Denitrification Nitrification Dinitrogen...

11
11-10-2010 1 Denitrification Identity, physiology and ecology of denitrifiers in activated sludge Jeppe Lund Nielsen Section of Biotechnology Aalborg University The nitrogen cycle NH 3 NO 2 - Nitrification NO 3 - NO 2 - NO N 2 O N 2 Biomass N 2 Aerobic (O 2 present) Biomass Dinitrogen fixation Anaerobic (O 2 absent) The process NO 3 - + organic substrate N 2 (via NO 2 - ) Microorganisms often facultative aerobic No oxygen present (aerobic denitrification important?) Growth rate and yield ca. 70-80% of aerobic growth Consume some alkalinity (pH may increase) Some denitrifiers may also use Fe 3+ as e- acceptor or ferment Dissimilative reduction of nitrate (denitrification to N 2) NO 3 - NO 2 - N 2 N 2 O NO nitrate dinitrogen nitrous oxide nitric oxide nitrite Gasous Nitrate reductase Nitrite reductase Nitric oxide reductase Nitrous oxide reductase Acetylen inhibitor Change in oxidation state : +5 to 0

Transcript of Denitrification Nitrification Dinitrogen...

  • 11-10-2010

    1

    Denitrification

    Identity, physiology and ecology of denitrifiers in activated sludge

    Jeppe Lund NielsenSection of Biotechnology

    Aalborg University

    The nitrogen cycle

    NH 3

    NO 2-

    Nitrification

    NO 3-

    NO 2-

    NON2O

    N2

    Biomass

    N2Aerobic (O2 present)

    Biomass

    Dinitrogenfixation

    Anaerobic (O2 absent)

    The process

    • NO3- + organic substrate → N2 (via NO2

    - )

    • Microorganisms often facultative aerobic

    • No oxygen present (aerobic denitrification important?)

    • Growth rate and yield ca. 70-80% of aerobic growth

    • Consume some alkalinity (pH may increase)

    • Some denitrifiers may also use Fe3+ as e-acceptor or ferment

    Dissimilative reduction of nitrate(denitrification to N2)

    NO3- NO2

    - N2N2ONOnitrate dinitrogennitrous oxidenitric oxidenitrite

    Gasous

    Nitrate reductase

    Nitrite reductase

    Nitric oxide reductase

    Nitrous oxide reductase

    Acetylen inhibitorChange in oxidation state : +5 to 0

  • 11-10-2010

    2

    Dissimilative reduction of nitrate in the environment

    NO3- NO2

    - N2N2ONO

    NO3- NO2

    -

    NO2- N2N2ONO

    NO3- NO2

    -

    NO2- N2N2ONO

    Same organism:

    Two different organisms:

    Start and endproduct can vary from between denitrifiers and depend on the environment

    Reduction of nitrate to ammonium (DNRA)

    NO3- NO2

    - NH4+

    Change in oxidation state : +5 to -3

    Mainly in very reduced environments– lack of electron acceptors (electron sink) – e.g. in digesters

    Rule of thumb: permanent anoxic environments favors DNRA

    ATP

    Electron donors

    NO3- + 1.8 CH3OH + H

    +

    0.065 CH5OH7O2N (biomass) + 0.47 N2 + 0.76 CO2 + 2.44 H2O

    Electron donors: many different organic compounds (inexpensive), H2, reduced sulfur compounds, Fe(II), others

    Consume some alkalinity (pH may increase)

    Process design for denitrification

    Simultaneous denitrification plant with varying aerobic and anoxic conditions

    N

    N

    D

    D

  • 11-10-2010

    3

    Process design for denitrification

    Carbon sourceDenitrification with separate sludge

    Denitrification with combined sludge

    D

    D

    Recycle

    Return sludge

    N

    N

    Process design for denitrification

    Denitrification with alternating operation

    D

    N

    D

    N

    N

    N

    N

    N

    Phase A Phase B

    Phase C Phase D

    Important questions - denitrification

    • Who? • Carbon source Sufficient C/N ratio in wastewater Addition of external carbon (Methanol, glycol, …) Hydrolysis

    • Rates Determine tank volumes

    • Aerobic denitrification Is most likely not important in full-scale treatment plants

    • …

    Microorganisms involved?

    Many have been cultured from activated sludge:

    Proteobacteria (α, β, γ and ε)FirmicutesBacteroidetes

    ArchaeaAquificae

    ThermodesulfobacteriaThermotogae

    Dictyoglomus

    Deinococcus-ThermusChloroflexi

    ThermomicrobiaCyanobacteria

    Firmicutes

    Actinobacteria

    Acidobacteria

    Nitrospira

    Gemmatimonadetes

    Planctomycetes

    Chlamydia

    Verrucomicrobia

    ChrysiogenetesDeferribacteres

    Bacteroidetes

    Chlorobi

    Fibrobacteres

    Spirochaetes

    Fusobacteria

    Proteobacteriaα-, β-, δ-, γ-, ε-

    Which are the important denitrifiers?

    Currently known prokaryoticdenitrifiers represent85 bacterial and 5 archaeal genera

    Mostly facultative anaerobes, NO Enterobacteria or obligate anaerobes

  • 11-10-2010

    4

    Identifying active denitrifiers in sludge via mRNA

    Incubations

    Ac: 2mM Acetate

    Aa: 2mM Amino acids

    Ac+Aa: 2mM Acetate +

    2mM Amino acids

    Each with 0.4mM Nitrite

    mRNA → cDNA

    Reverse transcription

    nirS, nirK, nosZPCR amplification

    RNA extraction

    nirS, nirK, nosZ

    Process tanks

    DGGE fingerprints

    4 4 5 3 10 7 9 1 4# bands:

    Isolation

    Thauera terpenicaS2_AAH73

    S3_AAH92S1_AAH100

    S1_AAH97S1_AAH33

    Thauera sp. S3_AAH114

    S3_AAH84S2_AAH170

    Simplicispira psychrophilaS1_AAH34

    Dechloromonas aromaticaS1_AAH36Dechloromonas sp.

    S1_AAH101S3_AAH195

    Acidovorax delafieldiiS2_AAH104

    Acidovorax sp. JS42S3_AAH116

    S1_AAH99S3_AAH85

    S1_AAH32S3-AAH115

    Azoarcus sp.S2_AAH102

    S2_AAH112S1_AAH98

    S2_AAH103S2_AAH79

    Thiobacillus denitrificansS2_AAH78

    S2_AAH75S2_AAH81

    S3_AAH90S2_AAH107

    Brachymonas denitrificansS2_AAH111

    Paracoccus sp.S1_AAH95

    S1_AAH35

    0.10

    Thiobacillus

    Thauera

    Simplicispira

    Dechloromonas

    Acidovorax

    Azoarcus

    Brachymonas

    Paracoccus

    β

    α

    Proteobacteria

    Expressed

    nitrite reductase (NirS)

    14

    Identification of active denitrifiers (clone and isolate sequences) Dendrogram of 13 WWTPs based on qFISH

    qFISH: 14 most dominant denitrifiers (determined by NirS and NirK)

  • 11-10-2010

    5

    Dominant bacteria in full-scale N- and P-removing municipal wastewater treatment plants

    Nitrifiers

    Nitrosomonas sp.

    Nitrospira sp.

    Denitrifiers

    Curvibacter sp.

    Azoarcus sp.

    Thauera sp.

    Accumulibacter (PAO)

    Others

    Polyphosphate-accumulating organisms (PAO)

    Accumulibacter

    Actinobacteria-related

    Others?

    Glycogen-accumulating organisms (GAO)

    GB-group (Competibacter)

    Defluviicoccus

    Others?

    Filamentous bacteria

    Microthrix sp.

    Mycolata

    Type 0041, 1701, 1851, 0092, 0803

    Haliscomenobacter-like

    Others

    Other bacteria

    Iron reducers

    Sulfate reducers (Desulfovibrio sp.)

    Fermenters

    Hydrolysing bacteria (Microthrix, Saprospiraceae, Actinobacteria)

    Dominant bacteria in full-scale N- and P-removing municipal wastewater treatment plants

    Nitrifiers

    Nitrosomonas sp.

    Nitrospira sp.

    Denitrifiers

    Curvibacter sp.

    Azoarcus sp.

    Thauera sp.

    Accumulibacter (PAO)

    Others

    Polyphosphate-accumulating organisms (PAO)

    Accumulibacter

    Actinobacteria-related

    Others?

    Glycogen-accumulating organisms (GAO)

    GB-group (Competibacter)

    Defluviicoccus

    Others?

    Filamentous bacteria

    Microthrix sp.

    Mycolata

    Type 0041, 1701, 1851, 0092, 0803

    Haliscomenobacter-like

    Others

    Other bacteria

    Iron reducers

    Sulfate reducers (Desulfovibrio sp.)

    Fermenters

    Hydrolysing bacteria (Microthrix, Saprospiraceae, Actinobacteria)

    40-50%

    10-15%

    20-30%

    5-8%

    1-5%

    1-3%

    Nitrifiers

    Nitrosomonas sp. ?

    Nitrospira sp.?

    Denitrifiers

    Curvibacter sp. ?

    Azoarcus sp. ?

    Thauera sp. ?

    Accumulibacter (PAO) ?

    Others

    Polyphosphate-accumulating organisms(PAO)

    Accumulibacter

    Actinobacteria-related

    Others?

    Glycogen-accumulatingorganisms (GAO)

    GB-group (Competibacter)

    Defluviicoccus

    Others?

    Filamentous bacteria

    Microthrix sp.

    Mycolata ??

    Type 0041, 1701, 1851, 0092, 0803

    Haliscomenobacter-like

    Others

    Other bacteria

    Iron reducers

    Sulfate reducers (Desulfovibrio sp.)

    Fermenters ?

    Hydrolysing bacteria (Microthrix, Saprospiraceae, Actinobacteria)

    Ecophysiology - uptake of organic compounds: versatile versus specialized species The usual suspects

    0

    5

    10

    15

    20

    25

    Curvibacter Thauera Azoarcus Rhodocyc. Zoogloea

    Rel

    ativ

    e a

    bu

    nd

    ance

    (%)

    Aalborg East WWTP

    At least 3-4 abundant denitrifiers present

    in all full-scale N and P-removal plants

    investigated so far

  • 11-10-2010

    6

    0

    2

    4

    6

    8

    10

    12

    Curvibacter Zoogloea Azoarcus Thauera Accumulibacter

    Per

    cetn

    age

    of

    EUB

    mix

    [%

    ]

    Jan

    May

    Aug

    Nov

    Denitrifiers in EBPR plants (n=23)

    At least 3-4 abundant denitrifiers present

    in all full-scale N and P-removal plants

    investigated so far

    Non-EBPR plants(n=5)

    Reduction of nitrate with Fe(III)

    NO2- + Fe(II) N2 + Fe(III)

    0

    0.2

    0.4

    0.6

    0.8

    1

    1 2 3 4 5 6 7 8

    Time [hour]

    Nit

    rate

    [m

    M]

    1

    2

    3

    4

    Ferr

    ou

    s I

    ron

    [m

    M]

    NO3-

    Wastewater

    Dewatering

    Effluent

    Return sludge

    Settling

    Process tanksPrimarysettling

    Anaerobic digestion

    Agriculture

    Landfill

    IncinerationReuse/recovery

    SludgehandlingEnergy

    (Methane)

    Sidestream hydrolysis can increase the improve themicrobial processes in the process tank:

    Two ways of improving the denitrification process:

    Addition of easily degradable substrate

    Anaerobichydrolysis

    Sludge COD

    VFA COD

    Sludge COD

    Reduction of Nitrate with different electron donors

    Ryaverket WWTP, Gothenborg, Sweeden (24/4 2006)Methanol is regularly added to maintain sufficient denitrification

  • 11-10-2010

    7

    Reduction of Nitrate with different electron donors

    Type of sludge Carbon source Maximum-OUR

    (mgO2/(gVSS*h))

    Maximum-NUR

    (mgNO3-N/(gVSS*h))

    Källby, 2005-07-04

    (No carbon dosing at the plant)

    Acetate

    Methanol

    Acetate+ Methanol

    17

    6.6

    18

    4.5

    1.3

    5.8

    Källby, 2005-10-03

    (No carbon dosing at the plant)

    Acetate

    Ethanol

    Acetate+ Ethanol

    15

    10

    18

    3.7

    2.5

    4.7

    Ryaverket, Gothenborg, 2005-09-13

    (Methanol dosing at the plant)

    Acetate

    Methanol

    Acetate+ Methanol

    45

    72

    84

    13

    15

    14

    Sjölunda, Malmö, 2006-04-28

    (Methanol dosing at the plant )

    Acetate

    Methanol

    Acetate+ Methanol

    14

    53

    79

    6.2

    34

    40

    At least two populations exists, specialized on utilizing Acetate and Methanol, respectively

    Reduction of Nitrate with different electron donors

    Type of sludge Carbon source Maximum-OUR

    (mgO2/(gVSS*h))

    Maximum-NUR

    (mgNO3-N/(gVSS*h))

    Källby, 2005-07-04

    (No carbon dosing at the plant)

    Acetate

    Methanol

    Acetate+ Methanol

    17

    6.6

    18

    4.5

    1.3

    5.8

    Källby, 2005-10-03

    (No carbon dosing at the plant)

    Acetate

    Ethanol

    Acetate+ Ethanol

    15

    10

    18

    3.7

    2.5

    4.7

    Ryaverket, Gothenborg, 2005-09-13

    (Ethanol dosing at the plant)

    Acetate

    Ethanol

    Acetate+ Ethanol

    45

    72

    84

    13

    15

    14

    Sjölunda, Malmö, 2006-04-28

    (Methanol dosing at the plant )

    Acetate

    Methanol

    Acetate+ Methanol

    14

    53

    79

    6.2

    34

    40

    At least two populations exists, specialized on utilizing Acetate and Methanol, respectively

    3H-Acetate

    3H-Methanol

    MAR FISH MAR-FISH

    Generally higher silver graindensity, with Acetate show betterIncoorporation in biomass

    Organisms Probe namePercentage of

    Eubacteria [%]

    MAR

    Methanol/NO3

    MAR

    Acetate/NO3

    Alphaproteobacteria ALF968 10.4 Neg Pos (72%)

    Betaproteobacteria BET42a 53.8 Pos (36%) Pos (58%)

    Curvibacter-related

    bacteriaCurv997 0.9 Neg Neg

    Rhodocyclus-related

    polyphosphate

    accumulating

    organisms

    PAOmix

    PAO462, PAO651 and

    PAO846

    2.1 Neg Pos (53%)

    Most Azoarcus Azo644 30.2 Pos (46%) Pos (85%)

    Zoogloea ramigera ZRA 0.9 Neg Pos (89%)

    Firmicutes LGCmix 2.7 Neg Neg

    Azoarcus/Thauera AT1458 2.8 ND ND

    Thauera spp. Thau646 1.5 ND ND

    Gammaproteobacteria GAM42a 6.1 Neg Pos (69%)

    Most

    Deltaproteobacteria

    and other Bacteria

    SRBmix

    SRB385 + SRB385Db13.3 ND ND

    Phylum Chloroflexi CFX 1223 3.5 ND ND

    Phylum Chloroflexi Gnsb941 4.0 Neg Neg

    Archaea Arch915 8.4 ND Neg

    Nonsense probe

    (negative control)NonEUB338 Neg Neg

    Identification of Nitrate reducers in Ryaverket WWTP

    Very similar numbers were obtained with nitrite…

    (Methanol dosing at the plant)

    Nitrate and nitrite consumption in activated sludge

    Morgan et al., 2008

    Measured in situ by Unisense biosensor

  • 11-10-2010

    8

    Substrate uptake by potential denitrifiersin full-scale N and P-removal plants (Aalborg East)

    0

    1

    2

    3

    4

    5

    6

    Incr

    ease

    in N

    O3

    -U

    pta

    ke R

    ate

    (mg

    N/g

    VSS

    .h)

    Fatty acids Amino acids

    Suga

    r

    Alc

    oh

    ol Combined

    substrates

    Measured in situ by Unisense biosensor

    Indication of specializedsubstrate consumers

    Microautoradiography

    Radioactive cells

    Non-radioactive cells

    Autoradiographic film

    Silver grains

    AalborgUniversity

    Immersion oil

    Cover slip

    CLSM

    Radio-labelledsubstrate [3H, 14C, 33P]

    Electron acceptor[aerobic, anaerobic]

    Incubation

    Fixation

    ExposureFilm emulsion Film development

    Microscopicexamination

    Washing step

    Microautoradiography (MAR) Detection of dual substrate uptake by use of two isotopeswith different energies

    14C-acetate

    14C-acetate and 3H-propionate

    3H-propionate

    Filaments Single cells

    3H: low energy

    14C: high energy

    3H + 14C:

  • 11-10-2010

    9

    0

    5

    10

    15

    20

    25

    [1.0

    7-1.

    33[

    [1.3

    3-1.

    60[

    [1.6

    0-1.

    87[

    [1.8

    7-2.

    13[

    [2.1

    3-2.

    40[

    [2.4

    0-2.

    67[

    [2.6

    7-2.

    93[

    [2.9

    3-3.

    20[

    [3.2

    0-3.

    47[

    [3.4

    7-3.

    73[

    Quantitative MAR

    Acetate [mM]

    0.1 0.2 0.3 0.4 0.9 1.0

    Ce

    ll-sp

    ecific

    activity [x1

    0-1

    5 m

    ol/ce

    ll/h

    ]

    0

    1

    2

    3

    4

    5

    Acetate (mM)

    Up

    take

    rat

    e (f

    mo

    l cel

    l-1 h

    -1)

    Ks= approx. 2 µM

    Apparent KsSubstrate uptake kinetics of

    Meganema sp.in activated sludge

    Activity distribution

    Nielsen et al. 2003: Environ. Microbiol. 3:202-211Cell-specific activity [x10-15 mol/cell/h]

    Information from MAR-FISH - single cells

    Active/inactive

    Heterotrophic, autotrophic, mixotrophic activity

    Consumption of organic substrates

    Uptake of micropollutants and other specific substances

    Potential denitrifier, fermenter, sulfate reducer, methanotroph, ....

    Luxury uptake of orthophosphate

    Potential metabolic pathways

    Growth kinetics

    Substrate uptake rate

    Substrate affinity (Km)

    Effect of various factors on substrate uptake e.g. inhibiting substances, light, temperature etc.

    ....

    Denitrification by uncultured bacteria– PAOs and GAOs

    No NOx

    Pre-incubationunlabelled substrate

    3H or 14C-labeled substrate

    3-6 hours 3 hours

    MAR-positiveMAR-negative

    No NOx

    3 hours

    Addition of nitrate/nitrite

    Potential denitrification by probe-defined bacteria

    Usual suspected denitrifiers:

    Thauera sp. (Thau646)

    Azoarcus (Azo644)

    Rhodocyclus

    (Accumulibacter) (PAOmix)

    Zoogloea (ZRA)

    Aquaspirillum (Aqs997)

    others

    Thauera sp.

    Uptake of 3H-acetatewith nitrate as e-accep.

    MAR

    EUBmix

  • 11-10-2010

    10

    Amino acids common

    substrate for all probe-defined

    species

    Acetate common substrate for

    at least 3 probe-defined

    Substrate uptake by potential denitrifiersin full-scale N and P-removal plants

    Substrate

    (labeled)

    Aqua-

    spirillum

    Thauera Azoarcus Accumli

    bacter

    Fatty

    acids

    Formate - - - -

    Acetate - + + +

    Propionate - + - +

    Lactate - - - -

    Pyruvate - + (+) +

    Oleic acid - + - -

    Sugars Glucose - (+) - -

    Galactose - - - -

    Mannose - - - -

    Alcohols Ethanol - + + -

    Amino

    acids

    Glutamate - - - +

    Leucine - - - -

    Amino acid

    mix.+ + + +

    Genera contain several

    phenotypes

    Are other important

    deniitrifiers present?

    Substrate uptake by potential denitrifiersin full-scale N and P-removal plants

    Substrat

    e

    (labeled)

    Aqua-

    spirillum

    Thauera Azoarcus Accumli-

    bacter

    Fatty

    acids

    Formate - - - -

    Acetate - +(50%) +(20-30%) +(22-35%)

    Propionate - +(30-40%) - +

    Lactate - - - -

    Pyruvate - +(10-20%) +(5-10%) +

    Oleic acid - +(10%) - -

    Sugars Glucose - +(10-20%) - -

    Galactose - - - -

    Mannose - - - -

    Alcohols Ethanol - +(10-20%) +(20-30%) -

    Amino

    acids

    Glutamate - - - +

    Leucine - - - -

    Amino

    acid mix.+(20-30%) +(15-25%) +(50-60%) + (ND)

    Density of silver grain formation

    Oligonucleotide probe targeted

    bacteria

    Incubation with nitrite

    (Nitrite-reducing conditions)

    Incubation without nitrite

    (Anaerobic conditions)

    Chloroflexi ─ ─

    Nitrospira ─ ─

    Alphaproteobacteria + +

    Betaproteobacteria + +

    Aquaspirillum-related + ─

    Azoarcus + ─/+

    Thauera + ─

    Rhodocyclus ++ +

    Gammaproteobacteria + +

    Deltaproteobacteria ─ ─

    Firmicutes ++ ++

    Actinobacteria ─/+ ─/+

    Planctomycetes ─ ─

    Bacteroidetes ─ ─

    Assimilation of 14CO2 with a complex substrate mixture as electron donor and carbon source under nitrite-reducing and anaerobic conditions.

    ─ No or insignificant silver grain coverage:

  • 11-10-2010

    11

    Denitrifiers in activated sludge

    ?

    Others

    Identifyable

    denitrifiers

    -genera

    10 µm10 µm

    Fluorescence in situhybridization (FISH)

    Microautoradiography (MAR)3H-acetate + 3H-amino acids

    Unidentified

    denitrifiers

    Multiphasic approach

    - 16S rRNA phylogeny

    - Stable isotope probing

    - Quantitative FISH

    - Quantitative MAR-FISH

    - Transcriptomics

    - Metatranscriptomics

    41

    Stable Isotope Probing:- α-, β-, γ- and ε- Proteobacteria- Acidobacteria- Firmicutes- Actinobacteria- Bacteroidetes

    Denitrifiers in activated sludgecultivation-independent methods

    Full denitrification – important denitrifiers:

    Betaproteobacteria:

    Family Comamonadadeae (Acidovorax, Comamonas)

    Family Neisseraceae (Curvibacter)

    Family Rhodocyclaceae (Dechloromonas, Azoarcus, Thauera, Zoogloea, Accumulibacter)

    (Juretschko et al., 2002, Thomsen et al., 2004, Kong et al., 2004, Ginige et al., 2005/06, Hagmann et al., 2008, Morgan et al., 2008, Hansen and Nielsen, 2009, Nielsen et al., in prep)

    Denitrification in activated sludge

    • Relatively few species in full-scale plants can carry out full denitrification

    • Many can probably carry out reduction of nitrate to nitrite

    • Very specialized and more versatile groups/species are present

    • Amino acids and acetate common substrate for most probe defined groups

    • Aquaspirillum – high abundance physiology/substrates literally unknown

    • We do not know what control the presence of different species

    • Aerobic denitrification??

    • Does species composition reflect denitrifying activity?