DC vaccination… - ESCCAAnna Borodovsky Dept. of Hematology, Leiden UMC Michel Kester Mirjam...

6
23/10/2017 1 Application of siRNA technology in dendritic cell vaccines ESCCA workshop Advanced Immunology Willemijn Hobo 25-09-2017 Dendritic cells (DCs) Nobel prize 2011: Ralph Steinman Bridge between innate and adaptive immunity Potent antigen-presenting cells and activators of T cells BDCA1 + (CD1c + ) BDCA3 + (CD141 + ) CD123 ++ BDCA2 + mDC pDC moDC Hematopoietic stem cell Monocyte Dendritic cell (DC)-based vaccines Few hundred clinical trials Advantage More specific Less toxic Longer-lasting therapy Source Generated from Monocytes moDCs CD34 + HSPCs Primary DCs from blood (pDC, BDCA1 + mDC) Result in expansion and activation of tumor-specific CD4 and CD8 T lymphocytes However, limited numbers of clinical responses Monocyte HSPC Immature DC Antigen-loaded Mature DC Improvements of DC vaccines needed Plantinga et al. frontiers in Immunology 2014 Figdor et al. Nature medicine 2004 Improvements of DC-based vaccines 2004 2014 T cell activation requires antigen recognition & co-stimulation Inhibitory ligand Inhibitory receptor APC CD80/86 CD28 T cell TCR signal transduction Proliferation Cytokine production T cell activation TCR signal transduction Proliferation Cytokine production T cell inhibition Melero et al Nature Rev. Cancer 2007 Monocyte-derived DCs matured with IL-4, GM-CSF, IL-1ß, IL-6, TNF-α, PGE2 Dendritic cell phenotype CD14 CD83 HLA-ABC HLA-DR PD-L1 PD-L2 HVEM B7-H3 CD80 CD86 ICOS-L CCR7

Transcript of DC vaccination… - ESCCAAnna Borodovsky Dept. of Hematology, Leiden UMC Michel Kester Mirjam...

Page 1: DC vaccination… - ESCCAAnna Borodovsky Dept. of Hematology, Leiden UMC Michel Kester Mirjam Heemskerk Marieke Griffioen Fred Falkenburg Synvolux therapeutics, Groningen Marcel Ruiters

23/10/2017

1

Application of siRNA technology in dendritic cell vaccines

ESCCA workshop Advanced ImmunologyWillemijn Hobo25-09-2017

Dendritic cells (DCs)

• Nobel prize 2011: Ralph Steinman

• Bridge between innate and adaptive immunity

• Potent antigen-presenting cells and activators of T cells

BDCA1+

(CD1c+)

BDCA3+

(CD141+)CD123++

BDCA2+

mDCpDC moDC

Hematopoietic stem cell Monocyte

Dendritic cell (DC)-based vaccines

• Few hundred clinical trials

• Advantage

• More specific

• Less toxic

• Longer-lasting therapy

• Source

• Generated from

• MonocytesmoDCs

• CD34+ HSPCs

• Primary DCs from blood (pDC, BDCA1+ mDC)

• Result in expansion and activation of tumor-specific

CD4 and CD8 T lymphocytes

• However, limited numbers of clinical responses

MonocyteHSPC

Immature DC

Antigen-loadedMature DC

Improvements of DC vaccines needed

Plantinga et al. frontiers in Immunology 2014 Figdor et al. Nature medicine 2004

Improvements of DC-based vaccines

2004 2014

T cell activation requires antigen recognition &

co-stimulation

Inhibitory ligand

Inhibitory receptor

APC

CD80/86

CD28

T cell

TCR signal transduction

Proliferation

Cytokine production

T cell activation

TCR signal transduction

Proliferation

Cytokine production

T cell inhibition Melero et al Nature Rev. Cancer 2007

Monocyte-derived DCs matured with IL-4, GM-CSF, IL-1ß, IL-6, TNF-α, PGE2

Dendritic cell phenotype

CD14 CD83 HLA-ABC HLA-DR

PD-L1 PD-L2 HVEM B7-H3

CD80 CD86 ICOS-LCCR7

Page 2: DC vaccination… - ESCCAAnna Borodovsky Dept. of Hematology, Leiden UMC Michel Kester Mirjam Heemskerk Marieke Griffioen Fred Falkenburg Synvolux therapeutics, Groningen Marcel Ruiters

23/10/2017

2

Enhancing DC immune stimulatory capacity

CD80/86

PD-L1/L21. Silencing of inhibitory molecules using

RNAi technology

immature DC stage

2. Pulsing with antigen peptide or mRNA

mature DC stageAntigen pulsing

DC with super immune stimulatory phenotype stronger activation of T cells

Gene silencing mechanisms

Lam et al. Mol Ther Nucleic Acids 2015

Gene silencing mechanisms of siRNA and miRNA

Lam et al. Mol Ther Nucleic Acids

2015

No protein expression

Selection of siRNA sequences

Chemical modifications

Used in our laboratory: Stealth Select siRNAs (Thermo Fisher)

• Limited off-target effects (only anti sense strand can enter RISC)

• Stabilized against nuclease degradation for greater longevity and stability

• No/minimal induction of non-specific cellular stress response pathways

siRNA delivery tools

• Viral vectors

lentiviruses, adeno(-associated) viruses

• Electroporation

• Transfection polymers

PLGA, glycol chitosan

• Transfection lipids

lipofectamine, polyethylenimine (PEI), SAINT-RED, liposomes

Roeven and Hobo et al. J Immunother, 2015; Hobo et al. Cancer Immunol Immunother. 2013; Hobo et al. Blood. 2010

Non-viral siRNA delivery reagent for ex vivo use

Composition (1:1 molar ratio):

• Saint-18 cationic amphiphilic lipid (1-methyl-4-(cis-9-

dioleyl)methyl-pyridinium-chlorid)

• DOPE neutral helper lipid (1,2-dioleoyl-sn-glycero-3-

phosphoethanolamine)

Characteristics:

• High transfection efficacy

• Relatively non-toxic

• Heat-sterilized without loss of function

• Highly stable (> 3 years at 2-8oC)

• Ex vivo grade production is feasible

SAINT-RED

Page 3: DC vaccination… - ESCCAAnna Borodovsky Dept. of Hematology, Leiden UMC Michel Kester Mirjam Heemskerk Marieke Griffioen Fred Falkenburg Synvolux therapeutics, Groningen Marcel Ruiters

23/10/2017

3

Dendritic cell transfection with PD-L siRNA

Roeven and Hobo et al. J Immunother, 2015; Hobo et al. Cancer Immunol Immunother. 2013; Hobo et al. Blood. 2010

300V150μF

PD-L siRNA

immature DC mature DCmonocytes

GM-CSF, IL-4GM-CSF, IL-4TNF-a, IL-1b

IL-6, PGE2

2 days

Blood product

6 days

PD-L siRNA/SAINT-RED

siRNA sequences were obtained via Invitrogen/Thermo scientific (Stealth select) or

licensed from Alnylam pharmaceuticals (eventual GMP batches)

Compare siRNA sequence for silencing efficiency

Roeven and Hobo et al. J Immunother, 2015; Hobo et al. Cancer Immunol Immunother. 2013; Hobo et al. Blood. 2010

Determine silencing efficacy and off-target effects

Roeven and Hobo et al. J Immunother, 2015; Hobo et al. Cancer Immunol Immunother. 2013; Hobo et al. Blood. 2010

Knockdown Phenotype Viability

> 80% knockdown

Evaluate duration of silencing

Roeven and Hobo et al. J Immunother, 2015; Hobo et al. Cancer Immunol Immunother. 2013; Hobo et al. Blood. 2010

Investigating DC immune stimulatory capacity in

vitro

CD80/86PD-L1/L2

DC with super immune stimulatory phenotype stronger activation of T cells

++

Biotinylated recombinant MHC molecules loaded with specific peptides bound to

fluorochrome-labeled straptavidine

MHC peptide tetramers are bound by T cellsexpressing the TCR of the appropriate

specificity

1.6%

CD8

MiH

A t

etra

mer

Peripheral blood

PE

Detection of antigen-specific T cells using tetramer

technology

Page 4: DC vaccination… - ESCCAAnna Borodovsky Dept. of Hematology, Leiden UMC Michel Kester Mirjam Heemskerk Marieke Griffioen Fred Falkenburg Synvolux therapeutics, Groningen Marcel Ruiters

23/10/2017

4

Dual color tetramer staining of tumor-reactive

CD8+ T cells

Combination with: phenotypic and/or functional markers (e.g. IFNγ/TNFα, CD107a)

PD-L silenced DC augment expansion of tumor-reactive memory T cells

Patient PBMC: <0.01% tumor-reactive CD8+ memory T cells

1 week culture with PD-L silenced or control DC loaded with HA1 mRNA

Roeven and Hobo et al. J Immunother, 2015; Hobo et al. Cancer Immunol Immunother. 2013; Hobo et al. Blood. 2010

PBMC: 5 allo-SCT patients, low percentages of tumor-reactive T cells

% D

egra

nu

lati

on

Student t-test, *P<0.05, **P<0.01

PD-L silenced DC augment expansion of tumor-reactive memory T cells

Roeven and Hobo et al. J Immunother, 2015; Hobo et al. Cancer Immunol Immunother. 2013; Hobo et al. Blood. 2010

Blood Spleen

Tetramer analysis tumor-reactive T cells

D0 D7 D14 D21

+

IL2, IL15

rhIL15 (every 2-3 days, 0.5µg/injection)

Primed MiHACD8+ T cells

NSG mice

Van der Waart et al, Cancer Immunol Immunother 2015

PD-L silenced DC are efficient stimulators of tumor-reactive T cell responses

Van der Waart et al, Blood 2015

DC boosted tumor-reactive T cells exert anti-tumoreffect in mice Prophylactic vaccination with PD-L silenced

MiHA mRNA-loaded moDC after alloSCT

(PSCT19 study)

EudraCT: 2014-003537-26

Study Design: Single center phase I proof-of-concept study in series

of 10 patients treated with HLA-matched allogeneic stem cell

transplantation.

Page 5: DC vaccination… - ESCCAAnna Borodovsky Dept. of Hematology, Leiden UMC Michel Kester Mirjam Heemskerk Marieke Griffioen Fred Falkenburg Synvolux therapeutics, Groningen Marcel Ruiters

23/10/2017

5

PD-L silenced MiHA mRNA moDC vaccination

CsA

MiHA tetramerscreening

MiHA+ patientMiHA- donor

Monocyte Immature DC Mature DC

MiHA mRNA

QC testing &product release & vaccination

CD14+

CliniMACS

KLH protein

PD-L siRNA/Saint-red

GMP manufacturing of reagents

Primary:

• Evaluate safety and toxicity

• Evaluate of efficacy to induce in vivo expansion of MiHA-reactive CD8+ T cells

• Evaluate immune response to KLH (i.e. control antigen)

Secondary:

• Evaluate clinical efficacy in case of detectable mixed chimerism and/or minimal

residual disease

Objectives

• Clinical protocol

• Investigator’s Brochure

• Investigational Medicinal Product Dossier

• Patient / donor information

• Patient / donor informed consent forms

• Registration in clinical trial registry

• Monitoring plan

• Electronic case report form (eCRF)

• Risk analysis of critical raw materials and excipients (grondstoffen / hulpmiddelen)

• Risk analysis of culture procedure

• Validation of culture procedure

• …

Paper work before start study

Day:

pre 0 7 14 21 28 42 63 84

Tetramer analysis

T / B / NK analysis

Material stored for immunological monitoring (PBMC, serum)

Chimerism / disease monitoring

PB&BM PB PB PB PB PB PB&BM PB PB&BM

Dose:

max 0.25x106 c/kg

DC vaccination & follow-up

Currently 4 patients vaccinated (and 4 to follow the upcoming months):0/4 GVHD & 3/4 boosting of tumor-reactive T cell response!

Response to PD-L silenced MiHA-DC vaccination

Patient 1 Patient 1

Hobo and Dolstra, unpublished data

Page 6: DC vaccination… - ESCCAAnna Borodovsky Dept. of Hematology, Leiden UMC Michel Kester Mirjam Heemskerk Marieke Griffioen Fred Falkenburg Synvolux therapeutics, Groningen Marcel Ruiters

23/10/2017

6

siRNA technology is an efficient and successfull approach to

favorably modulate DC immunogenicity in order

to boost anti-tumor immunity

ConclusionsLaboratory of Hematology,

RadboudumcHanny Fredrix

Frans MaasAnniek van der Waart

Marij LeendersMenno WinkelCarel Trilsbeek

Jos PaardekooperMarianne BakkerEugenie RuttenHans Veenstra

Marion MassopPaul Ruijs

Rob WoestenenkFrank Preijers

Bert van der ReijdenJoop Jansen

Harry Dolstra

Laboratory of Medical Immunology,Radboudumc

Arnold van der MeerIrma Joosten

Dept. of Hematology,RadboudumcMieke Roeven

Suzanne van DorpOlga Huber

Nori WijngaardenElles Strijbosch

Marian LucassenNicole BlijlevensMichel Schaap

Dept. of Clinical Pharmacy, Radboudumc

Anna de GoedeJanine van der Linden

Alnylam Pharmaceuticals,Cambridge, USA

Tanya NovobrantsevaAnna Borodovsky

Dept. of Hematology,Leiden UMC

Michel KesterMirjam HeemskerkMarieke GriffioenFred Falkenburg

Synvolux therapeutics,Groningen

Marcel RuitersGerben Zondag

Dept. of Hematology,UMC GroningenMarco de Groot

Gerwin Huls

Dept. of Hematology,UMC Utrecht

Moniek de WitteJürgen Kuball

Acknowledgements

Financial support: