David G. Cahill Xu Xie, Kexin Yang, Dongyao Li, Jungwoo...

22
Lower and upper limits to the vibrational thermal conductivity of amorphous polymers and polymer salts David G. Cahill Xu Xie, Kexin Yang, Dongyao Li, Jungwoo Shin Tsung-Han Tsai, and Paul Braun Department of Materials Science and Engineering Materials Research Laboratory University of Illinois at Urbana-Champaign supported by AFOSR MURI

Transcript of David G. Cahill Xu Xie, Kexin Yang, Dongyao Li, Jungwoo...

Page 1: David G. Cahill Xu Xie, Kexin Yang, Dongyao Li, Jungwoo ...users.mrl.illinois.edu/cahill/mrs_polymer_nov16.pdf · Lower and upper limits to the vibrational thermal conductivity of

Lower and upper limits to the vibrational thermal conductivity of amorphous polymers and polymer salts

David G. Cahill Xu Xie, Kexin Yang, Dongyao Li, Jungwoo Shin

Tsung-Han Tsai, and Paul Braun

Department of Materials Science and EngineeringMaterials Research Laboratory

University of Illinois at Urbana-Champaign

supported by AFOSR MURI

Page 2: David G. Cahill Xu Xie, Kexin Yang, Dongyao Li, Jungwoo ...users.mrl.illinois.edu/cahill/mrs_polymer_nov16.pdf · Lower and upper limits to the vibrational thermal conductivity of

Outline

• Structure/property relationships for amorphous polymers. Search for…– High thermal conductivity. Increase the strength

of interchain bonding; extension to ionomers– Low thermal conductivity. Introduce cage-

structure side groups

• Explore thermal function in macromolecules– Thermal switching in liquid crystal networks.

Page 3: David G. Cahill Xu Xie, Kexin Yang, Dongyao Li, Jungwoo ...users.mrl.illinois.edu/cahill/mrs_polymer_nov16.pdf · Lower and upper limits to the vibrational thermal conductivity of

Prior work on thermal conductivity and elastic constants of a glassy polymer, PMMA, in a SiC anvil cell

• Thermal conductivity doubles at a pressure of ≈5 GPA when the elastic modulus reaches C11≈50 GPA

0 2 4 6 8 10 12

1

10 nm

Andersson et al.

0.1

0.2

0.5

13 nm

9 nm6 nm

22 nm

Λ=Λ0n1/6C11

1/2

Ther

mal

Con

duct

ivity

(W m

-1 K

-1 )

Pressure (GPa)

Hsieh et al, PRB (2011)

Page 4: David G. Cahill Xu Xie, Kexin Yang, Dongyao Li, Jungwoo ...users.mrl.illinois.edu/cahill/mrs_polymer_nov16.pdf · Lower and upper limits to the vibrational thermal conductivity of

2015 report of anomalously high thermal conductivity in hydrogen-bonded polymer blends

• We were unable to reproduce this result. (PAP and PAA phase separate?)

• Continue the same basic idea: how much can we increase the thermal conductivity of an amorphous polymer by increasing the inter-chain bonding strength?

Kim et al., Nature Materials (2015)

Page 5: David G. Cahill Xu Xie, Kexin Yang, Dongyao Li, Jungwoo ...users.mrl.illinois.edu/cahill/mrs_polymer_nov16.pdf · Lower and upper limits to the vibrational thermal conductivity of

Pump-probe measurements thermal properties and elastic constants

Page 6: David G. Cahill Xu Xie, Kexin Yang, Dongyao Li, Jungwoo ...users.mrl.illinois.edu/cahill/mrs_polymer_nov16.pdf · Lower and upper limits to the vibrational thermal conductivity of

Measure thermal conductivity Λ and heat capacity C of thin films using time-domain thermoreflectance at multiple modulation frequencies f

Xie et al., Macromolecules (2016)

• Sensitivities for 100 nm thick polymer layer on a Si substrate and coated with 90 nm of Al.

• Fit data acquired at f=1.6, 4.1 and 9.1 MHz

Page 7: David G. Cahill Xu Xie, Kexin Yang, Dongyao Li, Jungwoo ...users.mrl.illinois.edu/cahill/mrs_polymer_nov16.pdf · Lower and upper limits to the vibrational thermal conductivity of

Measure longitudinal sound velocity using conventional picosecond acoustics

Xie et al., Macromolecules (2016)

Si Substrate

Al

PAA

Page 8: David G. Cahill Xu Xie, Kexin Yang, Dongyao Li, Jungwoo ...users.mrl.illinois.edu/cahill/mrs_polymer_nov16.pdf · Lower and upper limits to the vibrational thermal conductivity of

Measure surface acoustic wave velocity using elastomeric phase shift mask

Substrate

Metal Transducer

700nm350nm

Metal Transducer

Sample

PDMS mask

0 1 2 3 40

1

2

3

4

5

6

∆R

/R (

10-4)

Time Delay (ns)

Li et al., J. Appl. Phys. (2013)

Page 9: David G. Cahill Xu Xie, Kexin Yang, Dongyao Li, Jungwoo ...users.mrl.illinois.edu/cahill/mrs_polymer_nov16.pdf · Lower and upper limits to the vibrational thermal conductivity of

Experimental details: need to optimize thickness of sample and metal transducer

Si Substrate

Al

PMMA• Example sensitivity

calculations for Al/PMMA(100nm)/Si

• Approach fails if the Al transducer is too thin or if the PMMA layer is too thick.

S =𝑐𝑐44𝑣𝑣𝑆𝑆𝑆𝑆𝑆𝑆

𝜕𝜕𝑣𝑣𝑆𝑆𝑆𝑆𝑆𝑆𝜕𝜕𝑐𝑐44

Xie et al., Macromolecules (2016)

Page 10: David G. Cahill Xu Xie, Kexin Yang, Dongyao Li, Jungwoo ...users.mrl.illinois.edu/cahill/mrs_polymer_nov16.pdf · Lower and upper limits to the vibrational thermal conductivity of

Study macromolecules with various interchainbonding types

Weak interaction

Van der Waals bond

Strong interaction

hydrogen bond

Ionic bond

Poly(methyl methacrylate) (PMMA)

Polystyrene(PS)

Poly(acryloyl piperidine)(PAP)

Poly(vinyl alcohol) (PVA)

Poly(acrylic acid) (PAA)

Poly(vinylphosphonic acid)(PVPA)

PALi PACa PVPCa

Page 11: David G. Cahill Xu Xie, Kexin Yang, Dongyao Li, Jungwoo ...users.mrl.illinois.edu/cahill/mrs_polymer_nov16.pdf · Lower and upper limits to the vibrational thermal conductivity of

Xie et al., Macromolecules (2016)

95% confidence intervals for Λ and C

Page 12: David G. Cahill Xu Xie, Kexin Yang, Dongyao Li, Jungwoo ...users.mrl.illinois.edu/cahill/mrs_polymer_nov16.pdf · Lower and upper limits to the vibrational thermal conductivity of

Elastic constants span an order of magnitude. Transition in Poisson ratio?

• Poisson ratio is ν≈0.37 for polymers with small elastic constants and ν≈0.25 for polymers with large elastic constants.

Page 13: David G. Cahill Xu Xie, Kexin Yang, Dongyao Li, Jungwoo ...users.mrl.illinois.edu/cahill/mrs_polymer_nov16.pdf · Lower and upper limits to the vibrational thermal conductivity of

Model of minimum thermal conductivity predicts a correlation with average speed of sound

Page 14: David G. Cahill Xu Xie, Kexin Yang, Dongyao Li, Jungwoo ...users.mrl.illinois.edu/cahill/mrs_polymer_nov16.pdf · Lower and upper limits to the vibrational thermal conductivity of

0.05 0.1 0.5 10.05

0.1

0.5

1

0.2

0.2

Make the comparison quantitative by introducing a density of vibrational states nc=(2/3)(n-nH)

Λmin (W m-1 K-1)

Λ(W

m-1

K-1

)

Poly(vinyl pyrrolidone) (PVP)

Methyl cellulose (MC)

C60 (ref.)

Fullerene (C60)

Polystyrene(PS)

Poly(acryloyl piperidine)(PAP)

1/32/3

min916π Λ =

B ck n V ( )1 2

3= +l tV v v

Page 15: David G. Cahill Xu Xie, Kexin Yang, Dongyao Li, Jungwoo ...users.mrl.illinois.edu/cahill/mrs_polymer_nov16.pdf · Lower and upper limits to the vibrational thermal conductivity of

Search for low thermal conductivity with cage-structured molecules

Page 16: David G. Cahill Xu Xie, Kexin Yang, Dongyao Li, Jungwoo ...users.mrl.illinois.edu/cahill/mrs_polymer_nov16.pdf · Lower and upper limits to the vibrational thermal conductivity of

Fullerene derivatives have ultralow thermal conductivity

• Search of an elastic constants database led us to CsI: the inorganic solid with the lowest Λmin at room temperature.

• UIUC prior work, Wang et al., PRB (2013) on C60fullerene derivatives.

Page 17: David G. Cahill Xu Xie, Kexin Yang, Dongyao Li, Jungwoo ...users.mrl.illinois.edu/cahill/mrs_polymer_nov16.pdf · Lower and upper limits to the vibrational thermal conductivity of

Multiply prediction by a factor α to take into account vibrational modes localized to the cage structure

2/3

α

=

eff

c

nn

neff is calculated by treating each cage structure as 5/3 of an atom

Page 18: David G. Cahill Xu Xie, Kexin Yang, Dongyao Li, Jungwoo ...users.mrl.illinois.edu/cahill/mrs_polymer_nov16.pdf · Lower and upper limits to the vibrational thermal conductivity of

Magnetic-field aligned photopolymerization of liquid crystal RM257 monomer

Shin et al., Macro Letters (2016)

Page 19: David G. Cahill Xu Xie, Kexin Yang, Dongyao Li, Jungwoo ...users.mrl.illinois.edu/cahill/mrs_polymer_nov16.pdf · Lower and upper limits to the vibrational thermal conductivity of

Analyze order parameter from x-ray scattering data at APS

Shin et al., Macro Letters (2016)

Page 20: David G. Cahill Xu Xie, Kexin Yang, Dongyao Li, Jungwoo ...users.mrl.illinois.edu/cahill/mrs_polymer_nov16.pdf · Lower and upper limits to the vibrational thermal conductivity of

High thermal conductivity state is lost at high temperature; large hysteresis on cooling

Shin et al., Macro Letters (2016)

Page 21: David G. Cahill Xu Xie, Kexin Yang, Dongyao Li, Jungwoo ...users.mrl.illinois.edu/cahill/mrs_polymer_nov16.pdf · Lower and upper limits to the vibrational thermal conductivity of

Liquid crystal networks as thermally functional soft matter

• Reorientation of molecular order at T>Tg is relatively slow.

Page 22: David G. Cahill Xu Xie, Kexin Yang, Dongyao Li, Jungwoo ...users.mrl.illinois.edu/cahill/mrs_polymer_nov16.pdf · Lower and upper limits to the vibrational thermal conductivity of

Conclusions

• Elastic constants, i.e., sound velocities and the minimum thermal conductivity model, can account for much of the variation in the thermal conductivity of amorphous polymers.

– High thermal conductivity, 0.67 W m-1 K-1, poly(vinylphosphonic acid calcium salt)

– Low thermal conductivity, 0.06 W m-1 K-1 , in fullerene derivatives

– Other cage structures do not produce such dramatically low thermal conductivities.

• Demonstrated that liquid crystals will be a rich subject for studies of “thermally functionally soft materials”. Search underway for higher contrast and faster response.