Deformation of Galactic Centre Stellar Cusp due to growing Gas Disc · 2017. 9. 21. · Deformation...

32
Deformation of Galactic Centre Stellar Cusp due to growing Gas Disc Karamveer Kaur & Prof. S.Sridhar Raman Research Institute KK & SS - arXiv:1709.04263

Transcript of Deformation of Galactic Centre Stellar Cusp due to growing Gas Disc · 2017. 9. 21. · Deformation...

  • Deformation of Galactic Centre Stellar Cusp due to growing Gas Disc

    Karamveer Kaur & Prof. S.SridharRaman Research Institute KK & SS - arXiv:1709.04263

  • Nuclear Star Clusters(NSCs)

    * Densest of known stellar systems shrouding massive black holes (MBHs) at the centres of most of galaxies

    * Massive ~ 105 - 107 Msun and compact ~ 5 pc in size * Multiple populations of stars – varied ages

    * Various structural components – Cuspy old spheroidal component; Discy, ring – like features composed of young stars

    * MW NSC – Resolved due to proximity

  • Moving to MW - NSC ...

  • Milky Way NSC - within 1 pc

    Massive BH ~ 4 X 106 Msun

    Radius of influence ~ 2 pc

  • Cusp of old stars

    Gallego-Cano et al,Schodel et al 2017

  • Cusp of old stars

    Gallego-Cano et al,Schodel et al 2017

    * Mass enclosed within 1 pc ~ 106 Msun

    * Single power law density profile within ~ 3 pc with index ~ 1.23

  • Young stars

  • Young stars

    * ~ 200 young WR & O type stars within 0.13 - 0.5 pc

    * Compact discy profile + randomly oriented planes

    * Reminiscent of stellar disc (undergone dynamical evolution)

    Yelda et al 2014

    Subr et al 2009

  • Massive accretion disc

    Levin & Beloborodov 2003

  • Massive accretion disc

    * Thin disc with steep radial surface density profile (Power law index ~ 1.5)

    * Disc mass Md within 1 pc ~ 105 Msun.

    Christopher et al 2005Etxaluze et al 2011

    Levin & Beloborodov 2003

  • How does the gravity of massive accretion disc

    effects the Cusp morphology ?

  • Flattenned Cusp

    Schodel et al 2014 - larger scales ... Feldmeier et al 2017

  • Stellar Cusp Model ρc (r )∝r

    −γρc(r)∝r

    −γ

    φ c(r)∝r2−γ

    F0∝(−E)2 γ+n−3

    2 Ln

    * Spherical power law density: Mass enclosed within 1 pc

    * The potential

    * Distribution Function : Anisotropic Parameter β = -n/2 – Tangentially Biased system

    γ=1.25

    n=0.5

    Gallego-Cano et al,Schodel et al 2017

    Feldmeier-Krause et al 2017

    M c=106 M sun

  • Gas Disc Model

    ρd (r ,θ)∝r−2.5[δ(θ−π

    2)+ 9

    16(1−|cosθ|)2]

    * Density profile: 73 % mass Planer component 27% mass in Extended component Mass within 1 pc slowly growing

    * The potential:

    M d

  • Secular Dynamics Region of Influence:

    T kep∼2×104 yr

    Sridhar & Touma 2016

    a∼0.5 pc

  • Secular Dynamics Region of Influence

    T sec=M

    M BHT kep∼2×10

    5 yr

  • Coordinates

  • Coordinates

    (I=√G M BH a ,w)

    (L=I √1−e2 , g)(Lz=Lcos i , h)

  • Orbit averaged Potentials* Spherically Symmetric Distributions (Cusp Here) Retrograde planer precession of apses Eccentricity of rings remain same

    φ c(r )→Φc(I , L)

  • Orbit averaged Potentials* Mass Distribution in a disc Retrograde precession of nodes Eccentricity “e” of rings evolves as it precesses

    φ d (r ,θ)→Φd (I , L , Lz , g)

  • Nodal Regression

  • Linear Evolution

    F (I , L , Lz , g , τ)=F0(I , L)+F1(I , L , Lz , g , τ)

    H (I , L , Lz , g , τ)=Φc (I , L)+Φd (I , L , Lz , g , τ)Self- gravity of F1 neglected

    Adiabatic growth of disc

    ∂F1∂ τ +Ωc

    ∂F1∂ g

    =∂F0∂ L

    ∂Φd∂ g

    Linearised Collisionless Boltzmann Equation: Linearised wrt deformation & disc potential

    F1=1Ωc

    ∂F 0∂ L

    Φd(g)

  • Linear Deformation F1

    F1∝a−1 Greater contribution from

    Small Size Orbits

  • Linear Deformation F1

    F1∝a−1

    (1−e2)n−2

    2 (...e2+...e4+...e6)

    High e - Orbits

  • Linear Deformation F1

    F1∝a−1

    (1−e2)n−2

    2 (...e2+...e4+...e6)

    (... sin i+... sin2 i)

    High inclination Orbits

  • Linear Deformation F1

    F1∝a−1

    (1−e2)n−2

    2 (...e2+...e4+...e6)

    (... sin i+... sin2 i)

    cos(2 g)

  • Linear Deformation F1

    F1∝a−1

    (1−e2)n−2

    2 (...e2+...e4+...e6)

    (... sin i+... sin2 i)

    cos(2 g)

    Sign Determining Term

    Apse Close to disc plane(g = 0O) ---> Overdensity

    Apse farther from disc plane(g = 90O)---> Underdensity

  • Orbital Dynamics again..Shaping up Deformation

    Slower Apse Precession near g = 0O,180O implies Overdensity

    Lz/I = 0.1 Lz/I = 0.5

    a = 0.5 pc

  • Density Deformation

    ρ1ρ1(10

    −2 M c/rc3) ρ=ρc+ρ1(M c /rc

    3)

    Flattened Density Profile1/2 - Opening angle for Deformation ~ 33o

  • Projected Density

    LOS 45o LOS 90o

    Radially decreasing Flattenning

  • Flattenning : Axis Ratio

  • Discussion1. The quantitative degree of flatness – non-linear theory of adiabatic capture into reesonance (Sridhar & Touma 1996)– the inclusion of effect of librating orbits.

    2. It’s of interest to see the evolution of deformed cusp under self-gravity. N-body simulations will help.

    3. Considering perturbations by warped accretion disc will lead to triaxial deformation of cusp.

    4. Will be interesting to see whether NSC is flattened in inner parsecs in future observations.

    5. Generic to the NSCs of other galaxies - discy component of young stars.

    Slide 1Slide 2Slide 3Slide 4Slide 5Slide 6Slide 7Slide 8Slide 9Slide 10Slide 11Slide 12Slide 13Slide 14Slide 15Slide 16Slide 17Slide 18Slide 19Slide 20Slide 21Slide 22Slide 23Slide 24Slide 25Slide 26Slide 27Slide 28Slide 29Slide 30Slide 31Slide 32