Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of...

56
Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune

Transcript of Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of...

Page 1: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

Density Matrix Tomography,

Contextuality,

Future Spin Architectures

T. S. Mahesh

Indian Institute of Science Education and Research, Pune

Page 2: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

1/2

1/2

Density Matrix Tomography (1-qubit)

=

~

Mx

My

P C = R+iS

-P+ e = ħ / kT ~ 10-5

Background

Does not leadto signal

Deviation

May leadto signal

Page 3: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

P C = R+iS

-P

Density Matrix Tomography (1-qubit)

NMR detection operators: x , y

1. Heterodyne detection

x = 2R

y = -2S

2. Apply (/2)y

+ Heterodyne detection

x = 2P

=

~

Mx

My

(/2)y

- R P+iS

R1 =

Page 4: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

P0

P1

P2

R1 R2 R3

R4 R5

R6+I1 I2 I3

I4 I5

I6+ 15 REAL NUMBERS

Density Matrix Tomography (2-qubit)

NMR detection operators: x1 , y

1 , x2 , y

2

Page 5: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

P0

P1

P2

R1 R2 R3

R4 R5

R6+I1 I2 I3

I4 I5

I6+ 15 REAL NUMBERS

Traditional Method : Requires

1. Spin selective pulses

2. Integration of Transition

Spin 1 Spin 2

I I

90x I

I 90x

90y I

I 90y

90x 90x

90x 90y

90y 90x

90y 90y

Density Matrix Tomography (2-qubit)

Page 6: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

Density Matrix Tomography (2-qubit)

P0

P1

P2

R1 R2 R3

R4 R5

R6+I1 I2 I3

I4 I5

I6+ 15 REAL NUMBERS

Traditional Method :

Spin 1 Spin 2

I I

90x I

I 90x

90y I

I 90y

90x 90x

90x 90y

90y 90x

90y 90y

Requires

1. Spin selective pulses

2. Integration of Transition

Page 7: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

P0

P1

P2

R1 R2 R3

R4 R5

R6+I1 I2 I3

I4 I5

I6+ 15 REAL NUMBERS

NEWMethod Requires

1. No spin

selective pulses

2. Integration of

spins

Density Matrix Tomography (2-qubit)

JMR, 2010

Page 8: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

Density Matrix Tomography (2-qubit)

SVD

tomo

Page 9: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

Density Matrix Tomography of singlet state

Theory

Expt

Real Imag

Correlation = = 0.98tr(rth rexp)

[tr(rth 2 ) tr(rexp

2)]1/2 JMR, 2010

Page 10: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

Quantum Contextuality

Page 11: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

Non- Contextuality1. The result of the measurement of an

operator A depends solely on A and on the system being measured.

2. If operators A and B commute, the result of a measurement of their product AB is the product of the results of separate measurements of A and of B.

All classical systems are NON-CONTEXTUAL

Physics Letters A (1990), 151, 107-108

Page 12: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

Measurement outcomes can be

assigned, in principle, even before

the measurement

Non- Contextuality

Page 13: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

Quantum Contextuality

x2 x

1 x1x

2

z1 z

2 z1z

2

z1x

2 x1z

2 y1y

2

1

1

1

1 1 -1

Measurement outcomes can not be

pre-assigned even in principle

N. D. Mermin. PRL 65, 3373 (1990).

= 6

LHVT

QM

Eg. Two spin-1/2 particles

PRL 101,210401(2008)

Page 14: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

Laflamme,PRL 2010

Page 15: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

~ 5.3 LaflammePRL 2010

NMR demonstration of contextuality

Sample: Malonic acid single crystal

Page 16: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

Peres Contextuality Let us consider a system of two spin half particles in singlet

state.

Singlet state:

Physics Letters A (1990), 151, 107-108

2

1001

Page 17: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

Peres ContextualityFor a singlet state < σx

1 σx2 > = -1

< σy1 σy

2 > = -1

< (σx1 σy

2)(σy1 σx

2)> = -1

Note:[σx

1,σx2 ] = 0

[σy1,σy

2] = 0

[σx1 σy

2 , σy1 σx

2 ] = 0

Physics Letters A (1990), 151, 107-108

Page 18: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

Peres ContextualityFor a singlet state Pre-assignment of eigenvalues < σx

1 σx2 > = -1 x1 x2 = -1

< σy1 σy

2 > = -1 y1 y2 = -1

< (σx1 σy

2)(σy1 σx

2)> = -1 x1 y2 y1 x2 = -1

CONTRADICTION !!Note:[σx

1,σx2 ] = 0

[σy1,σy

2] = 0

[σx1 σy

2 , σy1 σx

2 ] = 0

Physics Letters A (1990), 151, 107-108

Page 19: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

ExperimentUsing three F spins of Iodotrifluoroethylene. Two were

used to prepare singlet and one was ancilla.

Page 20: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

Pseudo-singlet statePure singlet state is hard to prepare in NMR

02

1001

8

1)-(1

Iz1+Iz

2+Iz3

0000008

1)-(1

Page 21: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

Pseudo-singlet statePure singlet state is hard to prepare in NMR

02

1001

8

1)-(1

Iz1+Iz

2+Iz3

0000008

1)-(1

No Signal !!<σx

1+σx2>=

0

Page 22: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

Pseudo-singlet state

8

1)-(1

Theory

Experiment

Real Part Imaginary Part

Fidelity=0.97

Page 23: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

Moussa Protocol Target (ρ)

<AB>

Probe(ancilla)|+ <AB> Target (ρ) Physical Review Letters (2010), 104, 160501

A B

A B

Page 24: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

NMR circuit for Moussa Protocol

PPS Single

t

1 (Ancilla)

2

3

B

|+

A

<σx>=<AB>

Page 25: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

Results Manvendra Sharma, 2012

Page 26: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

Future Architectures ?

Page 27: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

Criteria for Physical Realization of QIP

1. Scalable physical system with mapping of qubits

2. A method to initialize the system

3. Big decoherence time to gate time

4. Sufficient control of the system via time-dependent Hamiltonians

(availability of a universal set of gates).

5. Efficient measurement of qubits

DiVincenzo, Phys. Rev. A 1998

Page 28: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

NMR Circuits - Future

123456789

101112131415

.

.

.

Time

Qubits

xx - qubitsDecoherence

Transverserelaxation

a|00 + b |11

Loss of q. memory

{|00 , |11}

Longitudinalrelaxation

|0110010

|000000

Loss of c. memory

T2 T1<

• Addressability• Week coupling• Controllability

Larger Quantum

register

Page 29: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

Liquid-state NMR systemsAdvantages

High resolution

Slow decoherence

Ease of control

Disadvantages

o Smaller resonance dispersion

o Small indirect (J) couplings

o Smaller quantum registerRandom, isotropic

tumbling

Page 30: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

Single-crystal NMR systemsAdvantages

Large dipole-dipole couplings ( > 100 times J)

Orientation dependent Hamiltonian

Longer longitudinal relaxation time

Larger quantum register (???)

Disadvantages

o Shorter transverse relaxation time

o Challenging to control the spin dynamics

Page 31: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

Single-crystal NMR systems Active spins in a bath of inactive molecules

• Large couplings

• High resolution

• Hopefully –

Larger quantum register

J. Baugh, PRA 2006

Page 32: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

Two-molecules per unit center:

Inversion symmetry – P1 space group

So, the two molecules are magnetically equivalent

Inter-molecular interactions ?

Malonic Acid

QIP with Single Crystals

Cory et al, Phys. Rev. A 73, 022305 (2006)

Page 33: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

Malonic Acid

QIP with Single Crystals

Cory et al, Phys. Rev. A 73, 022305 (2006)Natural Abundance

Page 34: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

Pseudopure StatesMalonic Acid

Cory et al, Phys. Rev. A 73, 022305 (2006)

Page 35: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

Pseudopure StatesMalonic Acid

Cory et al, Phys. Rev. A 73, 022305 (2006)

Page 36: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

Quantum GatesEg. C2-NOT

Cory et al, Phys. Rev. A 73, 022305 (2006)

Page 37: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

~ 5.3

R. Laflamme,PRL 2010

Page 38: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

Glycine Single Crystal Mueller, JCP 2003

000 PPS

Page 39: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

Floquet Register

S. Ding, C. A. McDowell, … M. Liu, quant-ph/0110014

More qubits

More coupled Nuclear Spins

More Resolved Transitions

Side-bands?

Page 40: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

S. Ding, C. A. McDowell, … M. Liu, quant-ph/0110014

Page 41: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.
Page 42: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

Solid-State NMR and next generation QIP

Pseudo-Pure States

13C spectra of aromatic carbons ofHexamethylbenzenespinning at 3.5 kHz

Page 43: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

Grover’s Algorithm

S. Ding, C. A. McDowell, … M. Liu, quant-ph/0110014

Methyl 13C

Page 44: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

Electron Spin vs Nuclear Spin

Spin e n

Magnetic moment 103 1

Sensitivity High Low

Coherence Time 1 103

Measurement

Processing

Page 45: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

e-n Entanglement

Mehring, 2004

Entanglement in a solid-state spin ensemble•Stephanie Simmons et alNature 2011 

Page 46: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

Electron spin actuators

Cory et al

Page 47: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

Detection of single Electron Spin

D. Rugar, R. Budakian, H. J. Mamin & B. W. ChuiNature 329, 430 (2004)

by Magnetic Resonance Force Microscopy

Page 48: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

eq = ee IN

Up = SWAP (e,n1)

Ie 11 I(N-1)

Measure e-spin

If e invert

Up = SWAP (e,n2)

ee 11 I(N-1)

Cooling of nuclear spins

Cory et al, PRA 07

Page 49: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

Nuclear Local Fieldsunder

Anisotropic Hyperfine Interaction

B0

Anisotropic Hyperfine Interaction

e-n system

Page 50: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.

Coherent oscillations between nuclear coherence on levels 1 & 2 driven by Microwave

The nuclear p pulse : 520 ns e-n CNOT gate : 2ms (0.98 Fidelity)

Anisotropic Hyperfine Interaction

Page 51: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.
Page 52: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.
Page 53: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.
Page 54: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.
Page 55: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.
Page 56: Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.