Deciding the value 1 problem for reachability in 1 …...Deciding the value 1 problem for...

40
Deciding the value 1 problem for reachability in 1-clock Decision Stochastic Timed Automata Nathalie Bertrand 1 Thomas Brihaye 2 Blaise Genest 3 1 Inria/IRISA, Rennes, France 2 Universit´ e Mons, Mons, Belgium 3 CNRS/IRISA, Rennes, France QEST’14 - 9/9 - Firenze

Transcript of Deciding the value 1 problem for reachability in 1 …...Deciding the value 1 problem for...

Page 1: Deciding the value 1 problem for reachability in 1 …...Deciding the value 1 problem for reachability in 1-clock Decision Stochastic Timed Automata Nathalie Bertrand1 Thomas Brihaye2

Deciding the value 1 problem for reachabilityin 1-clock Decision Stochastic Timed Automata

Nathalie Bertrand1 Thomas Brihaye2 Blaise Genest3

1 Inria/IRISA, Rennes, France

2 Universite Mons, Mons, Belgium

3 CNRS/IRISA, Rennes, France

QEST’14 - 9/9 - Firenze

Page 2: Deciding the value 1 problem for reachability in 1 …...Deciding the value 1 problem for reachability in 1-clock Decision Stochastic Timed Automata Nathalie Bertrand1 Thomas Brihaye2

Non-deterministic and probabilistic timed systems

Two approaches to combine probability, non-determinism and time:

I Probabilistic Timed Automata (a la PRISM)[KNSS-arts99]

I Time-delays are chosen non-deterministically,

I Edges are according to discrete probability distributions.

I Decision Stochastic Timed Automata (ext. of CTMDP)[BS-formats12]

I Time-delays are chosen via continuous probability distributions,

I Edges are chosen non-deterministically.

Nathalie Bertrand Value 1 problem for Decision Stochastic Timed Automata QEST’14 – Florence – 9 sept., 2/21

Page 3: Deciding the value 1 problem for reachability in 1 …...Deciding the value 1 problem for reachability in 1-clock Decision Stochastic Timed Automata Nathalie Bertrand1 Thomas Brihaye2

Known results on (decision) stochastic timed automata

Stochastic timed automata (STA)

I The almost-sure model-checking of LTL is decidableI on 1-clock STA. [BBBBG-lics08]I on reactive n-clock STA. [BBJM-qest12]

I Open problem decidability of the almost-sure reachabilityproblem on general 2-clock STA.

Decision Stochastic Timed Automata (DSTA)

I Existence of an optimal scheduler for the time-boundedreachability problem on reactive DSTA. [BS-formats12]

This talk: reachability problem on 1-clock DSTA.

Nathalie Bertrand Value 1 problem for Decision Stochastic Timed Automata QEST’14 – Florence – 9 sept., 3/21

Page 4: Deciding the value 1 problem for reachability in 1 …...Deciding the value 1 problem for reachability in 1-clock Decision Stochastic Timed Automata Nathalie Bertrand1 Thomas Brihaye2

Known results on (decision) stochastic timed automata

Stochastic timed automata (STA)

I The almost-sure model-checking of LTL is decidableI on 1-clock STA. [BBBBG-lics08]I on reactive n-clock STA. [BBJM-qest12]

I Open problem decidability of the almost-sure reachabilityproblem on general 2-clock STA.

Decision Stochastic Timed Automata (DSTA)

I Existence of an optimal scheduler for the time-boundedreachability problem on reactive DSTA. [BS-formats12]

This talk: reachability problem on 1-clock DSTA.

Nathalie Bertrand Value 1 problem for Decision Stochastic Timed Automata QEST’14 – Florence – 9 sept., 3/21

Page 5: Deciding the value 1 problem for reachability in 1 …...Deciding the value 1 problem for reachability in 1-clock Decision Stochastic Timed Automata Nathalie Bertrand1 Thomas Brihaye2

Outline of the talk

Introduction

Decision Stochastic Timed Automata

Solving the value 1 problemThe limit corner-point MDPCorrectness of the limit corner-point MDP

Conclusion

Nathalie Bertrand Value 1 problem for Decision Stochastic Timed Automata QEST’14 – Florence – 9 sept., 4/21

Page 6: Deciding the value 1 problem for reachability in 1 …...Deciding the value 1 problem for reachability in 1-clock Decision Stochastic Timed Automata Nathalie Bertrand1 Thomas Brihaye2

One-clock timed automata

`0

x ≤ 1

`1

x ≤ 2

,

/

e1

e2, x≥ 1

e3 , x ≤ 1

e0, x := 0

e4

e5

one-clock timed automaton: A = (L, `0,E , I)

Example of execution:

(`0, 0).7−→ (`0, .7)

e0−→ (`0, 0).8−→ (`0, .8)

e1−→ (`1, .8).3−→ (`0, 1.1)

e2−→,

Nathalie Bertrand Value 1 problem for Decision Stochastic Timed Automata QEST’14 – Florence – 9 sept., 5/21

Page 7: Deciding the value 1 problem for reachability in 1 …...Deciding the value 1 problem for reachability in 1-clock Decision Stochastic Timed Automata Nathalie Bertrand1 Thomas Brihaye2

One-clock Decision Stochastic Timed Automaton

`0

x ≤ 1

unif

`1

x ≤ 2

unif ,

/

e1

e2, x≥ 1

e3 , x ≤ 1

e0, x := 0

e4

e5

decision stochastic timed automaton: (A, µ) where

I A = (L, `0,E , I) is a one-clock timed automaton

I µ = (µ`,ν) is a family of distributionsµ`,ν : distribution over potential delays from state (`, ν)

Nathalie Bertrand Value 1 problem for Decision Stochastic Timed Automata QEST’14 – Florence – 9 sept., 6/21

Page 8: Deciding the value 1 problem for reachability in 1 …...Deciding the value 1 problem for reachability in 1-clock Decision Stochastic Timed Automata Nathalie Bertrand1 Thomas Brihaye2

Semantics of DSTA

`0

x ≤ 1

unif

`1

x ≤ 2

unif ,

/

e1

e2, x≥ 1

e3 , x ≤ 1

e0, x := 0

e4

e5

Infinite state MDP: from state sI a delay τ is randomly chosen according to µs ;I the player chooses an edge e enabled in s + τ .

〈`0, 0〉.7−→ [`0, .7]

e0−→ 〈`0, 0〉.8−→ [`0, .8]

e1−→ 〈`1, .8〉.3−→ [`0, 1.1]

e2−→,

strategy σ: in [ ]-states dictates which edge to choose

Nathalie Bertrand Value 1 problem for Decision Stochastic Timed Automata QEST’14 – Florence – 9 sept., 7/21

Page 9: Deciding the value 1 problem for reachability in 1 …...Deciding the value 1 problem for reachability in 1-clock Decision Stochastic Timed Automata Nathalie Bertrand1 Thomas Brihaye2

Optimal positional strategies

`0

x ≤ 1

unif

`1

x ≤ 2

unif ,

/

e1

e2, x≥ 1

e3 , x ≤ 1

e0, x := 0

e4

e5

0 1 21−ε/ ,

σε (`0, ν) =

{e0 if ν < 1− εe1 if ν ≥ 1− ε

; σε (`1, ν) =

{e2 if ν ≥ 1

e3 if ν < 1

P(`0,0)σε

((A, µ) |= 3,

)≥ 1

1 + ε≥ 1− ε.

ε-optimal strategies are not region-uniform

Nathalie Bertrand Value 1 problem for Decision Stochastic Timed Automata QEST’14 – Florence – 9 sept., 8/21

Page 10: Deciding the value 1 problem for reachability in 1 …...Deciding the value 1 problem for reachability in 1-clock Decision Stochastic Timed Automata Nathalie Bertrand1 Thomas Brihaye2

Optimal positional strategies

`0

x ≤ 1

unif

`1

x ≤ 2

unif ,

/

e1

e2, x≥ 1

e3 , x ≤ 1

e0, x := 0

e4

e5

0 1 21−ε/ ,

σε (`0, ν) =

{e0 if ν < 1− εe1 if ν ≥ 1− ε

; σε (`1, ν) =

{e2 if ν ≥ 1

e3 if ν < 1

P(`0,0)σε

((A, µ) |= 3,

)≥ 1

1 + ε≥ 1− ε.

ε-optimal strategies are not region-uniformNathalie Bertrand Value 1 problem for Decision Stochastic Timed Automata QEST’14 – Florence – 9 sept., 8/21

Page 11: Deciding the value 1 problem for reachability in 1 …...Deciding the value 1 problem for reachability in 1-clock Decision Stochastic Timed Automata Nathalie Bertrand1 Thomas Brihaye2

Almost-sure vs Limit-sure

DSTA (A, µ), target set , ⊆ L, and initial state s ∈ S

I , is almost-surely reachable from s if

∃σ Psσ

((A, µ) |= 3,

)= 1.

I , is limit-surely reachable from s if

∀ε > 0 ∃σ Psσ

((A, µ) |= 3,

)> 1− ε.

Nathalie Bertrand Value 1 problem for Decision Stochastic Timed Automata QEST’14 – Florence – 9 sept., 9/21

Page 12: Deciding the value 1 problem for reachability in 1 …...Deciding the value 1 problem for reachability in 1-clock Decision Stochastic Timed Automata Nathalie Bertrand1 Thomas Brihaye2

Almost-sure 6= Limit-sure

`0

x ≤ 1

unif

`1

x ≤ 2

unif ,

/

e1

e2, x≥ 1

e3 , x ≤ 1

e0, x := 0

e4

e5

I , is not almost-surely reachable from (`0, 0),

I , is limit-surely reachable from (`0, 0).

Nathalie Bertrand Value 1 problem for Decision Stochastic Timed Automata QEST’14 – Florence – 9 sept., 10/21

Page 13: Deciding the value 1 problem for reachability in 1 …...Deciding the value 1 problem for reachability in 1-clock Decision Stochastic Timed Automata Nathalie Bertrand1 Thomas Brihaye2

Our contribution

Probability 1 problemInput: A DSTA (A, µ), a target set , ⊆ L and a state s ∈ S .Question: Is , almost-surely reachable from s?

Value 1 problemInput: A DSTA (A, µ), a target set , ⊆ L and a state s ∈ S .Question: Is , limit-surely reachable from s?

Main ResultThe probability 1 and value 1 problems are decidable in polynomialtime for one-clock decision stochastic timed automata.For value 1, ε-optimal strategies are not region-uniform.

Nathalie Bertrand Value 1 problem for Decision Stochastic Timed Automata QEST’14 – Florence – 9 sept., 11/21

Page 14: Deciding the value 1 problem for reachability in 1 …...Deciding the value 1 problem for reachability in 1-clock Decision Stochastic Timed Automata Nathalie Bertrand1 Thomas Brihaye2

Our contribution

Probability 1 problemInput: A DSTA (A, µ), a target set , ⊆ L and a state s ∈ S .Question: Is , almost-surely reachable from s?

Value 1 problemInput: A DSTA (A, µ), a target set , ⊆ L and a state s ∈ S .Question: Is , limit-surely reachable from s?

Main ResultThe probability 1 and value 1 problems are decidable in polynomialtime for one-clock decision stochastic timed automata.For value 1, ε-optimal strategies are not region-uniform.

Nathalie Bertrand Value 1 problem for Decision Stochastic Timed Automata QEST’14 – Florence – 9 sept., 11/21

Page 15: Deciding the value 1 problem for reachability in 1 …...Deciding the value 1 problem for reachability in 1-clock Decision Stochastic Timed Automata Nathalie Bertrand1 Thomas Brihaye2

Introduction

Decision Stochastic Timed Automata

Solving the value 1 problemThe limit corner-point MDPCorrectness of the limit corner-point MDP

Conclusion

Nathalie Bertrand Value 1 problem for Decision Stochastic Timed Automata QEST’14 – Florence – 9 sept., 12/21

Page 16: Deciding the value 1 problem for reachability in 1 …...Deciding the value 1 problem for reachability in 1-clock Decision Stochastic Timed Automata Nathalie Bertrand1 Thomas Brihaye2

Solving the value 1 problem - Key idea

From a DSTA (A, µ), we build a finite MDP Acp such that

, is limit-surely reachable from s0 in (A, µ)

if and only if

, is almost-surely reachable from s0 in Acp.

Nathalie Bertrand Value 1 problem for Decision Stochastic Timed Automata QEST’14 – Florence – 9 sept., 13/21

Page 17: Deciding the value 1 problem for reachability in 1 …...Deciding the value 1 problem for reachability in 1-clock Decision Stochastic Timed Automata Nathalie Bertrand1 Thomas Brihaye2

Introduction

Decision Stochastic Timed Automata

Solving the value 1 problemThe limit corner-point MDPCorrectness of the limit corner-point MDP

Conclusion

Nathalie Bertrand Value 1 problem for Decision Stochastic Timed Automata QEST’14 – Florence – 9 sept., 14/21

Page 18: Deciding the value 1 problem for reachability in 1 …...Deciding the value 1 problem for reachability in 1-clock Decision Stochastic Timed Automata Nathalie Bertrand1 Thomas Brihaye2

Limit corner-point region MDP

`0 `1 `2

,

/e0,x<1

x :=0

e1,0<x<1

e2,1<x<2 ; x :=0

e3,0<x<1e4,0

<x<1

e5 ,1≤x<2

`0,{0}

,

/

`0,{0}

`0,(0,1)

`0,(0,1)

e0

e0

`0,(0,1)

`0,(0,1)

`1,(1,2)

`1,(0,1)

`1,(0,1)

`2,(1,2)

`2,(0,1)

`2,(0,1)`1,(0,1)

`1,(0,1)

`2,(0,1)

`2,(0,1)e1

e1

e3

e3

e4

e4

e5

e2

e0

e0

, is not almost-surely reachable from 〈`0,{0}〉

need to take into account limit behaviours.

`0,(0,1)

`0,(0,1)

`1,(1,2)

`1,(0,1)

`1,(0,1)

`2,(1,2)

`2,(0,1)

`2,(0,1)`1,(0,1)

`1,{1}

`1,(0,1)

`2,(0,1)

`2,{1}

`2,(0,1)e1

e1

e limit1

e3

e3

e limit3

e4

e4

e5

e2

e0

e0

`0,(0,1)

`0,(0,1)

`1,(1,2)

`1,(0,1)

`1,(0,1)

`2,(1,2)

`2,(0,1)

`2,(0,1)`1,(0,1)

`1,{1}

`1,(0,1)

`2,(0,1)

`2,{1}

`2,(0,1)e1

e1

e limit1

e3

e3

e limit3

e4

e4

e5

e2

e0

e0

, is almost-surely reachable from (`0,{0})

Nathalie Bertrand Value 1 problem for Decision Stochastic Timed Automata QEST’14 – Florence – 9 sept., 15/21

Page 19: Deciding the value 1 problem for reachability in 1 …...Deciding the value 1 problem for reachability in 1-clock Decision Stochastic Timed Automata Nathalie Bertrand1 Thomas Brihaye2

Limit corner-point region MDP

`0 `1 `2

,

/e0,x<1

x :=0

e1,0<x<1

e2,1<x<2 ; x :=0

e3,0<x<1e4,0

<x<1

e5 ,1≤x<2

`0,{0}

,

/

`0,{0}

`0,(0,1)

`0,(0,1)

e0

e0

`0,(0,1)

`0,(0,1)

`1,(1,2)

`1,(0,1)

`1,(0,1)

`2,(1,2)

`2,(0,1)

`2,(0,1)`1,(0,1)

`1,(0,1)

`2,(0,1)

`2,(0,1)e1

e1

e3

e3

e4

e4

e5

e2

e0

e0

, is not almost-surely reachable from 〈`0,{0}〉

need to take into account limit behaviours.

`0,(0,1)

`0,(0,1)

`1,(1,2)

`1,(0,1)

`1,(0,1)

`2,(1,2)

`2,(0,1)

`2,(0,1)`1,(0,1)

`1,{1}

`1,(0,1)

`2,(0,1)

`2,{1}

`2,(0,1)e1

e1

e limit1

e3

e3

e limit3

e4

e4

e5

e2

e0

e0

`0,(0,1)

`0,(0,1)

`1,(1,2)

`1,(0,1)

`1,(0,1)

`2,(1,2)

`2,(0,1)

`2,(0,1)`1,(0,1)

`1,{1}

`1,(0,1)

`2,(0,1)

`2,{1}

`2,(0,1)e1

e1

e limit1

e3

e3

e limit3

e4

e4

e5

e2

e0

e0

, is almost-surely reachable from (`0,{0})

Nathalie Bertrand Value 1 problem for Decision Stochastic Timed Automata QEST’14 – Florence – 9 sept., 15/21

Page 20: Deciding the value 1 problem for reachability in 1 …...Deciding the value 1 problem for reachability in 1-clock Decision Stochastic Timed Automata Nathalie Bertrand1 Thomas Brihaye2

Limit corner-point region MDP

`0 `1 `2

,

/e0,x<1

x :=0

e1,0<x<1

e2,1<x<2 ; x :=0

e3,0<x<1e4,0

<x<1

e5 ,1≤x<2

`0,{0}

,

/

`0,{0}

`0,(0,1)

`0,(0,1)

e0

e0

`0,(0,1)

`0,(0,1)

`1,(1,2)

`1,(0,1)

`1,(0,1)

`2,(1,2)

`2,(0,1)

`2,(0,1)`1,(0,1)

`1,(0,1)

`2,(0,1)

`2,(0,1)e1

e1

e3

e3

e4

e4

e5

e2

e0

e0

, is not almost-surely reachable from 〈`0,{0}〉

need to take into account limit behaviours.

`0,(0,1)

`0,(0,1)

`1,(1,2)

`1,(0,1)

`1,(0,1)

`2,(1,2)

`2,(0,1)

`2,(0,1)`1,(0,1)

`1,{1}

`1,(0,1)

`2,(0,1)

`2,{1}

`2,(0,1)e1

e1

e limit1

e3

e3

e limit3

e4

e4

e5

e2

e0

e0

`0,(0,1)

`0,(0,1)

`1,(1,2)

`1,(0,1)

`1,(0,1)

`2,(1,2)

`2,(0,1)

`2,(0,1)`1,(0,1)

`1,{1}

`1,(0,1)

`2,(0,1)

`2,{1}

`2,(0,1)e1

e1

e limit1

e3

e3

e limit3

e4

e4

e5

e2

e0

e0

, is almost-surely reachable from (`0,{0})

Nathalie Bertrand Value 1 problem for Decision Stochastic Timed Automata QEST’14 – Florence – 9 sept., 15/21

Page 21: Deciding the value 1 problem for reachability in 1 …...Deciding the value 1 problem for reachability in 1-clock Decision Stochastic Timed Automata Nathalie Bertrand1 Thomas Brihaye2

Limit corner-point region MDP

`0 `1 `2

,

/e0,x<1

x :=0

e1,0<x<1

e2,1<x<2 ; x :=0

e3,0<x<1e4,0

<x<1

e5 ,1≤x<2

`0,{0}

,

/

`0,{0}

`0,(0,1)

`0,(0,1)

e0

e0

`0,(0,1)

`0,(0,1)

`1,(1,2)

`1,(0,1)

`1,(0,1)

`2,(1,2)

`2,(0,1)

`2,(0,1)`1,(0,1)

`1,(0,1)

`2,(0,1)

`2,(0,1)e1

e1

e3

e3

e4

e4

e5

e2

e0

e0

, is not almost-surely reachable from 〈`0,{0}〉

need to take into account limit behaviours.

`0,(0,1)

`0,(0,1)

`1,(1,2)

`1,(0,1)

`1,(0,1)

`2,(1,2)

`2,(0,1)

`2,(0,1)`1,(0,1)

`1,{1}

`1,(0,1)

`2,(0,1)

`2,{1}

`2,(0,1)e1

e1

e limit1

e3

e3

e limit3

e4

e4

e5

e2

e0

e0

`0,(0,1)

`0,(0,1)

`1,(1,2)

`1,(0,1)

`1,(0,1)

`2,(1,2)

`2,(0,1)

`2,(0,1)`1,(0,1)

`1,{1}

`1,(0,1)

`2,(0,1)

`2,{1}

`2,(0,1)e1

e1

e limit1

e3

e3

e limit3

e4

e4

e5

e2

e0

e0

, is almost-surely reachable from (`0,{0})

Nathalie Bertrand Value 1 problem for Decision Stochastic Timed Automata QEST’14 – Florence – 9 sept., 15/21

Page 22: Deciding the value 1 problem for reachability in 1 …...Deciding the value 1 problem for reachability in 1-clock Decision Stochastic Timed Automata Nathalie Bertrand1 Thomas Brihaye2

Limit corner-point region MDP

`0 `1 `2

,

/e0,x<1

x :=0

e1,0<x<1

e2,1<x<2 ; x :=0

e3,0<x<1e4,0

<x<1

e5 ,1≤x<2

`0,{0}

,

/

`0,{0}

`0,(0,1)

`0,(0,1)

e0

e0

`0,(0,1)

`0,(0,1)

`1,(1,2)

`1,(0,1)

`1,(0,1)

`2,(1,2)

`2,(0,1)

`2,(0,1)`1,(0,1)

`1,(0,1)

`2,(0,1)

`2,(0,1)e1

e1

e3

e3

e4

e4

e5

e2

e0

e0

, is not almost-surely reachable from 〈`0,{0}〉

need to take into account limit behaviours.

`0,(0,1)

`0,(0,1)

`1,(1,2)

`1,(0,1)

`1,(0,1)

`2,(1,2)

`2,(0,1)

`2,(0,1)`1,(0,1)

`1,{1}

`1,(0,1)

`2,(0,1)

`2,{1}

`2,(0,1)e1

e1

e limit1

e3

e3

e limit3

e4

e4

e5

e2

e0

e0

`0,(0,1)

`0,(0,1)

`1,(1,2)

`1,(0,1)

`1,(0,1)

`2,(1,2)

`2,(0,1)

`2,(0,1)`1,(0,1)

`1,{1}

`1,(0,1)

`2,(0,1)

`2,{1}

`2,(0,1)e1

e1

e limit1

e3

e3

e limit3

e4

e4

e5

e2

e0

e0

, is almost-surely reachable from (`0,{0})

Nathalie Bertrand Value 1 problem for Decision Stochastic Timed Automata QEST’14 – Florence – 9 sept., 15/21

Page 23: Deciding the value 1 problem for reachability in 1 …...Deciding the value 1 problem for reachability in 1-clock Decision Stochastic Timed Automata Nathalie Bertrand1 Thomas Brihaye2

Limit corner-point region MDP

`0 `1 `2

,

/e0,x<1

x :=0

e1,0<x<1

e2,1<x<2 ; x :=0

e3,0<x<1e4,0

<x<1

e5 ,1≤x<2

`0,{0}

,

/

`0,{0}

`0,(0,1)

`0,(0,1)

e0

e0

`0,(0,1)

`0,(0,1)

`1,(1,2)

`1,(0,1)

`1,(0,1)

`2,(1,2)

`2,(0,1)

`2,(0,1)`1,(0,1)

`1,(0,1)

`2,(0,1)

`2,(0,1)e1

e1

e3

e3

e4

e4

e5

e2

e0

e0

, is not almost-surely reachable from 〈`0,{0}〉

need to take into account limit behaviours.

`0,(0,1)

`0,(0,1)

`1,(1,2)

`1,(0,1)

`1,(0,1)

`2,(1,2)

`2,(0,1)

`2,(0,1)`1,(0,1)

`1,{1}

`1,(0,1)

`2,(0,1)

`2,{1}

`2,(0,1)e1

e1

e limit1

e3

e3

e limit3

e4

e4

e5

e2

e0

e0

`0,(0,1)

`0,(0,1)

`1,(1,2)

`1,(0,1)

`1,(0,1)

`2,(1,2)

`2,(0,1)

`2,(0,1)`1,(0,1)

`1,{1}

`1,(0,1)

`2,(0,1)

`2,{1}

`2,(0,1)e1

e1

e limit1

e3

e3

e limit3

e4

e4

e5

e2

e0

e0

, is almost-surely reachable from (`0,{0})

Nathalie Bertrand Value 1 problem for Decision Stochastic Timed Automata QEST’14 – Florence – 9 sept., 15/21

Page 24: Deciding the value 1 problem for reachability in 1 …...Deciding the value 1 problem for reachability in 1-clock Decision Stochastic Timed Automata Nathalie Bertrand1 Thomas Brihaye2

Limit corner-point region MDP

`0 `1 `2

,

/e0,x<1

x :=0

e1,0<x<1

e2,1<x<2 ; x :=0

e3,0<x<1e4,0

<x<1

e5 ,1≤x<2

`0,{0}

,

/

`0,{0}

`0,(0,1)

`0,(0,1)

e0

e0

`0,(0,1)

`0,(0,1)

`1,(1,2)

`1,(0,1)

`1,(0,1)

`2,(1,2)

`2,(0,1)

`2,(0,1)`1,(0,1)

`1,(0,1)

`2,(0,1)

`2,(0,1)e1

e1

e3

e3

e4

e4

e5

e2

e0

e0

, is not almost-surely reachable from 〈`0,{0}〉

need to take into account limit behaviours.

`0,(0,1)

`0,(0,1)

`1,(1,2)

`1,(0,1)

`1,(0,1)

`2,(1,2)

`2,(0,1)

`2,(0,1)`1,(0,1)

`1,{1}

`1,(0,1)

`2,(0,1)

`2,{1}

`2,(0,1)e1

e1

e limit1

e3

e3

e limit3

e4

e4

e5

e2

e0

e0

`0,(0,1)

`0,(0,1)

`1,(1,2)

`1,(0,1)

`1,(0,1)

`2,(1,2)

`2,(0,1)

`2,(0,1)`1,(0,1)

`1,{1}

`1,(0,1)

`2,(0,1)

`2,{1}

`2,(0,1)e1

e1

e limit1

e3

e3

e limit3

e4

e4

e5

e2

e0

e0

, is almost-surely reachable from (`0,{0})

Nathalie Bertrand Value 1 problem for Decision Stochastic Timed Automata QEST’14 – Florence – 9 sept., 15/21

Page 25: Deciding the value 1 problem for reachability in 1 …...Deciding the value 1 problem for reachability in 1-clock Decision Stochastic Timed Automata Nathalie Bertrand1 Thomas Brihaye2

Limit corner-point region MDP

`0 `1 `2

,

/e0,x<1

x :=0

e1,0<x<1

e2,1<x<2 ; x :=0

e3,0<x<1e4,0

<x<1

e5 ,1≤x<2

`0,{0}

,

/

`0,{0}

`0,(0,1)

`0,(0,1)

e0

e0

`0,(0,1)

`0,(0,1)

`1,(1,2)

`1,(0,1)

`1,(0,1)

`2,(1,2)

`2,(0,1)

`2,(0,1)`1,(0,1)

`1,(0,1)

`2,(0,1)

`2,(0,1)e1

e1

e3

e3

e4

e4

e5

e2

e0

e0

, is not almost-surely reachable from 〈`0,{0}〉

need to take into account limit behaviours.

`0,(0,1)

`0,(0,1)

`1,(1,2)

`1,(0,1)

`1,(0,1)

`2,(1,2)

`2,(0,1)

`2,(0,1)`1,(0,1)

`1,{1}

`1,(0,1)

`2,(0,1)

`2,{1}

`2,(0,1)e1

e1

e limit1

e3

e3

e limit3

e4

e4

e5

e2

e0

e0

`0,(0,1)

`0,(0,1)

`1,(1,2)

`1,(0,1)

`1,(0,1)

`2,(1,2)

`2,(0,1)

`2,(0,1)`1,(0,1)

`1,{1}

`1,(0,1)

`2,(0,1)

`2,{1}

`2,(0,1)e1

e1

e limit1

e3

e3

e limit3

e4

e4

e5

e2

e0

e0

, is almost-surely reachable from (`0,{0})

Nathalie Bertrand Value 1 problem for Decision Stochastic Timed Automata QEST’14 – Florence – 9 sept., 15/21

Page 26: Deciding the value 1 problem for reachability in 1 …...Deciding the value 1 problem for reachability in 1-clock Decision Stochastic Timed Automata Nathalie Bertrand1 Thomas Brihaye2

Introduction

Decision Stochastic Timed Automata

Solving the value 1 problemThe limit corner-point MDPCorrectness of the limit corner-point MDP

Conclusion

Nathalie Bertrand Value 1 problem for Decision Stochastic Timed Automata QEST’14 – Florence – 9 sept., 16/21

Page 27: Deciding the value 1 problem for reachability in 1 …...Deciding the value 1 problem for reachability in 1-clock Decision Stochastic Timed Automata Nathalie Bertrand1 Thomas Brihaye2

limit-sure in DSTA ⇒ almost-sure in MDP

Proposition

If , is not almost-surely reachable from s0 in Acp,then , is not limit-surely reachable from s0 in (A, µ).

Proof idea

I if [`, (c , c + 1)] is losing in MDP, then the value is uniformelybounded away from 1 for all states in (`, (c , c + 1));

I else, if [`, (c , c + 1)] is losing in MDP, then for all states in(`, (c , c + 1)) the value is bounded away from 1.

Nathalie Bertrand Value 1 problem for Decision Stochastic Timed Automata QEST’14 – Florence – 9 sept., 17/21

Page 28: Deciding the value 1 problem for reachability in 1 …...Deciding the value 1 problem for reachability in 1-clock Decision Stochastic Timed Automata Nathalie Bertrand1 Thomas Brihaye2

almost-sure in MDP ⇒ limit-sure in DSTA

Proposition

If , is almost-surely reachable from s0 in Acp,then , is limit-surely reachable from s0 in (A, µ).

Proof idea

I Key: strategies that are positional and uniform inside(`, (c , c + T )) and (`, (c + T , c + 1)) suffice

I from an almost-surely winning strategy σcp in Acp

I build an abstract family of strategies σT in A such that:

σT (`, ν) =

{σcp(`, (c , c + 1)) if ν ∈ (c , c + T )

σcp(`, (c , c + 1)) otherwise

I given ε, tune T to ensure probability ≥ 1− εNathalie Bertrand Value 1 problem for Decision Stochastic Timed Automata QEST’14 – Florence – 9 sept., 18/21

Page 29: Deciding the value 1 problem for reachability in 1 …...Deciding the value 1 problem for reachability in 1-clock Decision Stochastic Timed Automata Nathalie Bertrand1 Thomas Brihaye2

Solving the limit corner-point MDP

`0,{0}

,

/`0,(0,1)

`0,(0,1)

`1,(1,2)

`1,(0,1)

`1,(0,1)

`2,(1,2)

`2,(0,1)

`2,(0,1)`1,(0,1)

`1,(1,2)

`1,(0,1)

`2,(0,1)

`2,(1,2)

`2,(0,1)e1

e1

e1

e limit1

e3

e3

e limit3

e limit3

e4

e4

e5

e5

e2

e0

e0

e2

e0

e0

Computing winning states

From each winning state: safe edge towards ,

Nathalie Bertrand Value 1 problem for Decision Stochastic Timed Automata QEST’14 – Florence – 9 sept., 19/21

Page 30: Deciding the value 1 problem for reachability in 1 …...Deciding the value 1 problem for reachability in 1-clock Decision Stochastic Timed Automata Nathalie Bertrand1 Thomas Brihaye2

Solving the limit corner-point MDP

`0,{0}

,

/`0,(0,1)

`0,(0,1)

`1,(1,2)

`1,(0,1)

`1,(0,1)

`2,(1,2)

`2,(0,1)

`2,(0,1)`1,(0,1)

`1,(1,2)

`1,(0,1)

`2,(0,1)

`2,(1,2)

`2,(0,1)e1

e1

e1

e limit1

e3

e3

e limit3

e limit3

e4

e4

e5

e5

e2

e0

e0

e2

e0

e0

Computing winning states

I states that cannot reach , are bad

I actions that lead to bad states with > 0 probability are unsafe

I states that only have unsafe actions are bad

From each winning state: safe edge towards ,

Nathalie Bertrand Value 1 problem for Decision Stochastic Timed Automata QEST’14 – Florence – 9 sept., 19/21

Page 31: Deciding the value 1 problem for reachability in 1 …...Deciding the value 1 problem for reachability in 1-clock Decision Stochastic Timed Automata Nathalie Bertrand1 Thomas Brihaye2

Solving the limit corner-point MDP

`0,{0}

,

/`0,(0,1)

`0,(0,1)

`1,(1,2)

`1,(0,1)

`1,(0,1)

`2,(1,2)

`2,(0,1)

`2,(0,1)`1,(0,1)

`1,(1,2)

`1,(0,1)

`2,(0,1)

`2,(1,2)

`2,(0,1)e1

e1

e1

e limit1

e3

e3

e limit3

e limit3

e4

e4

e5

e5

e2

e0

e0

e2

e0

e0

Computing winning states

I states that cannot reach , are bad

I actions that lead to bad states with > 0 probability are unsafe

I states that only have unsafe actions are bad

From each winning state: safe edge towards ,

Nathalie Bertrand Value 1 problem for Decision Stochastic Timed Automata QEST’14 – Florence – 9 sept., 19/21

Page 32: Deciding the value 1 problem for reachability in 1 …...Deciding the value 1 problem for reachability in 1-clock Decision Stochastic Timed Automata Nathalie Bertrand1 Thomas Brihaye2

Solving the limit corner-point MDP

`0,{0}

,

/`0,(0,1)

`0,(0,1)

`1,(1,2)

`1,(0,1)

`1,(0,1)

`2,(1,2)

`2,(0,1)

`2,(0,1)`1,(0,1)

`1,(1,2)

`1,(0,1)

`2,(0,1)

`2,(1,2)

`2,(0,1)e1

e1

e1

e limit1

e3

e3

e limit3

e limit3

e4

e4

e5

e5

e2

e0

e0

e2

e0

e0

Computing winning states

I states that cannot reach , are bad

I actions that lead to bad states with > 0 probability are unsafe

I states that only have unsafe actions are bad

From each winning state: safe edge towards ,

Nathalie Bertrand Value 1 problem for Decision Stochastic Timed Automata QEST’14 – Florence – 9 sept., 19/21

Page 33: Deciding the value 1 problem for reachability in 1 …...Deciding the value 1 problem for reachability in 1-clock Decision Stochastic Timed Automata Nathalie Bertrand1 Thomas Brihaye2

Solving the limit corner-point MDP

`0,{0}

,

/`0,(0,1)

`0,(0,1)

`1,(1,2)

`1,(0,1)

`1,(0,1)

`2,(1,2)

`2,(0,1)

`2,(0,1)`1,(0,1)

`1,(1,2)

`1,(0,1)

`2,(0,1)

`2,(1,2)

`2,(0,1)e1

e1

e1

e limit1

e3

e3

e limit3

e limit3

e4

e4

e5

e5

e2

e0

e0

e2

e0

e0

Computing winning states

I states that cannot reach , are bad

I actions that lead to bad states with > 0 probability are unsafe

I states that only have unsafe actions are bad

From each winning state: safe edge towards ,

Nathalie Bertrand Value 1 problem for Decision Stochastic Timed Automata QEST’14 – Florence – 9 sept., 19/21

Page 34: Deciding the value 1 problem for reachability in 1 …...Deciding the value 1 problem for reachability in 1-clock Decision Stochastic Timed Automata Nathalie Bertrand1 Thomas Brihaye2

Solving the limit corner-point MDP

`0,{0}

,

/`0,(0,1)

`0,(0,1)

`1,(1,2)

`1,(0,1)

`1,(0,1)

`2,(1,2)

`2,(0,1)

`2,(0,1)`1,(0,1)

`1,(1,2)

`1,(0,1)

`2,(0,1)

`2,(1,2)

`2,(0,1)e1

e1

e limit1

e3

e3

e limit3

e4

e4

e5

e2

e0

e0

Computing winning states

I states that cannot reach , are bad

I actions that lead to bad states with > 0 probability are unsafe

I states that only have unsafe actions are bad

From each winning state: safe edge towards ,Nathalie Bertrand Value 1 problem for Decision Stochastic Timed Automata QEST’14 – Florence – 9 sept., 19/21

Page 35: Deciding the value 1 problem for reachability in 1 …...Deciding the value 1 problem for reachability in 1-clock Decision Stochastic Timed Automata Nathalie Bertrand1 Thomas Brihaye2

Abstract family of strategies

`0,{0}

,

/`0,(0,1)

`0,(0,1)

`1,(1,2)

`1,(0,1)

`1,(0,1)

`2,(1,2)

`2,(0,1)

`2,(0,1)`1,(0,1)

`1,(1,2)

`1,(0,1)

`2,(0,1)

`2,(1,2)

`2,(0,1)e1

e1

e limit1

e3

e3

e limit3

e4

e4

e5

e2

e0

e0

`0 `1 `2

,/

e0,x<1

x :=0

e1,0<x<1

e2,1<x<2 ; x :=0

e3,0<x<1 e4,0<

x<1

e5 ,1≤x<2

I green edges are safe

I red edges are losing

I orange edges are risky; chosen only when “close enough” to the right corner Details

Nathalie Bertrand Value 1 problem for Decision Stochastic Timed Automata QEST’14 – Florence – 9 sept., 20/21

Page 36: Deciding the value 1 problem for reachability in 1 …...Deciding the value 1 problem for reachability in 1-clock Decision Stochastic Timed Automata Nathalie Bertrand1 Thomas Brihaye2

Conclusion

Contributions

I PTIME algorithms on one-clock DSTA forI the almost-sure reachability problem, andI the limit-sure reachability problem

I non trivial ε-optimal strategiesI not region uniformI cutpoint set according to “distance” to ,

Ongoing and future work

I Value 1 for other properties, and larger class of DSTA.

I Towards quantitative analysis: value approximation.

Nathalie Bertrand Value 1 problem for Decision Stochastic Timed Automata QEST’14 – Florence – 9 sept., 21/21

Page 37: Deciding the value 1 problem for reachability in 1 …...Deciding the value 1 problem for reachability in 1-clock Decision Stochastic Timed Automata Nathalie Bertrand1 Thomas Brihaye2

Conclusion

Contributions

I PTIME algorithms on one-clock DSTA forI the almost-sure reachability problem, andI the limit-sure reachability problem

I non trivial ε-optimal strategiesI not region uniformI cutpoint set according to “distance” to ,

Ongoing and future work

I Value 1 for other properties, and larger class of DSTA.

I Towards quantitative analysis: value approximation.

Nathalie Bertrand Value 1 problem for Decision Stochastic Timed Automata QEST’14 – Florence – 9 sept., 21/21

Page 38: Deciding the value 1 problem for reachability in 1 …...Deciding the value 1 problem for reachability in 1-clock Decision Stochastic Timed Automata Nathalie Bertrand1 Thomas Brihaye2

Construction of the cutpoint function TA simple case

`0

x≤1

unif

`1

x≤2

unif ,

/e1

e2, x≥1

e3 , x≤1

e0,x :=0

0 11−ε

e0 e1

T (`0,(0,1))=1−ε

σT (`0, ν) =

{e0 if ν < 1− εe1 if ν ≥ 1− ε

; Ps0σT

((A, µ) |= 3,)

≥ 1− ε.

Nathalie Bertrand Value 1 problem for Decision Stochastic Timed Automata QEST’14 – Florence – 9 sept., 22/21

Page 39: Deciding the value 1 problem for reachability in 1 …...Deciding the value 1 problem for reachability in 1-clock Decision Stochastic Timed Automata Nathalie Bertrand1 Thomas Brihaye2

Construction of the cutpoint function TA not that simple case

`0 `1 `2 `3

,/

e1,x≤1 e2,1≤x≤2

x :=0

e3,x≤1

e4,x≤1e

5 ,x≤1

e7,x≤1

e6,1≤x≤2e0,x≤1

0 11−ε

e0 e1

0 11−ε

e7 e3

PσT ([`0, 0] |= 3,) < 2/3

Nathalie Bertrand Value 1 problem for Decision Stochastic Timed Automata QEST’14 – Florence – 9 sept., 23/21

Page 40: Deciding the value 1 problem for reachability in 1 …...Deciding the value 1 problem for reachability in 1-clock Decision Stochastic Timed Automata Nathalie Bertrand1 Thomas Brihaye2

Construction of the cutpoint function TA not that simple case

`0 `1 `2 `3

,/

e1,x≤1 e2,1≤x≤2

x :=0

e3,x≤1

e4,x≤1e

5 ,x≤1

e7,x≤1

e6,1≤x≤2e0,x≤1

0 11−ε2

e0 e1

0 11−ε

e7 e3

, is limit-surely reachable from [`0, 0] using involved T .Back to main

Nathalie Bertrand Value 1 problem for Decision Stochastic Timed Automata QEST’14 – Florence – 9 sept., 23/21