialcommunitycomposedofcellsimmersedinamatrixofEPSattachedtoasubstratumorinterface.Essentiallythematrixisofmicrobialoriginandthecellsencasedinthismatrixpresentamodifiedphenotype,especiallywithregardtogrowthrateandgenetranscription[32].Thetermofslime wasusedtodefinetheglycocalixproducedbythestronglyadherentstrainsofStaphylococcus epidermidis isolatedfromtheinfectedsurfaceofmedicalimplants[33,34].

Biofilms are group or micro-organisms in which microbes produced extracellularpolymericsubstances(EPS)suchasproteinsincludingenzymes,DNA,polysaccharidesandRNAandinadditiontothesecomponentswater(upto97%)isthemajorpartofbiofilmwhich

Page 5: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

5

CurrentResearchinMicrobiology

is responsible for theflowofnutrients inside thematrixofbiofilm.Thecomplexstructureof biofilm consists of twomain components i.e.water channel (for transport of nutrients)anddenselypackedcells(aregionhavingnoprominentporesinit)[35].Thecomponentsofbiofilms(Table1)havethecapacitytomakeitresistantagainstvariousenvironmentalfactorsandsignify thebiofilm integrity [36,37].Thechemicalcompositionofbiofilm is shown inTable 1.

5.Role and Importance of Biofilm in Different Field

5.1 In Medical Field

Microorganismsareabletoadheretovarioussurfacesandtoformathree-dimensionalstructureknownasbiofilm.Bacteriaembeddedinthebiofilmcanescapeandformwellknownplanktoniccells(freeflowingbacteriainsuspension),thatareonlyapartofthebacteriallifecycle.Bacteriaalsoadheretomedicaldevicessuchascatheters,eitherurinaryorintravenous,artificialheartvalves,orthopedicimplantsthatcausesdevice-relatedinfectionslikecystitis,catheter-related sepsis, endocarditis etc.Once a biofilmhas been establishedon a surface,thebacteriaholdinsidearelessexposedtothehost’simmuneresponseandlesssusceptibletoantibiotics.Asanimportantcauseofnosocomialinfectionsthebiofilmmustremaininthecentreofthemicrobiologist’sattention[38].

ThefourthleadingcauseofdeathintheUnitedStatesisnosocomialinfections(infectionsacquiredatahospital).About65%oftheseinfectionsareduetobiofilmsonimplantedmedicaldevices[39].BiofilmsdifferfromaninfectionofplanktonicbacteriaisduetotheEPSmatrixof the biofilm,which is important in cell adhesion and aggregation.ThisEPSmatrix alsohinders the normal functions of antibodies and the phagocytic cells of the host’s immunesystem[40].Anotherkeyfactorthatmakesbiofilmsparticularlydifficultinmedicalsituationsistheirheightenedresistancetoantibiotics.Therearethreeproposedmethods[41]:

a. Theantibiotic isdeactivated faster than it candiffuseandalsonot able topenetrate thesurfacelayersofthebiofilm.

b.Thedifferentchemicalenvironmentsofbiofilmcanaffecttheactionoftheantibiotic.Thecauseofnon-growingstateofbacteriaislowlevelofnutrientsinthelowerlayersofbiofilm.

Table 1: ChemicalCompositionofBiofilms

S. No. Components Percentage

1 Microbialcells 2-5%

2 Polysaccharides 1-2%

3 DNAandRNA <1-2%

4 Proteinsincludingenzymes <1-2%

5 Water Upto97%

Page 6: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

6

CurrentResearchinMicrobiology

c.About1%ofthepopulationmayexhibitaphenotypicstate(whichpersistsundercontinuedexposuretoanantibiotic),evenwhenthebiofilmistoothintoinhibitdiffusionoftheantibioticorofnutrients.

Becauseoftheseproperties,cells(existinbiofilms)canbe1000timesmoreresistantto antimicrobial agents than the same cells in planktonic form.Cells at the surface of thebiofilmcaninfectthehostwhendetachfromthebiofilmmatrix.Therefore,biofilmscanactasareservoirofprotectedbacteria(oninsertedmedicaldevices)oftenpersistsuntiltheremovaloftheinfecteddevices[42,43].TogetridcompletelyfromtheInfectionsassociatedwiththebiofilmgrowtharechallengingtaskduetothefactmaturebiofilmsdisplaytolerancetowardsantibioticsand the immune response.The rapidlygrowing industry forbiomedicaldevicesandtissueengineeringrelatedproductsisalreadyat$180billionperyearworldwide.Theseindustries continue to suffer frommicrobial colonization [44,45].VariousmicroorganismsdevelopedonmedicaldevicesareshowninTable 2.

5.2. In Industry

Biofilmformedwhenbacteriaareabletoattachtoandcolonizeenvironmentalsurfaceswhichallowtheorganismstopersistintheenvironmentandresistdesiccation,UVlightandtreatment with antimicrobials and sanitizing agents. Biofilms are formed when microbesattach toa solidsupportand toeachotherbyextracellularpolymericsubstances (EPS)onawidevarietyofsurfaces includingmetal,plastic, rockand livingordead tissue.Bacteriacanbeseveralordersofmagnitudeinbiofilmwhichismoreresistanttoantimicrobialsthantheir planktonic forms [46]. Inmarine and other aquatic environments algae, diatoms andbacteriathatareabletoattachandformbiofilmsonships’hullsandbecomeresistanttothedifferentantifoulingpaints(developedtopreventtheinitialcolonization)resultsinincreasedfluidfrictionalresistanceandfuelconsumption.Inthefoodindustry,contaminationoffoodprocessingand/orfoodcontactequipmentoftenleadstopost-processcontaminationandreducetheshelflifeofproducts[47].

Table 2:Microorganismsassociatedwithbiofilmdevelopedonmedicaldevices

S. No. Microorganism Medical Devices

1. Psudomonas aeuginosa Artificialhipprosthesis,Centralvenouscatheter,Urinarycatheter

2. Candida albicans Artificialhipprosthesis,Centralvenouscatheter,Prostheticheartvalves,Intra-uterinedevices

3. Staphylococcus aureus Artificialhipprosthesis,Centralvenouscatheter,Prostheticheartvalves,Intra-uterinedevices

4. Enterococcus Spp. Artificialhipprosthesis,Urinarycatheter,Prostheticheartvalves

5. Klebsiella pneumoniae Centralvenouscatheter,Urinarycatheter

6. C o a g u l a s e - n e g a t i v e staphylococci

Central venous catheter, Urinary catheter, Intra-uterine devices,Prostheticheartvalves

Page 7: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

7

CurrentResearchinMicrobiology

Biofilms can also be utilized for useful purposes. Sewage treatment plants includeasecondarytreatmentstageinwhichwastewaterpassesoverbiofilmsgrownonfilterswhichextract and digest organic compounds. In such condition of biofilms, bacteria are mainlyresponsibleforremovaloforganicmatter,whileprotozoaandrotifersaremainlyresponsibleforremovalofsuspendedsolids,includingpathogensandothermicroorganisms.Slowsandfiltersdependsonbiofilmdevelopmenttofiltersurfacewaterfromlake,springorriversourcesfordrinkingpurposes.Toeliminatepetroleumoilfromcontaminatedoceansormarinesystems,biofilmscanbehelpfulbythehydrocarbondegradingactivitiesofmicrobialcommunities[48].Biofilmsareusedtogenerateelectricityfromavarietyofstartingmaterials,includingcomplexorganicwasteandrenewablebiomassintheformofinmicrobialfuelcells(MFCs).Biofilmsarealsousedtoenhancethemetaldissolutioninbioleachingindustry[49-52].

5.3. In Food industry

Biofilmformationisadynamicprocessinwhichvariousmechanismsareinvolvedintheirattachmentandgrowth.Biofilmshavebeenamatterofinterestinthecontextoffoodhygiene.Ifthemicroorganismsfromfood-contactsurfacesarenotcompletelyremoved,theymayleadtoformbiofilmwhichincreasesthebiotransferpotential[53].Biofilmsarecomplexmicrobialecosystemsformedbyoneormorespeciesimmersedinanextracellularmatrixofdifferentcompositionswhichdependsonthefoodmanufacturingconditionsandthecolonizingspecies[54].TheformationofBiofilmsinfoodindustryenvironmentsisveryfast.Thefirsttwostepsare;a)theconditioningofthematerialssurfacesb)thereversiblebindingofthecellstothatsurface.Thebindingbecomesirreversiblethatcausesdevelopmentofmicrobialcolonies.Finally,thetridimensionalstructureofbiofilmisformed,andthiscomplexecosystemisreadyfordispersion[55-57].Theextracellularmatrixismainlycomposedofpolysaccharides,suchascellulose,proteinsorexogenousDNAand itcanbefixed tohardsurfacessuchas foodindustry equipment, transport, dispensing and storage surfaces, soil, etc. or to biologicalstructuresviz.vegetables,meat,bones,fruits.Theextracellularmatrixisresponsibleforthestrongpersistenceofthesebiofilmsinthefoodindustry.Thisgeneratescomplexgradientswithrespecttonutrientsandoxygendiffusion,containsextracellularenzymesusedfornutritionalpurposes.Thesecomplexgradientsallowforthetransferofcellcommunicationmolecules,andprotecttheembeddedcellsagainsttoxiccompounds[58].

The biofilm layer is foundon themesocarp inherently formedby various yeast andlacticacidbacteria.ThesebacteriaandyeaststrainsplayaroleinthefermentationofoliveandalsotheybecomeadominantfloraonthefruitwhichpreventstheolivefrommicrobialspoilageoriginatedbyGramnegativebacteria. In this regard, thequalityandsafetyof thetableoliveandalsothetasteandflavourofthelastproducthasbeendeterminedbybiofilmformingmicroorganismsfoundonthemesocarpofthefruit.Biofilmformingabilityisadesiredpropertyoffermentedfruitproducts[59].Beneficialeffectofthebiofilmformationisaboutthe

Page 8: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

8

CurrentResearchinMicrobiology

yeaststrainsusedcommonlyinthefoodindustry.SomeyeastspecieshavingbiotechnologicalrelevancesuchasSaccharomyces cerevisiae mightregulatetheQStype.IntheQSmechanismoftheyeaststrains,aromaticalcoholsarethemostobservedsignalmoleculeswhichcanresultinmodificationandimprovementofindustrialprocesses[60].Themicrobialinteractionshaveanimportanceforfoodindustry.Fermentation,brewingandcheeseripeningaresomeareaswheremicrobialinteractionshavebeenobserved.Mixtureoffungi,yeastandbacterialspeciesplayaledroleintheproductionofwine,fromripeningofgrapesinvineyardstowinebottling.Thegrowthofsomebacterialspecies,suchasLeucobacter sp.orBrevibacterium aurantiacum,significantlyreliesonthepresenceoftheyeast[61].

5.4 In aquaculture

Aquacultureisdefinedastheproductionofaquaticplantsandanimalsandthisisafastestgrowingfoodindustry(FAO-FisheriesandAquacultureDepartment2012).Aquaculturehasexpanded12‐foldwithanannualgrowthrateof8.8%andthisdatawasobservedduringthelast30years.In2010,ithasreachedatotalvolumeof60milliontonnesperyear.Amajorshareofglobalaquacultureproductioniscoveredbyfreshwaterfish(56.4%),mostnotablybycarpcultureinChina(16milliontonnes).Approximately38%ofthetotalaquacultureproductionisfrommarineaquaculture[62].Infishculture,presentlythemostcommonformisfloatingnetcages,whichcontainslargeamountsoffishatminimalcosts.Tankandpondculturesaremoreexpensive;howevertheyareeasiertoaccessandarethusthebestchoiceforlabor‐intensiveculturessuchaslarvae,juvenilesandbroodstock.Are-circulatingaquaculturesystemareafurtherdevelopmentofpondor tankculturesandisarelativelynewculturetechniquethatpresupposedtheavailabilityofdurabletechnicalequipmentaswellasbiologicalandtechnicalknowledge originating from wastewater treatment research [63].Microbial community ofbiofilmoccursinblocksof20-60uinwaterandsediment,harvestablebymanyplanktonicfishlikesilvercarp,rohu,catla,mulletsandmilkfish.Themicrobialcommunityflourishesusingorganicandmineralfractionsoforganicmanureassourceofenergyandnutrients.Fishesareabletoharvesttheseorganismsdirectlyinsignificantquantities.Themicrobialfilmcoatingthatisrelativelyindigestiblesubstrateofthedetritusanditisdigestedwhilethesubstrateitselfpassesthroughthefishgutwhichthengetre-colonizedbymicrobesandre-harvestedbyfish[64].Numerousstudieshaveshownthatbiofilmcanbeareservoirforpotentiallypathogenicbacteriainfreshwateraquaculture[65,66].

6. Functions of Biofilm in Microbial Communities

6.1 Environmental protection

ExtracellularPolymericSubstances(EPS)playsdifferentrolesinstructureandfunctionof biofilm communities. EPS act as an anion exchanger to prevent the access of certainantimicrobialagentsintothebiofilm.Itrestrictsthediffusionofcompounds fromsurroundings

Page 9: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

9

CurrentResearchinMicrobiology

into the biofilm. Antibiotics that are hydrophilic and positively charged such as amino-glycosidesshowmorepronouncedattractiontowardsthiseffect.EPShasalsobeenreportedtosequestermetalions,cationsandtoxinsthatprovideprotectionfromvarietyofenvironmentalstressessuchaspH-shift,UVradiation,osmoticshockanddesiccation[34,67-69].

6.2 Availability of nutrients

Theeffectivemeansofexchangingnutrientandmetabolitesiswaterchannel.Aqueousphaseenhancestheavailabilityofnutrientandalsoremovesthepotentiallytoxicmetabolites.Fermentivebacteriaproduceacidsandalcoholsinitiatedbytheprocessofcatabolism,whicharethenutilizedassubstratebyacetogenicbacteria.Biofilmsprovidesanidealenvironmentfor the establishment of syntrophic relationship.Syntrophism is a symbiosis inwhich twometabolicallydistinctbacteriadependsoneachothertoutilizecertainsubstratestypicallyforenergyrequirements[70,71].

6.3. Acquisition of new genetic trait

Acquisitionofnewgenetictraitgiveschancestothemicrobialcommunitiestotranscribethenecessarygamestobecometheactivememberofbiofilmcommunities.TheproductionofalginatewhichinvolvesthetranscriptionofalgCgeneisincreasedapproximatelyfourfoldinbiofilmassociatedcellsascomparedtoplanktoniccells[12,72].

6.4. Penetration of antimicrobial agent

Diffusionistherate limitingsteptoinactivatethebiofilmformingmicrobialcommunitybyantimicrobialagents.EPSactsasdiffusionbarrierforthesemoleculesthatinfluencestherateoftransportofthereactionofantimicrobialagentswiththematrixmaterial.Advantagesofbiofilmgrowthtowardsthemicrobialcommunityare:

a.AsthegrowthisrestrictedalltheenergyisusedupbythebacteriainmakingtheEPSthatwillgiveprotectiontothemicrobialcommunity[73].

b.Asthegrowthisrestricted,bacteriawillremainindormantstagesthatwillgiveprotectiontothemicrobialcommunityagainstantibiotics(mostoftheantibioticsareactiveagainstthegrowthphaseofthebacteria)[74].

7. Formation of Biofilm

Biofilmformationbeginswithplanktonic(free-swimming)bacteriawhichcanattachtoavarietyofsurfaces,fromwoods,metals,andplasticstolivingtissuesandstagnantwater.The cells are excreted a sugarymolecule called extracellular polymeric substance or EPShasastrand-likestructurethatholdsthecellstogetherandattachesthemtothesurfaceandcreatingamatrix.Thismatrixofcellsandstrandscanbequitecomplex:thecellsmayshare

Page 10: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

10

CurrentResearchinMicrobiology

geneticmaterialandhaveorganizedstructure.Abiofilmcanbeasthinasasinglecellorasthickasseveralinchesdependontheconditionsoftheenvironment.Biofilmsbecomematureandthickensastheygrowsanddevelop.Inthepresenceofsufficientwaterandnutrients,thebiofilmwilldevelopuntilsmallportionsdetachandfloattoanothersurfaceandcolonize[75].Complexprocessofbiofilmformationinvolvesseveraldistinctphasesstartwithadsorptionontothetoothsurfaceofaconditioningfilmderivedfrombacterialandhostmoleculesformstootheruptionortoothcleaning.Thisadsorptionprocessisfollowedbypassivetransportofbacteriamediatedbyweaklong-rangeforcesofattraction.Covalentandhydrogenbondscreatestrong,short-rangeforcesthatresultinirreversibleattachment.Theprimarycolonizersformabiofilmbyauto-aggregation(attractionbetweensamespecies)andco-aggregation(attractionbetween different species). Co-aggregation results in a functional organization of plaquebacteriaandformationofdifferentmorphologicalstructuressuchasCorncobsandRosettes.Themicroenvironmentnowchangesfromaerobic/capnophilictofacultativeanaerobic.Theattachedbacteriamultiplyandsecreteanextracellularmatrix(EPS),whichresultsinamixed-populationofmaturebiofilm.Organizationtakesplacewithinbiofilmafteroneday.Formationofaclimaxcommunitytakesplaceduringtransmissionthatoccursfromothersites,leadingtoincorporationofnewmembersintothebiofilm.Thethicknessoftheplaqueincreasesslowlywithtime,increasingto20to30μmafterthreedays[76].

Theformationofabiofilmbeginswiththeattachmentoffree-floatingmicroorganisms(Planktonic) to a surface [77]. The first colonist bacteria of a biofilm may adhere to thesurface initiallyby theweakvanderWaals forcesandhydrophobiceffects. If theyarenotimmediately separated from the surface, they can anchor themselves more permanentlyusingcelladhesionstructuressuchaspili. Hydrophobicityaffectstheabilityofbacteriatoformbiofilms.With increasedhydrophobicitybacteriahave reduced repulsionbetween thesubstratumandthebacterium.Bacteriawithincreasedhydrophobicityhavereducedrepulsionbetweenthesubstratumandthebacterium.Motilebacteriacanrecognizesurfacesandaggregatetogethereasilythannon-motilebacteria.Bacteriacellsareabletocommunicateusingquorumsensing(QS)productssuchasN-acylhomoserinelactone(AHL)duringsurfacecolonizationprocess.Bacterialbiofilmsenclosespolysaccharidematricesthatalsocontainmaterialfromthesurroundingenvironment[78].Biofilmsaretheproductofamicrobialdevelopmentalprocess.ThediagramofbiofilmformationisshowninFigure3[79].

Theprocessissummarizedbyfivemajorstagesofbiofilmdevelopment[80]:

1.Initial/reversibleattachment(bindingof1stcolonist)

2.Irreversibleattachment(theyanchorthemselvesusingpili)

3.MaturationI(intercommunicationthroughquorumsensing)

Page 11: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

11

CurrentResearchinMicrobiology

4.MaturationII/Development(finalstageofmodification)

5.Dispersion(essentialstageforbiofilmformationandlifecycle)

8. Chracterization/Evaluation of Biofilm

Mostcommonlyusedmethodsofbiofilmcharacterizationarequantitativecharacterizationandqualitativecharacterization.

8.1 Quantitative Characterization Methods

Biofilmdynamicsandcomplexarchitecturecreateschallengesforbasicmeasurementsregarding the number of viable cells, mass accumulation, biofilm morphology, and othercriticalproperties.Thesechallengesarenotinthemeasurementsthemselvesbutinthelackofstandardizedprotocolsforcharacterizationanduniformtrainingavailabilityforindividuals.Oneofthemostbasicandmostcommonlyacquiredtypesofbacterialmeasurements,whetherinplanktonicorbiofilmcultures is thedeterminationofhowmuch ispresent.Avarietyofdirectandindirectmethodshavebeenusedtoquantifycellsinbiofilms[81].

8.1.1. Direct Quantification Methods

Direct countingmethodspermit enumerationof cells that canbecultured, includingplatecounts,microscopiccellcounts,Coultercellcounting,flowcytometry,andfluorescencemicroscopy.Directmethodsforbiofilmquantificationarethosethatrelyondirectobservationfor quantification of the desired parameter (number of cells, total biofilm volume, etc.).Imagingandautomatedcellcountingarethemostcommonmethodsofbiofilmquantification.Furthermore,theuseofstainsorfluorescentmarkers,inordertomoreaccuratelyidentifycellsofinterestanddistinguishfromculturedebris,allowforeasierandincreasedaccuracyofcellcountinganddatainterpretation.Imagingmethods,includinglightandconfocalmicroscopyprovide manual platforms to count cells and determine total biofilm volume. Instruments

Figure 3: BiofilmFormation

Page 12: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

12

CurrentResearchinMicrobiology

incorporatingflow,suchasautomatedcellcountersandflowcytometers,providemechanizedmethods.Differentdirectmethodsforthecharacterizationofbiofilmare[82]:

8.1.1.1. Plate Count Method (colony forming units/ml or CFUs)

Thismethodisusedforthedeterminationofviablecellnumbersby akaCFU/mlassayoraerobicplatecount[83-86]. Thisassayisusedtoseparatetheindividualcellsonanagarplateandgrowcolonies fromcells, thereforedifferentiatesandquantifies living fromdeadcellswithoutuseofdyesorinstrumentation.Thefirststepofthisprocedurestartswithaliquidplanktoniccultureoramaturebiofilmwhichissuspendedandhomogenizedinliquidmediumvia scraping, vortexing or sonicating.The platingmethod involves the aseptic removal ofaliquotsofthesuspendedbiofilm,followedbyserialdilutionandplatingontonutrientagar.After24-72hours(whenincubationiscomplete)coloniesarecountedontheplatesandthenumberofcellspermilliliter(cfu/mL)arecalculatedusingthemeancolonycounts.Duringtheprocessitisimportanttonotetheincubationtimeandkeepituniformtoexpandeachculturebythesameamount.Itisadvisabletohaveanexperimentcontrolwithnotreatment[85].Opticaldensity(OD)canbemeasuredpriortoplatingtoobtainacalibrationcurveusedtocorrelatecellnumberandabsorbanceinpureculturebyenumerationmethod.Therebyabsorbanceofasampleofunknowncellnumbercanthenbemeasuredtodeterminethecellconcentration[87,88].TheCFUtechniquecanbeperformedbytrainedindividualinlaboratoryscaleanddoesnotrequirehighlyspecializedadvancedequipment.However,thistechniqueistimeandlaborintensive,sometimesrequiredaystoperformenoughreplicatestoobtainreproducibleresults.Thistechniqueisalsovulnerabletocountingerrorespeciallywhenthegivennumberofcoloniesishighand/orthecountisdonemanually[89].

8.1.1.2. Flow-based Cell Counting

Inthismethodcellsinliquidcultureflowthroughnarrowaperturesandaremeasuredastheypass.Coultercountingandflowcytometrybothrequirehomogenizedandsuspendedbiofilm in liquid cultures.TheCoultermethod involves passing of charged particles in anelectrolytesolutionthroughanaperture(partofanelectricalcircuit).FlowcytometrygivesmoreinformationaboutcellsduringmeasurementwhileCoultercountersarelessexpensive[90,91].Thevoltagepulsesarethencountedoveraperiodoftimeandcorrelatedwithcellnumber.Thistechniqueisverysimplebutcannotdifferentiateliveanddeadcells[92].Inflowcytometertechnique,cellsflowthroughanarrowopening(topassthroughsinglefile).Alaserisrequredtodetectthecellsastheypassviascattering,absorbanceorintrinsicandextrinsicfluorescencemeasurements.Themajoradvantagesofthismethodarethespeed,simplicityandaccuracyassociatedwithmeasurements.Additionalinformationaboutthecellsalsogatheredby using this method including the cell dimensions, surface properties metabolic activityandthedifferentiationstateofthecellswithendogenousfluorescenttags(suchasGFP).The

Page 13: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

13

CurrentResearchinMicrobiology

maindisadvantageofthismethodisthecostoftheinstrumentapproximatebetween$50,000-100,000[93].

8.1.1.3. Light and Fluorescence Microscopy

Biofilm3Dcharacterizationandcellcountingcanbedonebyusingseveralmicroscopymethodsrangingfromsimplelightmicroscopytoconfocallaserscanningmicroscopy(CLSM)[81].

Compound light and fluorescence microscopes

Smallstructuresofbacterialcellscanbevisualizedbyacompoundlightmicroscope.Resolutionofbacterialcells(2-8μminlength)requirestotalmagnificationof200xorgreater.Use of Contrast enhancement methods such as phase contrast or differential interferencecontrast(DIC)canimprovetotalqualityoftheimages.Fluorescencemicroscopyenlargestheopticalcapabilitiesoflightmicroscopytointrinsicoraddedfluorescentlightemission[94].

Confocal laser scanning microscopy

Confocallaserscanningmicroscopy(CLSM)produceshigh-resolution,sharpimagesof biofilms in three dimensions [97-100].The area of focus is scanned across the sampletoproducehigh-resolution2-D“slices”atvariousheights that areassembled toproduceafinal3Dimage.Confocalmicroscopycanutilizesingleormultipleexcitationlaserstoviewmultiplefluorescentmarkerssimultaneously.Theseinstrumentsalsorequireexperiencedandhighlytrainedusersforaccuratemeasurementandanalysis[95].

Fluorescent dyes and proteins

Intrinsic biomolecules, such as NADH and NAD(P)H or chlorophyll which havefluorescentpropertiescanbeusedinfluorescencemicroscopy.Fluorescentdyesandproteinsareusedtointroducefluorescenceintoasample.Fluorescentdyesarefluorescentmolecules(knownasfluorophores)absorbsandemitslightwhileincorporatedinthebiologicalstructure.The emitted light is detected to analyze biofilm features, such as spatial cellular viability,shapeand function [96].Someexamplesoffluorescentdyes areDAPI (4’,6-Diamidino-2-phenylindole dilactate), lipophilic dyes such as FM 4-64, SYTO 9 and Propidium Iodide(PI)[97].Greenfluorescentprotein(GFP),enhancedgreenfluorescentprotein(EGFP)[98],CyanFluorescentProtein(CFP)andYellowFluorescentProtein(YFP)aretheexamplesoffluorescentprotein[99].

8.1.2. Indirect Quantification Methods

Thegrowthofbiofilm(quantityofbiofilm)canbedetermined indirectlyusingaproxymarkersuchasdrymass,totalproteincontent,DNA,RNA,polysaccharidesormetabolites.

Page 14: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

14

CurrentResearchinMicrobiology

Alltheindirectquantificationmethodsinvolvebasicassumptionthatthesubstanceorpropertytobequantifiedcorrelatestothenumberofcellsoramountofprotein/DNA/mass[100].

8.1.2.1. Dry Mass Measurement

Drymass(massperunitarea)orbiofilmdensityisawidelyusedmarkerforquickgrowthquantification.Thebiofilmtogetherwithgrowthsubstrateisplacedinanovenataconstanttemperature(dependsonsubstrateheattolerancecapacity)untilthewaterisremovedandaconstantweightisachievedtofindthedrymass.Ifthesubstrateisheatsensitive,thebiofilmcanbescrapedfromthesurfacethensuspendedinphysiologicalsalineafterthatprecipitatedwithcoldethanolandprecipitatesarecollectedforanalysis.Aftercompletedryingthesampleisweighed, the biomass is scraped from the substrate and then substrate isweighed.Drybiomassiscalculatedas thedifferenceinweightbetweenbiomassonthesubstrateandthesubstratewithnobiomass[101,102].

8.1.2.2. Total Organic Carbon (TOC) Quantification

Totalorganiccarbon(TOC)isanindirectmeasurementoftheamountofcarboninasampleassociatedwithorganiccompoundsorcarboncompoundsderivedfromlivingthingssuchasproteins,lipids,ureaetc.Thisisopposedtoelementalcarbon(EC)suchasgraphiteorcoal,andinorganiccarbon(IC)consistingofsimplecompoundsincludingsimplecarbonoxides(COandCO2),carbonates,carbides,andcyanides[103].TOCmeasurementisgenerallyusedtodeterminethequalityofenvironmentalwaterandfortestingofinstrumentcleanlinessusedinthepharmaceuticalindustry.Thismethodisalsousedinthequantificationofbiofilmaccumulation[104,105].TheTOCquantificationofbiofilmsfollowsatwo-stepprocessinwhichtotalcarbon(TC)andICaremeasuredandTOCiscalculatedbythedifferencebetweenthesetwovalues(TOC=TC–IC).Theexactmethodisdeterminedusinginstrumentssuchas theOceanic International CarbonAnalyzer,Analytik JenaMulti N/C 2100S, or aUICincorporatedModelCM5012CO2coulometer[106,107].

8.1.2.3. Crystal violet assay

The primary component and commonly used dye for gram staining (identificationandvisualizationofbacteria)iscrystalviolet,abasictri-anilinedyewhichiscellmembranepermeable[108].Forbothgrampositiveandnegativecells,thecrystalvioletisusedandthedyewillfreelypassfromthecellduringthede-decolorizationstepallowingforthequantificationofcrystalvioletviaspectroscopy.Thisquantificationhasprovenextremelyusefulasacellestimateforbiofilmgrowth[109,110].

8.1.2.4. Tetrazolium salt

Tetrazoliumsaltsaremostwidelyusedinbiologyformonitoringmetabolismin vitro

Page 15: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

15

CurrentResearchinMicrobiology

[111].AvarietyofsaltssuccessfullyutilizedforbiofilmevaluationwhichallowforquantificationandvisualizationofcellularviabilityandmetabolismwiththehelpofUV-Visandfluorescencespectroscopy.Thetetrazoliumsaltisdilutedintoaphysiologicallyrelevantsolution,suchasmediaorsaline,andthebiofilmisallowedtoincubatefor1-3hoursatculturetemperatureorroomtemperatureandcellularviabilityisdetectedbyvisualorfluorescentspectrometersormicroscopes[112,113].Thereductioncanresultinwatersolubleorwaterinsolubleformazan,water soluble formazans solubilize in the treatmentbufferused for real-timeevaluationofcellularviabilityandmetabolism[114,115].Water-insolubleformazancrystallizesandtrappedwithinthecellmembrane,crystalscanbeevaluatedviaflowcytometryandmicroscopy[116].SomeexamplesofcommonlyusedtetrazoliumsaltsaregiveninTable 3.

8.1.2.5. ATP bioluminescence test

ATPbioluminescence isawell-establishedmicrobial testused todetect thepresenceof microbial contamination on surfaces in food and biomedical communities. Adenosinetriphosphate(ATP)isanucleosidetriphosphatewhichactsastheprimaryenergysourceinallorganisms,soitisusedasaprimemarkerforviability.Intheprocessofbioluminescenceorganismsconvertchemicalenergytolightandtheamountoflightcanbeusedinferbiofilmviabilityandbiomass.Thisassayisveryreliable,canbeperformedquickly,andonlyrequiresaluminometerforanalysis.TheassayishighlyaccurateatlowATPlevels[117-119].

8.1.2.6. Total protein determination

Proteincontenthasbeenfoundtocorrelatewiththenumberofcellsinbiofilms.Totalproteincontentdeterminationiswidelyacceptedmethodtodetectthegrowthofbiofilm[107].In thisprocess thebiofilmsare removed from their substrate andhomogenized in a liquidsuspensionandthecellsarelysed.Someprotocolsrequireincubation(at55°C)inthepresenceofastrongbaseordetergentsolutionandproteinprecipitateswithtrichloroaceticacid(TCA).Thislysismadeproteasefreeinthepresenceofproteasesenzymethatbreakdownproteins.After lysis, the protein content canbemeasuredby color change (eg.CoomassieBrilliantBlueG-250dye),andcolourchangeresultfromthedye-proteininteraction.ThechangeinabsorbanceofthecoloredspeciesataparticularwavelengthisproportionaltotheconcentrationofproteinbytheBeers-Lambertlaw.Bradford,Lowry,andbicinchoninicacid(BCA)aresome

Table 3. Commonlyusedtetrazoliumsaltsusedforin vitro studyofbiofilms

S. No. Name

1. 2-(4,5-dimethyl-2-thiazolyl)-3,5-diphenyl-2H-tetrazoliumbromide(MTT)

2. 5-Cyano-2,3-di-(p-tolyl)tetrazoliumchloride(CTC)

3. 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl-2H-tetrazoliumchloride(INT)

4. 2,3,5-TriphenylTetrazoliumChloride(TTC)

5. (2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide)(XTT)

Page 16: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

16

CurrentResearchinMicrobiology

establishedmethodsusedfortotalproteindetermination[120].

8.1.2.7. Quartz crystal microbalance

Quartz crystalmicrobalance (QCMs) is used for the nondestructivemeasurement ofbiofilmaccumulation.TheinstrumentconsistsofasmalldiscofAstatine(AT)-cutsinglecrystalquartzthatisdrivenattheresonantfrequencybyanappliedoscillatingpotentialdifference.ThediscmaybecoatedbyGold(Au)orSiliconOxide(SiO2)andservesasthegrowthsubstrate.Inthisstudy,adirectcorrelationbetweenwetmassofthefilmandQCMfrequencyshiftisshown,givingaquantitativemeasureofmassfromtheQCMdevice.Themajoradvantageofthistechniqueisthemonitoringofmassaccumulationtong/cm2accuracyinreal-timewithoutsacrificingthesampleandallowsfortheinvestigationwithmultipleanalytictechniques[121-123].

8.2.Qualitative Characterization Methods

The characteristics which are helpful in the qualitative determination of biofilmare imaging the physiological biofilm surface, structure evaluation of surface roughness,morphology,spatialorganization,andinteractionofthebiofilmwiththeenvironment.Surfacestructureanalysisisdonebylightandfluorescentmicroscopy,ScanningElectronMicroscopy(SEM)methodsthroughhighresolutionimaging.

8.2.1. Scanning Electron Microscopy (SEM)

SEMisusedforhighresolutionmagnifiedimageofsurfacetopography.ThemagnificationrangeofSEMisabout10-500,000timeswhichmakesthistechniqueinvaluableintheanalysisof microscopic structures and biofilm morphology. SEM utilizes a concentrated beam ofelectrons to observe a sample through a number of electromagnetic lenses [124, 125].Anadvantageofelectronmicroscopyistheeasyavailabilityoftandemspectroscopictechniquesforquantitativeelementalanalysisandthehighresolutionofthesurfaceimagescanrevealdetailsaboutbiofilmstructureandtopography.SEManalysiscannotbeperformedonlivingsamplesandtestingisdoneunderhighvacuum,extensivepreparationisrequiredpriortotheanalysisofbiologicalsamples[126].

8.2.2. Alternative Qualitative Characterization Methods

Alternative methods used for qualitative characterization of biofilm growth arescanningelectrochemicalmicroscopy(SECM)[127],Infrared(IR)andRamanspectroscopiccharacterization[128],SurfaceEnhancedRamanSpectroscopy(SERS)[129],Smallanglex-rayscattering(SAXS)[130],SurfacePlasmonResonanceimaging(SPRi)andElectrochemicalSurfacePlasmonResonance(EC-SPR)[131].

Page 17: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

17

CurrentResearchinMicrobiology

9. Management of Biofilms

Theimportancefromapublichealthperspectiveistheroleofbiofilminantimicrobialdrugresistance,posesaseriousthreattothePharmaceuticalindustries.Thereforepreventionofbiofilmformationisrecommendedratherthantreatment[132].Biofilmformationcanbepreventedbysignalingmoleculesthatblocktheattachmentofbacterialcellstosubstratesurface[133] andbychemical reactions thatprevent synthesisofpolymers in extracellularmatrix[134]. Substancesthatblockcommunicationbetweenbacteriacanpreventbiofilmformationorstimulateitsdispersion[135,136].Biofilmdispersioncanbeinducedbytheuseofenzymesthatbreakdownpolymersinextracellularmatrix[137].

Treatmentofperiodontalbiofilms- In these treatment individual considerationsmustbetakencareof.Biofilmcontrolisfundamentaltothemaintenanceoforalhealthandtothepreventionofdentalcariesgingivitisandperiodontitis[138].

9.1. Possible strategies to control oral biofilms [138]

Inhibitionofbacterialcolonization•

Inhibitionofbacterialgrowthandmetabolism•

Disruptionofestablishedplaque•

Modificationofplaquebiochemistry•

Alterationofplaqueecology•

9.2. Clinical approaches

a. Mechanical plaque control [139]

Toothbrushes•

Manual•

Electrical•

Interdentalcleaningaids/brushes•

Woodenandrubbertips•

Dentalfloss•

Oralirrigationdevices•

Page 18: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

18

CurrentResearchinMicrobiology

b.Chemical plaque control [140]

Enzymes(Mucinase,Dehydratedpancrease,Lactoperoxidasehypothiocyanate)•

Antibiotics(Penicillin,Vancomycin,Erythromycin)•

Phenols(Thymol,Delmopenol)•

Quaternary Ammonium Compounds (Benzalkonium chloride, Cetylpyridinium•chloride)

Bisbiguanides(Chlorhexidine,Alexidine)•

Bispyridines(Octenidine)•

MetallicSalts(Zinc,Tin,Copper)•

Aminoalchohols(Octapenol,Decapenol)•

Herbalextracts(Sanguinarine)•

Surfactant(Sodiumlaurylsulfate)•

10.Application of Biofilm

Specific applications of bound bioactivemolecules to surfaces (biofilm) in differentsectorsorscientificdisciplinesaredescribedbelow;

10.1. Food industry application

In food processing industry antimicrobial polymers (active packaging) can be usedto improve the safetyof food [141]. Immobilized lysozyme, glucoseoxidase and chitosanhavebeenusedaspackagingfilms.Thesepackagingtechnologiesplayanimportantroleinextendingshelf-lifeoffoodsandreducetheriskofgrowthofpathogenicmicroorganisms[142].Material/compoundsproposedandtestedforantimicrobialactivityinfoodpackagingincludesorganic acids, antibacterial peptides and fungicides [143-145]. Triclosan containing foodcontactsurfacessuchasincludecuttingboardsanddishclothseffectivelyreducesthebacterialcontamination. Enzyme immobilization reduced the overall bioactivity after denaturation[146].Whensurfacemodificationstrategiesareappliedtoobtainantibacterialfoodprocessingsurfaces,theycanhelpreducebiofoulingandcross-contamination[147].TheeffectivenessofcoatingSSwithanticorrosionundercoatpaintwasreportedinvariousstudies[148].Biofilmformationinfoodmaybeavoidedbyequipmentdesign,temperaturecontrolandbyreductionofwaterandnutrients.Effectivecleaning(alkalicompounds)isthemainfocustocontrolthegrowthofbiofilm.Thesanitizersusedinfoodindustryarehalogens,acids,peroxygensand

Page 19: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

19

CurrentResearchinMicrobiology

quaternaryammoniumcompounds(cationicsurfactantsanitizers)[132].

10.2. Biomedical application

Modifiedmaterialsarenotrecommendedforthemedicalpurposebecauseifthesubstanceswill leachout itmaycausecytotoxicity [149].Ametallicmaterialwhich is implanted intohumanbodyreleasemetalionsmaycausevarioushealthproblemsduetometalaccumulationinorgans,allergyandcarcinoma[150-152].Biocompatibilityisthemostimportantpropertythatmust involve in amodified abiotic surface. Biocompatibility can be divided into twokinds,oneisthebulkpropertyofthebiomaterialandotherisitssurfaceproperty.Therigidityofmodified implantsmustmatchwith that of the adjacent tissueotherwisehyperplasia orabsorptionofthetissuewilloccurresultinginfailureofimplantation[153].

11. A Future Prospectus for Research

Thebiofilmisviscoelasticinnaturewhichisuniversalbutwhenexposedtodifferentenvironment,hydrodynamicconditionswillchangethestructure,compositionandphysicalproperties of theirmatrix. Biofilm science is highly exciting research area because it is amixtureofbiology,microbiology,biotechnology,biophysic,chemistryandmuchmore[154].Researchonmicrobialbiofilmsopensmanyfrontswithspecialattentiononelucidationofthegenesexpressedbybiofilm-associatedorganisms,evaluationofcontrolstrategiestocontrolorpreventbiofilmcolonizationofmedicaldevicesanddevelopmentofnewmethodsforassessingor evaluating the efficacyof these treatments.The focused research area shouldbeon theroleofbiofilmsinantimicrobialresistance,biofilmsasareservoirforpathogenicorganismsandtheparticipationofbiofilmsinchronicdiseases.Asthepharmaceuticalandhealth-careindustries embrace this approach, novel strategies for biofilm prevention and control willdefinitelyemergeinfuture.Thekeytosuccessmaydependuponacompleteunderstandingofwhatmakesthebiofilmphenotypesodifferentfromtheplanktonicphenotype[155].

12. References

1.Hall-StoodleyL,WilliamCostertonJ,StoodleyP.“Bacterialbiofilms:fromthenaturalenvironmenttoinfectiousdiseases”,NatureReviewsMicrobiology.2004;2(2):95-108.

2.CostertonJW,StewartPS,GreenbergEP.“Bacterialbiofilms:acommoncauseofpersistent infections”.Science.1999;284(5418):1318-1322.

3.HeukelekianH,HellerA.“Relationbetweenfoodconcentrationandsurfaceforbacterialgrowth”.JBacteriol.1940Oct;40(4):547-58.

4.ZobellCE.“Theeffectofsolidsurfacesonbacterialactivity”.J.Bacteriol.1943Jul;46(1):39-56.

5.ZoBellCE,AllenEC.“Attachmentofmarinebacteriatosubmergedslides”.Proc.Soc.Exp.Biol.Med.1933;30:1409-1411.

6.ZoBellCE,AllenEC.Thesignificanceofmarinebacteriainthefoulingofthesubmergedsurfaces.J.Bacteriol.1935

Page 20: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

20

CurrentResearchinMicrobiology

Mar;29(3):239-251.

7.JonesHC,RothIL,SaundersWMIII.“Electronmicroscopicstudyofaslimelayer”.JBacteriol.1969Jul;99(1):316-325.

8.CharacklisWG.“Attachedmicrobialgrowths-II.Frictionalresistanceduetomicrobialslimes”.WaterRes.1973Sep;7(9):1249-1258.

9.CostertonJW,GeeseyGG,ChengK-J.“Howbacteriastick”.ScientificAmerican,1978Jan;238(1):86–95.

10.CostertonJW,IrvinRT,ChengKJ.“Thebacterialglycocalyxinnatureanddisease”.AnnuRevMicrobiol.1981;35:299-324.

11.CostertonJW,GeeseyGG.In:CostertonJW,ColwellRR(eds).“Nativeaquaticbacteria:enumeration,activity,andecology”.ASTMPress,Philadelphia.1979.Pp7-18.

12. Costerton JW, Lewandowski Z, CaldwellDE,KorberDR, Lappin-ScottHM. “Microbial biofilms”.AnnuRevMicrobiol.1995;49:711–745.

13.StevenLP,SladjanaM,HelenaC,DavidW.Williams.Ch. Introduction toBiofilms; inBiofilmsandVeterinaryMedicine.SpringerseriesonBiofilms,Vol.6;July2011.Pp.41-68.

14.SaraMcCarty,EmmaWoods,StevenL.Percival.“AHistoricalBasis”.EmergInfectDis.2002Sep;8(9):881-890.

15.https://www.researchgate.net/publication/316581155_Book_Review_Role_of_Biofilms_in_Bioremediation.

16. Introduction toBiofilms.StevenL.Percival,SladjanaMalic,HelenaCruz, andDavidW.Williams. June2011.https://www.researchgate.net/publication/227033178.

17.https://www.livescience.com/57295-biofilms.html.

18.https://study.com/academy/lesson/what-are-biofilms-definition-formation-examples.html

19.Hans-Curt Flemming, JostWingender,Ulrich Szewzyk, Peter Steinberg, ScottA, Rice and StaffanKjelleberg.“Biofilms:anemergentformofbacteriallife”.NatureReviewsMicrobiology.2016;14:563–575.

20.LearG,LewisGDeds.MicrobialBiofilms:CurrentResearchandApplications.CaisterAcademicPress.ISBN978-1-904455-96-7.2012.

21.O’TooleGA,Kolter,R.“InitiationofbiofilmformationinPseudomonasfluorescensWCS365proceedsviamultiple,convergentsignallingpathways:ageneticanalysis”.MolecularMicrobiology.1998May;28(3):449-461.

22.O’TooleG,KaplanHBandKolterR.“Biofilmformationasmicrobialdevelopment”.Annu.Rev.Microbiol.2000;54:49-79.

23.Ximénez-FyvieLA,HaffajeeAD,SocranskySS.“Comparisonofmicrobiotaofsupra-andsubgingivalplaqueinsubjectsinhealthandperiodontitis”.JClinPeriodontol.2000;27:648-57.

24.López,Daniel,Vlamakis,Hera,Kolter,Roberto.“Biofilms”.ColdSpringHarborPerspectivesinBiology.2010;2(7):a000398.

25.Hall-StoodleyL,CostertonJW,StoodleyP(February2004).“Bacterialbiofilms:fromthenaturalenvironmenttoinfectiousdiseases”.NatureReviewsMicrobiology.2(2):95–108.

26.WatnickP,KolterR.“Biofilm,cityofmicrobes”.JournalofBacteriology.2000May;182(10):2675-2679.

27.ArnoldC.“BuildingCodesforBacterialCities”.QuantaMagazine.2017July;07-25.

Page 21: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

21

CurrentResearchinMicrobiology

28.NeuT,LawrenceJ.Extracellularpolymericsubstancesinmicrobialbiofilms.MicrobialGlycobiology:Structures,RelevanceandApplications.Elsevier,SanDiego.2009.pp.735-758.

29.DenkhausE,MeisenS,TelghederU,WingenderJ.“Chemicalandphysicalmethodsforcharacterisationofbiofilms”.MicrochimActa.2007;158:1-27.

30.SutherlandIW.“Biofilmexopolysaccharides:astrongandstickyframework”.Microbiology.2001;147:3-9.

31.FlemmingHC,Wingender J,Griegbe,MayerC.Physico-chemical properties of biofilms. In:EvansLV, editor.Biofilms:recentadvancesintheirstudyandcontrol.Amsterdam:HarwoodAcademicPublishers.2000.Pp.19-34.

32.DonlanRM,CostertonJW.(2002).“Biofilms:Survivalmechanismsofclinicallyrelevantmicroorganisms”.Clin.Microbiol.Rev.2002;15:167-193.

33.ChristensenGD,SimpsonWA,BisnoAL,BeacheyEH.“Adherenceofslime-producingstrainsofStaphylococcusepidermidistosmoothsurfaces”.Infect.Immun.1982;37:318-326.

34.DunneWMJ.“Bacterialadhesion;seenanygoodbiofilmslately?”.Clin.MicrobiolRev.2002Apr;15(2):155-66.

35.http://www.horizonpress.com/biofilms.

36.VinodkumarCS,KalsurmathS,NeelagundYF.“Utilityoflyticbacteriophageinthetreatmentofmultidrug-resistantPseudomonasaeruginosasepticemiainmice”.IndianJPatholMicrobiol.2008Jul-Sep;51(3):360-366.

37.LuTKandCollinsJJ.“Dispersingbiofilmswithengineeredenzymaticbacteriophage”.PNAS.2007;104:11197-11202.

38.CernohorskáL,VotavaM.“Biofilmsandtheirsignificanceinmedicalmicrobiology”.EpidemiolMikrobiolImunol.2002Nov;51(4):161-4.

39.BryersJ.“MedicalBiofilms.”BiotechnologyandBioengineering.2008May;100(1):1-18.

40.MahT,O’TooleG.“MechanismsofBiofilmResistancetoAntimicrobialAgents”.TrendsinMicrobiology.2001Jan;9(1):34-39.

41.GristinaA,HobgoodC,WebbL,MyrvikQ.“AdhesiveColonizationofBiomaterialsandAntibioticResistance.”Biomaterials.1987Nov;8(6):423-426.

42.StewartP,CostertonJ.“AntibioticResistanceofBacteriainBiofilms.”TheLancet.2001Jul;358:135-138.

43.TalsmaS.“BiofilmsonMedicalDevices”.HomeHealthcareNurse:TheJournalfortheHomeCareandHospiceProfessional.2007Oct;25(9):589-94.

44.ThomasBjarnsholt.Biofilminfections.NewYork:Springer.2011.ISBN9781441960832.

45.BryersJD.“Medicalbiofilms”.BiotechnologyandBioengineering.2008;100(1):1-18.

46.SchachterB.“Slimybusinessthebiotechnologyofbiofilms”.NatureBiotechnology.2003;21:361.

47.KumarCGandAnandSK.Significanceofmicrobialbiofilmsinfoodindustry:areview,InternationalJournalofFoodMicrobiology.1998;42:9-27.

48.MartinsdosSantosVA,YakimovMM,TimmisKN,GolyshinPN(2008).”GenomicInsightsintoOilBiodegradationinMarineSystems”.InDíazE.MicrobialBiodegradation:GenomicsandMolecularBiology.HorizonScientificPress.p.1971.ISBN978-1-904455-17-2.

49.ChuaSL,WangVB,CaiZ,SivakumarK,KjellebergS,CaoB,LooSC,YangL.“Astablesynergisticmicrobialconsortiumforsimultaneousazodyeremovalandbioelectricitygeneration”.BioresourceTechnology.2014;155:71-

Page 22: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

22

CurrentResearchinMicrobiology

76.

50.ChuaSL,WangVB,CaoB,LooSC,YangL.“Astablesynergisticmicrobialconsortiumforsimultaneousazodyeremovalandbioelectricitygeneration”.PLoSONE.2013;8(5):e63129.

51.ZhangRY,BellenbergS,SandW,NeuTR,VeraM.TheBiofilmLifestyleofAcidophilicMetal/Sulfur-OxidizingMicroorganisms.In:BiotechnologyofExtremophiles:AdvancesandChallenges.RampelottoPabuloH(Ed.).SpringerInternationalPublishing,Cham,Switzerland.2016.Pp.177-213.

52.VeraM,SchippersA,SandW.“Progressinbioleaching:fundamentalsandmechanismsofbacterialmetalsulfideoxidation--partA”.Appl.Microbiol.Biotechnol.2013Sep;97(17):7529-41.

53.KumarCG,AnandSK.“Significanceofmicrobialbiofilmsinfoodindustry:areview”.IntJFoodMicrobiol.1998Jun;42(1-2):9-27.

54.GiaourisE,HeirE,DesvauxM,HebraudM,MoretroT,LangsrudS,DoulgerakiA,NychasGJ,KacaniovaM,CzaczykK,OlmezH,SimoesM.“Intraandinter-speciesinteractionswithinbiofilmsofimportantfoodbornebacterialpathogens”.FrontMicrobiol.2015Aug;6:841.

55.NikolaevYA,PlakunovVK.Biofilm“CityofMicrobes”orananalogueofmulticellularorganisms?2007;76:125-138.

56.SreyS,JahidIK,HaS.“Biofilmformationinfoodindustries:afoodsafetyconcern”.2013;31:572–585.

57.CoughlanLM,CotterPD,HillC,Alvarez-OrdonezA.“Newweaponstofightoldenemies:novelstrategiesforthe(bio)controlofbacterialbiofilmsinthefoodindustry”.2016;7:1641.

58.FlemmingH-C,Wingender J,SzewzykU,SteinbergP,RiceSA,KjellebergS. “Biofilms:anemergent formofbacteriallife”.2016;14:563-575.

59.BerlangaM,GuerreroR.“Livingtogetherinbiofilms:themicrobialcellfactoryanditsbiotechnologicalimplications”.MicrobialCellFactories.2016;15.1:165.

60.BarriusoJ.“Quorumsensingmechanismsinfungi”.AIMSMicrobiol.2015;1.1:37-47.

61.Frey-KlettP,BurlinsonP,DeveauA,BarretM,TarkkaM,SarniguetA.“Bacterial-fungal interactions:hyphensbetweenagricultural,clinical,environmental,andfoodmicrobiologists”.MicrobiologyandMolecularBiologyReviews.2011;75.4:583-609.

62. QuayleD, NewkirkG. “Farming bivalvemolluscs:Methods for study and development”.Advances inWorldAquaculture.TheWorldAquacultureSociety.2012.

63. Bohl, M. “Some initial aquaculture experiments in recirculating water systems”. Aquaculture. 1977; 11(4):323‐328.

64. http://ecoursesonline.iasri.res.in/pluginfile.php/45552/mod_resource/content/1/10.role_of_biofilm_in_aquaculture.pdf.

65.CaiW,DeLaFuenteL,AriasCR.“BiofilmformationbythefishpathogenFlavobacteriumcolumnare:developmentandparametersaffectingsurfaceattachment”.Appl.Environ.Microbiol.2013Sep;79(18):5633-42.

66.KingRK,FlickJrGJ,PiersonD,SmithSA,BoardmanGD,CoaleJrCW.“Identificationofbacterialpathogensinbiofilmsofrecirculatingaquaculturesystems”.JournalofAquaticFoodProductTechnology.2004;13:125-133.

67.GilbertP,DasJ,FoleyI.“Biofilmsusceptibilitytoantimicrobials”.AdvDentRes.1997Apr;11(1):160-7.

68.NicholsWW,Dorrington SM, SlackMP andWalmsleyHL. “Inhibition of tobramycin diffusion by binding toalginate”.AntimicrobAgentsChemother.1988Apr;32(4):518-523.

Page 23: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

23

CurrentResearchinMicrobiology

69.NicholsWW,EvansMJ,SlackMP,WalmsleyHL.“Thepenetrationofantibioticsintoaggregatesofmucoidandnon-mucoidPseudomonasaeruginosa”.JGenMicrobiol.1989May;135(5):1291-303.

70. DechoAW. “Microbial exopolymer secretions in ocean environments: Their role(s) in food webs and marineprocesses”.OceanographyandMarineBiolologyAnnualReview.1990;28:73-153.

71.FlemmingHC.“Biofilm&EnvironmentalProtection”.WaterSciTechnol.1993;27:1-10.

72.SchinkB.“Energeticsofsyntrophiccooperationinmethanogenicdegradation”.MicrobiolMolBiolRev.1997Jun;61(2):262-80.

73. Garrett ES, Perlegas D,Wozniak DJ. “Negative control of flagellum synthesis in Pseudomonas aeruginosa ismodulatedbythealternativesigmafactorAlgT(AlgU)”.JournalofBacteriology.Dec1999;181(23):7401-7404.

74. Kokare CR, Chakraborty S, Khopade AN, Mahadik KR. “Biofilms; Importance and Applications”. Indian JBiotechnonogy.2009April;8:159-168.

75.https://study.com/academy/lesson/what-are-biofilms-definition-formation-examples.html

76.QuirynenM,TeughelsW,HaakeSK,NewmanMG.“MicrobiologyofPeriodontalDiseases”.In:NewmanMG,TakeiHH,Klokkevold PR,Carranza FA, editors.Carranza’sClinical Periodontology. 10th ed. St Louis,Missouri:Elsevier(Saunders);2006.pp.134-69.

77.WatnickP.KolterR.“Biofilm,cityofmicrobes”.JournalofBacteriology.2000May;182(10):2675-2679.

78.BriandetR,HerryJ,Bellon-FontaineM.“DeterminationofthevanderWaals,electrondonorandelectronacceptorsurfacetensioncomponentsofstaticGram-positivemicrobialbiofilms”.ColloidsSurfBBiointerfaces.2001Aug;21(4):299-310.

79.MaricSandVranesJ.“Characteristicsandsignificanceofmicrobialbiofilmformation”.PeriodicumBiologorum.2007;109(2):1-7.

80.MonroeDon.“LookingforChinksintheArmorofBacterialBiofilms”.PLoSBiology.2007;5(11):e307.

81.ChristinaWilson,RachelLukowicz,StefanMerchant,HelenaValquier-Flynn,JenifferCaballero,JasminSandoval,MacduffOkuom,ChristopherHuber,TessaDurhamBrooks,ErinWilson,BarbaraClement,ChristopherDWentworth,andAndreaEHolmes.“QuantitativeandQualitativeAssessmentMethodsforBiofilmGrowth:AMini-review”.Research&Reviews:JournalofEngineeringandTechnology.2017Dec;6(4):1-25.

82.AdetunjiV andOdetokun IA. “Assessment of biofilm inE. coliO157:H7 andSalmonella strains: influenceofculturalconditions”.AmJFoodTechnol.2012;7:582-595.

83.CloeteTE,BrozelV,HolyAV.“Practicalaspectsofbiofoulingcontrolinindustrialwatersystems”.IntBiodeteriorBiodegrad.1992;29(3-4):299-341.

84.PettitRK,WeberCA,KaenMJ,HoffmannH,PettitGR,TanR,FranksKS,HortonML.“MicroplatealamarblueassayforStaphylococcusepidermidisbiofilmsusceptibilitytesting”.AntimicrobAgentsChemother.2005;49(7):2612-2617.

85.BakkeR,KommedalR,KalvenesS.“Quantificationofbiofilmaccumulationbyanopticalapproach”.JMicrobiolMethods.2001Feb;44(1):13-26.

86.RomanovaNA,GawandePV,BrovkoLY,GriffithsMW.“RapidmethodstoassesssanitizingefficacyofbenzalkoniumchloridetoListeriamonocytogenesbiofilms”.JMicrobiolMethods.2007;71:231-237.

87.BuchholzF,HarmsH,MaskowT.“Biofilmresearchusingcalorimetry–amarriagemadeinheaven?”BiotechnolJ.2010Dec;5(12):1339-1350.

Page 24: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

24

CurrentResearchinMicrobiology

88.EllenMS,WilliamAC,HowardEL.“Experienceswith theCoultercounter inbacteriology”.JApplMicrobiol.1962;10:480-485.

89.ZhangW,McLamoreES,GarlandNT,LeonJV,BanksMK.“Asimplemethodforquantifyingbiomasscellandpolymerdistributioninbiofilms”.JMicrobiolMethods.2013Sep;94(3):367-374.

90.BerneyM.“Assessmentandinterpretationofbacterialviabilitybyusingthelive/deadBacLightkitincombinationwithflowcytometry”.ApplEnvironMicrobiol.2007;73:3283-3290.

91.MullerSandNebe-von-CaronG.“Functionalsingle-cellanalyses:flowcytometryandcellsortingofmicrobialpopulationsandcommunities”.FEMSMicrobiolRev.2010;34:554-587.

92.DatabaseJSE.Introductiontofluorescencemicroscopy.GenLabTech.2017.

93.BandaraHMHN.“ResearcharticlePseudomonasaeruginosainhibitsin-vitroCandidabiofilmdevelopment”.BMCMicrobiol.2010;10:1-9.

94.BjarnsholtT.“Applyinginsightsfrombiofilmbiologytodrugdevelopmentcananewapproachbedeveloped?”DrugDiscovNatRev.2013;12:791-808.

95.JakobsS.“EGFPandDsRedexpressingculturesofEscherichiacoliimagedbyconfocal,two-photonandfluorescencelifetimemicroscopy”.FEBSLett.2000;479:131-135.

96.NwaneshiuduA.“Introductiontoconfocalmicroscopy”.JInvestDermatol.2012;132:1-5.

97.HeydornA.“QuantificationofbiofilmstructuresbythenovelcomputerprogramCOMSTAT”.Microbiology.2000;146:2395-2407.

98.TawakoliPN.“Comparisonofdifferentlive/deadstainingsfordetectionandquantificationofadherentmicroorganismsintheinitialoralbiofilm”.ClinOralInvestig.2012;17:841-850.

99.ChalfieM.“Greenfluorescentproteinasamarkerforgeneexpression”.Science.1994;263:802-805.

100.ShanerNC.“Aguidetochoosingfluorescentproteins”.NatMethods.2005;2:905-909.

101.TrulearMGandCharacklisWG.“Dynamicsofbiofilmprocesses”.JWaterPollutControlFed.1982;54:1288-1301.

102.CharacklisWG.“LaboratoryBiofilmReactors”.In:CharacklisWG,MarshallKC(eds.).Biofilm.JohnWiley&Sons,NewYork.1990;1:55-89.

103.KooH.“InhibitionofStreptococcusmutansbiofilmaccumulationandpolysaccharideproductionbyapigeninandttfarnesol”.JAntimicrobChemother.2003;52:782-789.

104.https://www.britannica.com/science/chemical-compound

105.CritchleyMM.“Biofilmsandmicrobiallyinfluencedcuprosolvencyindomesticcopperplumbingsystems”.JApplMicrobiol.2001;91:646-651.

106.FlemmingHC.“Biofilms:Investigativemethods&applications:.CRCPress.2000.

107.RagusaSR.“Indicatorsofbiofilmdevelopmentandactivity inconstructedwetlandsmicrocosms”.WaterRes.2004;38:2865-2873.

108.BakkeR.“ActivityofPseudomonasaeruginosainbiofilms:Steadystate”.BiotechnolBioeng.1984;26:1418-1424.

109.BeveridgeTJ.Useofthegramstaininmicrobiology.BiotechHistochem.2001;76:111-118.

Page 25: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

25

CurrentResearchinMicrobiology

110.BasakS.Biofilms:AChallengetoMedicalFraternityinInfectionControl.InfectControl.2013.

111.DjordjevicD.“MicrotiterplateassayforassessmentofListeriamonocytogenesbiofilmformation”.ApplEnvironMicrobiol.2002;68:2950-2958.

112.BerridgeMV.“Tetrazoliumdyesastoolsincellbiology:newinsightsintotheircellularreduction”.BiotechnolAnnuRev.2005;11:127-152.

113.BernasTandDobruckiJW.“Theroleofplasmamembraneinbioreductionoftwotetrazoliumsalts,MTT,andCTC”.ArchBiochemBiophys.2000;380:108-116.

114.KoleckaA.“TheimpactofgrowthconditionsonbiofilmformationandthecellsurfacehydrophobicityinfluconazolesusceptibleandtolerantCandidaalbicans”.FoliaMicrobiol(Praha).2015;60:45-51.

115.SabaeifardP.“OptimizationoftetrazoliumsaltassayforPseudomonasaeruginosabiofilmusingmicrotiterplatemethod”.JMicrobiolMethods.2014;105:134-140.

116.SchwartzT.“FormationofnaturalbiofilmsduringchlorinedioxideandU.V.disinfectioninapublicdrinkingwaterdistributionsystem”.JApplMicrobiol.2003;95:591-601.

117.CholletRandRibaultS.“UseofATPbioluminescenceforrapiddetectionandenumerationofcontaminants:Themilliflexrapidmicrobiologydetectionandenumerationsystem”.Biolumin-RecentAdvOceanMeasLabAppl.2012.

118.ShimodaT.“ATPbioluminescencevaluesaresignificantlydifferentdependinguponmaterialsurfacepropertiesofthesamplinglocationinhospitals”.BMCResNotes.2015;8:1-8.

119.McElroyWD.“Theenergysourceforbioluminescenceinanisolatedsystem”.ProcNatlAcadSciUSAm.1947;33:342-345.

120.BradfordMM.“Arapidandsensitivemethodforthequantitationofmicrogramquantitiesofproteinutilizingtheprincipleofprotein-dyebinding”.AnalBiochem.1976;72:248-254.

121.NivensDE. “Long-term, on-linemonitoring ofmicrobial biofilms using a quartz crystalmicrobalance”.AnalChem.1993;65:65-69.

122.RodahlM.“QuartzcrystalmicrobalancesetupforfrequencyandQ‐factormeasurementsingaseousandliquidenvironments”.RevSciInstrum.1995;66:3924-30.

123.TamK.“Real-timemonitoringofStreptococcusmutansbiofilmformationusingaquartzcrystalmicrobalance”.CariesRes.2007;41:474-483.

124.Arnold JW andBaileyGW. “Surface finishes on stainless steel reduce bacterial attachment and early biofilmformation:scanningelectronandatomicforcemicroscopystudy”.PoultSci.2000;79:1839-1845.

125.DehmG.“In-situElectronMicroscopy:ApplicationsinPhysics,ChemistryandMaterialsScience”.Wiley-VCH.2012.

126.ChaoYandZhangT.“Optimizationoffixationmethodsforobservationofbacterialcellmorphologyandsurfaceultrastructuresbyatomicforcemicroscopy”.ApplMicrobiolBiotechnol.2011;92:381-392.

127.DastjerdiEV.“EffectofPunicagranatumL.flowerwaterextractonfivecommonoralbacteriaandbacterialbiofilmformationonorthodonticwire”.IranJPublicHealth.2014;43:1688-1694.

128.BodelonG.“DetectionandimagingofquorumsensinginPseudomonasaeruginosabiofilmcommunitiesbysurfaceenhancedresonanceRamanscattering”.NatMater.2016;15:1203-1211.

129. BoschA, et al. “Characterization of Bordetella pertussis growing as biofilm by chemical analysis and FT-IRspectroscopy”.ApplMicrobCellPhysiol.2006;71:736-747.

Page 26: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

26

CurrentResearchinMicrobiology

130.AllecN,etal.“Small-anglex-rayscatteringmethodtocharacterizemolecularinteractions:proofofconcept”.SciRep.2015;5:1-12.

131.AbadianPN,etal.“Usingsurfaceplasmonresonanceimagingtostudybacterialbiofilms”.Biomicrofluidics.2014;8:1-11.

132.KokareCR,ChakrabortyS.,KhopadeANandMahadikKR.“Biofilm:Importanceandapplication”.IndianJournalofBiotechnology.2009April;8:159-168.

133.ChicurelM.“Bacterialbiofilmsandinfections”.Nature.2000;408:284-6.

134.YasudaH,AjikiY,KogaT,KawadaH,YokotaT.“InteractionbetweenbiofilmsformedbyPseudomonasaeruginosaandclarithromycin”.AntimicrobAgentsChemother.1993;37:1749-55.

135.SugaH,SmithK.“Molecularmechanismsofbacterialquorumsensingasanewdrugtarget”.CurrOpinChemBiol.1993;7:586-91.

136.ZhanglH.“Quorumquenchingandproactivehostdefense”.TrendsPlantSci.2003;8:238-44.

137.JohansenC,FalholtP,GramL.“Enzymaticremovalanddisinfectionofbacterialbiofilms”.ApplEnvironMicrobiol.1997;9:3724-28.

138.PetersonFC,ScheieAA.ChemicalPlaqueControl:AComparisonofOralHealthCareProducts.In:BusscherHJ,EvansLV,editors.OralBiofilmsandPlaqueControl.India:HarwoodAcademicPublishers;1998.pp.277-94.

139. PetersilkaGJ, Ehmke B, FlemmigTF. “Antimicrobial effects ofmechanical debridement”. Periodontol.2000;2008(28):56-71.

140.QuirynenM,TeughelsW,DeSoeteM,vanSteenbergheD.“Topicalantisepticsandantibioticsintheinitialtherapyofchronicadultperiodontitis:microbiologicalaspects”.Periodontol.2000;2008(28):72-90.

141.Hotchkiss JH. “Foodpackaging interactions influencingquality and safety”.FoodAdditives&Contaminants.1997;14:601-607.

142.AppendiniP,HotchkissJH,“ReviewofAntimicrobialFoodPackaging”.InnovativeFoodScience&EmergingTechnologies.2002;3:113-126.

143.HalekGW,GargA.“Fungalinhibitionbyafungicidecoupledtoanionomericfilm”.JournalofFoodSafety.1989;9:215-222.

144.WengY-M,HotchkissJH.“Inhibitionofsurfacemoldsoncheesebypolyethylenefilmcontainingtheantimycoticimazalil”.JournalofFoodProtection.1992;55:367-369.

145.QuintavallaS,ViciniL.Antimicrobial foodpackaging inmeat industry.MeatScience.2002Nov;62(3):373-380.

146.BayramogluG,KacarY,DenizliA,YakupArıcaM.“Covalentimmobilizationoflipaseontohydrophobicgroupincorporatedpoly(2-hydroxyethylmethacrylate)basedhydrophilicmembranematrix.JournalofFoodEngineering.2002;52:367-374.

147.HunkelerF,FrankelGS,BohniH.“TechnicalNote:OntheMechanismofLocalizedCorrosion”.Corrosion.1987;43(3):189-191.

148. Elsner C, Cavalcanti E, FerrazO,Di SarliA. Evaluation of the surface treatment effect on the anticorrosiveperformanceofpaintsystemsonsteelProgressinOrganicCoatings.2003Nov;48(1):50-62.

149.NishiC,NakajimaN,IkadaY.“Invitroevaluationofcytotoxicityofdiepoxycompoundsusedforbiomaterialmodification”.JournalofBiomedicalMaterialsResearch.1995Jul;29(7):829-834.

Page 27: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

27

CurrentResearchinMicrobiology

150.HanawaT.“Metalionreleasefrommetalimplant”.MaterialsScienceandEngineering:C.2004;24:745-752.

151.OkazakiY,GotohE.“Comparisonofmetalreleasefromvariousmetallicbiomaterialsinvitro”.Biomaterials.2005Jan;26(1):11-21.

152.ZhangZ,WangZ,NongJ,NixCA,JiH-F.“Metalion-assistedself-assemblyofcomplexesforcontrolledandsustainedreleaseofminocyclineforbiomedicalapplications”.Biofabrication.2015Jan;7(1):015006.

153.HanssonKM,TosattiS,IsakssonJ,WetteroJ,TextorM,LindahlTL,TengvallP.“Wholebloodcoagulationonproteinadsorption-resistantPEGandpeptidefunctionalisedPEG-coatedtitaniumsurfaces”.Biomaterials.2005March;26(8):861-872.

154.LembreP,LorentzC,DiMartinoP.Ch.13.ExopolysaccharidesoftheBiofilmmatrix;Acomplexbiophysicalworld.In:KarunaratneDN(Ed.).ThecomplexWorldofPolysaccharedes.InTech-Publisher.2012.Pp.371-392.

155.DonlanRM.“Biofilms:MicrobialLifeonSurfaces”.EmergInfectDis.2002Sep;8(9):881-890.