David E. Moncton et al- MIT X-ray Laser User Facility

30
User Program Advisory Committee Artie Bienenstock, Stanford, chair Marty Blume, American Physical Society Steve Harrison, Harvard John Hill, Brookhaven Denis McWhan, BNL (ret) Dagmar Ringe, Brandeis Jochen Schneider, DESY Sunil Sinha, UCSD Charge: To advise the MIT Dean of Science on the best approach to the development of a robust and sustainable national user program to optimize the incentives for participation and the inclusion of a diverse community.

Transcript of David E. Moncton et al- MIT X-ray Laser User Facility

Page 1: David E. Moncton et al- MIT X-ray Laser User Facility

User Program Advisory Committee Artie Bienenstock, Stanford, chair Marty Blume, American Physical Society Steve Harrison, Harvard John Hill, Brookhaven Denis McWhan, BNL (ret) Dagmar Ringe, Brandeis Jochen Schneider, DESY Sunil Sinha, UCSD

Charge: To advise the MIT Dean of Science on the best approach to the development of a robust and sustainable national user program to optimize the incentives for participation and the inclusion of a diverse community.

Page 2: David E. Moncton et al- MIT X-ray Laser User Facility

MIT X-ray Laser User Facility

A true x-ray laser will have huge science impact

-- today no x-ray source is coherent

-- today no laser has much power for 30 nm

Page 3: David E. Moncton et al- MIT X-ray Laser User Facility

The International Context

• DESY XFEL Hamburg, Germany (approved)

-Based on superconducting linac (20 GeV)

-Five undulator beamlines with 10 stations

-Tunable 6.4 nm to 0.1 nm, 100 fs pulses

-Seeding under study

-Cost 709 MEU, Schedule >2010

• DESY, TTF II, 1 GeV (approved)

• SCSS, Spring-8, Japan, 1 GeV (app’d)

• BESSY, Berlin, 2 GeV (proposed)

• SPARX, Frascati, Italy, 2.5 GeV (prop’d)

• 4GLS, Daresbury, UK, (prop’d)

nm

Page 4: David E. Moncton et al- MIT X-ray Laser User Facility

The National Context

• Linac Coherent Light Source (LCLS) at SLAC-Based on 15 GeV SLAC Cu linac -Limited to 120 Hz rep rate-One undulator beamline with 4-6 stations-Tunable 1 nm to 0.15 nm, 250 fs unseeded pulses-Cost 278M$, Schedule 2009

• LCLS II project includes additional beamlines-Recently deferred until 2009 by BESAC-New superconducting linac may be more attractive

• LBNL LUX concept-Requires recirculation due to site constraints- > 1 nm

Page 5: David E. Moncton et al- MIT X-ray Laser User Facility

Outlook

• Europe is likely to have full-spectrum coverage with many stations by 2010.

• US will have only one SASE beamline at LCLS• MIT/Bates project would qualitatively change the

outlook• Maintain and advance US leadership, particularly

with transform-limited applications• The educational and scientific payoff make this

project an ideal match to MIT, NSF, and the US

Page 6: David E. Moncton et al- MIT X-ray Laser User Facility

MIT X-ray Laser Design Proposal

Contact: David E. Moncton, Director Telephone: 617-253-8333

E-mail: [email protected] website: http://mitbates.mit.edu/xfel/indexpass.htm

Bates Senior Staff Contributors

Manouchehr Farkhondeh William M. Fawley James Fujimoto Jan van der Laan Hermann Haus Erich Ippen Christoph Tschalaer

Ian McNulty

Denis B. McWhan

Fuhua Wang

Jianwei Miao

Michael Pellin Abbi Zolfaghari

Mark Schattenburg

Gopal K. Shenoy

Townsend Zwart

Co-Principal Investigators Science Collaborators

William S. Graves Simon Mochrie Keith A. Nelson Franz X. Kaertner Gregory Petsko Dagmar Ringe Richard Milner Henry I. Smith Andrei Tokmakoff

Page 7: David E. Moncton et al- MIT X-ray Laser User Facility
Page 8: David E. Moncton et al- MIT X-ray Laser User Facility

MIT Commitment

• MIT has embraced the x-ray laser concept exclusively for the future of Bates Laboratory

• The existing 80-acre parcel of land and its existing infrastructure will be made available

• MIT will work with the DOE and NSF to insure that no legacy costs are incurred

• As the owner and steward of the site, MIT will carry out the responsibility to insure full and timely compliance with NEPA and secure appropriate construction permits

Page 9: David E. Moncton et al- MIT X-ray Laser User Facility

Spatial Scales Temporal Scales

MIT X-ray Laser is Science Driven

Page 10: David E. Moncton et al- MIT X-ray Laser User Facility

Structural Biology Gregory Petsko and Dagmar Ringe, Brandeis

Ultra-high Resolution– Precise location and identification– Hydrogen atoms– Atomic motions

Time-Resolved– Watch proteins work

Single Molecule/Particle– Structure/function without crystals

Page 11: David E. Moncton et al- MIT X-ray Laser User Facility

•X-ray probed optical Kerr effect spectroscopy (XOKE)

•Photo-initiated chemical reaction dynamics in solution •Transient photochemical hole burning of x-ray absorption line shapes

•Direct probing of protein folding and binding dynamics

Femtochemistry Andrei Tokmakoff, Chemistry Department, MIT

Page 12: David E. Moncton et al- MIT X-ray Laser User Facility
Page 13: David E. Moncton et al- MIT X-ray Laser User Facility

Photon Correlation Spectroscopy Simon Mochrie, Physics Department, Yale

Page 14: David E. Moncton et al- MIT X-ray Laser User Facility

Transient Grating Spectroscopy Keith Nelson, Chemistry Department, MIT

Page 15: David E. Moncton et al- MIT X-ray Laser User Facility

Inelastic Scattering David E. Moncton, ANL and John Hill, BNL

TiOCl T=100K

Synchrotron (APS)

Neutrons (HFBR)

•3 x 1011 photons/pulse at 1 kHz = 3 x 1014 p/s

•Bandwidth seeding: 100 fs = 36meV 1013 p/s at 1 meV

•Bandwidth seeding:

1 ps = 3.6 meV 1014 p/s at 1 meV

X-ray Laser

Page 16: David E. Moncton et al- MIT X-ray Laser User Facility

MIT Academic Commitment

• All of the faculty members associated with this project are supported by institutional funds

• All graduate student stipends are significantly reduced by Institute contributions

• We also expect that such a facility will serve to attract new faculty in both the School of Science and the School of Engineering

Page 17: David E. Moncton et al- MIT X-ray Laser User Facility

MIT X-ray Laser is Technology Driven

• ACCELERATOR COMPONENTS: Superconducting linacs, Photoelectron guns, Undulator magnet technology, Laser seeding technology

• DEMONSTRATION EXPERIMENTS: Argonne, Brookhaven, DESY at 100nm wavelengths; LCLS at Stanford to 0.15 nm

• POTENTIAL: A multi-beamline user facility

•10-30 beamlines each with 1 kHz rep rate

•Wavelengths 100nm to 0.3 nm (0.1nm in 3rd harmonic)

•Transform-limited pulses of up to 1 mJ

Page 18: David E. Moncton et al- MIT X-ray Laser User Facility

MIT X-ray Laser User Facility

Unique opportunity to integrate:

-- accelerator technology (MIT/Bates Lab)

-- with fs laser technology (MIT Ultrafast Group)

Page 19: David E. Moncton et al- MIT X-ray Laser User Facility

Facility Concept

0.3 nm 0.1 nm

UV Hall X-ray Hall

Nanometer Hall

SC Linac4 GeV2 GeV1 GeV

1 nm

0.3 nm

100 nm

30 nm

10 nm

10 nm

3 nm

1 nm

Master oscillator

Pump laser

Pump laser

Seed laser

Seed laser

Seed laser

Pump laser

Fiber link synchronization

Injector laser

Undulators

Undulators

Undulators

Future upgrade to 0.1 nm at 8 GeV

SC Linac

Page 20: David E. Moncton et al- MIT X-ray Laser User Facility

Facility Cost Scaling: A Model

• Fixed Costs 80 M$

(RF Photoinjector, X-ray Beamlines,

Buildings, Cryoplant, Controls…)

• Linac Systems (20 MeV/m, ~0.4M$/m) 20 M$/GeV

• Undulator Systems (0.2 M$/m) 20M$/100mTotal Undulator Length = 4 x longest saturation length

• Contingency 25%

Page 21: David E. Moncton et al- MIT X-ray Laser User Facility

1

10

100

1000

0 5 10 15 20

Electron Energy (GeV)

Sa

tura

tio

n L

en

gth

(m

)

200 M$

300 M$

400 M$

500 M$100 nm

Electron Bunch ParametersQ = 0.5 nC ΔE/E = 0.02% T = 250 fsε = 1.5 μm

Hybrid Undulator ParametersVISA: λ = 18 mm, K=1.4, B=0.8 T23mm: λ = 23 mm, K=2.4, B=1.1 TLCLS: λ = 30 mm, K=3.9, B=1.4 T

10 nm

1 nm

0.3 nm

0.1 nm

Better Gunε = 0.75 μmSuperconducting Undulator

λ = 14 mm K = 1.3

Superconducting Undulator “Miracle Gun”ε = 0.1 μm

Page 22: David E. Moncton et al- MIT X-ray Laser User Facility

Essential to Improve e-Gun Performance

•In linacs, electron emittances scale inversely with energy

•Electron beam emittance is born at the electron gun

•Electron gun emittances today are e = 0 .5 nm/GeV

•Photon emittances for full transverse coherence p = p

To couple a given electron beam most effectively to a coherent photon field, we should have: e = p

Page 23: David E. Moncton et al- MIT X-ray Laser User Facility

Upgrade Path

Shorter Wavelengths• Linac could be extended while proposed facility is operational.

• Novel Undulators (shorter period, smaller gap, SC structures) can be developed on test beamline.

Increased Time Averaged Brilliance •SC Linac would permits 100% duty factor as SC gun technology matures. Requires increased cryoplant and power.

Additional Users •Facility would allow additional beamlines as funding permits.

Page 24: David E. Moncton et al- MIT X-ray Laser User Facility

0 10 20 30 40 500

0.5

1

1.5

2

Time (fs)

Pow

er (

GW

)

0 10 20 30 40 500

0.5

1

1.5

2

Time (fs)

Pow

er (

GW

)

0 10 20 30 40 500

0.5

1

1.5

2

Time (fs)

Pow

er (

GW

)

0 10 20 30 40 500

0.5

1

1.5

2

Time (fs)

Pow

er (

GW

)

0 10 20 30 40 500

1

2

3

4

5

6

7

8

Time (fs)

Pow

er (

GW

)

0 10 20 30 40 500

1

2

3

4

5

6

7

8

Time (fs)

Pow

er (

GW

)

0.2995 0.3 0.3005 0.3010

200

400

600

800

1000

Wavelength (nm)

Pow

er (

kW/b

in)

0.2995 0.3 0.3005 0.3010

200

400

600

800

1000

Wavelength (nm)

Pow

er (

kW/b

in)

0.2995 0.3 0.3005 0.3010

100

200

300

400

500

Wavelength (nm)

Pow

er (

MW

/bin

)

0.2995 0.3 0.3005 0.3010

100

200

300

400

500

Wavelength (nm)

Pow

er (

MW

/bin

)

0.2995 0.3 0.3005 0.3010

100

200

300

400

500

Wavelength (nm)

Pow

er (

kW/b

in)

0.2995 0.3 0.3005 0.3010

100

200

300

400

500

Wavelength (nm)

Pow

er (

kW/b

in)

Seeded and SASE comparison

Seeding for short pulses

Seeding for narrow bandwidth

SASE

Page 25: David E. Moncton et al- MIT X-ray Laser User Facility

APS MIT Bates

Und. A SASE FELMin

bandwidth seeded FEL

Min pulse length seeded FEL

X-rays per pulse (0.1% max BW)

1.E+08 3.E+11 3.E+11 6.E+09

Peak brilliance (p/s/0.1%/m2)

3.E+22 1.E+33 3.E+35 7.E+33

Peak flux (p/s/0.1%) 1.E+18 6.E+24 6.E+24 1.E+23

Avg. flux (p/s/0.1%) 7.E+14 3.E+14 3.E+14 6.E+12

Average brilliance (p/s/0.1%/m2)

4.E+19 5.E+22 1.E+25 3.E+23

Degeneracy parameter 0.1 4.E+09 3.E+11 6.E+09

Pulse length (fs) 73000 50 50 1

Photon beamlines 34 10-30 10-30 10-30

Wavelength (nm) 0.05 - .4 0.3 - 100 0.3 - 100 0.3 - 100

Pulse frequency (Hz) 7.E+06 1000 1000 1000

Page 26: David E. Moncton et al- MIT X-ray Laser User Facility

MIT X-ray Laser is Education Driven

• Unique Opportunity to develop an accelerator science and technology curriculum

• Remarkable spectrum of engineering technologies

• Would be the ultimate laser laboratory

• Full integration with CMSE programs for K-12 and High School teachers including RET and the Content Institute

• Expanded opportunities for UROP, TEAL, iLAB, etc.

• Design study and construction would provide unique one-time educational experiences in many disciplines: environment, management, architecture, etc.

Page 27: David E. Moncton et al- MIT X-ray Laser User Facility

MIT Commitment to Education Program

• As a premier educational and research institution, MIT will use its resources, together with those of the NSF to achieve maximum educational impact

• MIT will plan the development of a graduate accelerator science and technology curriculum

• MIT has been an innovator in exploring new teaching concepts, such as UROP, REU, TEAL, iLAB, and outreach programs for high school teachers

Page 28: David E. Moncton et al- MIT X-ray Laser User Facility

3-year study plan

Page 29: David E. Moncton et al- MIT X-ray Laser User Facility

NSF Funding of Major Projects

• Design Study will be funded thru MPS/DMR• Construction Project would be funded thru MRE

(Major Research Equipment ) account• NSB supports increase from $130M to $350M• FY04 President’s Budget has $200M for MRE• Strong Congressional support for increases• Existing and “backlog” projects can be launched

by FY06, leaving budget headroom for X-ray Laser by FY07 at a $300-400M level

Page 30: David E. Moncton et al- MIT X-ray Laser User Facility

The MIT X-ray Laser Project•A National User Facility: 10-30 beams

•Wavelength range 100-0.1 nm

•Integrated laser seeding for full coherence

•Pulses: t=-1000 fs; 3-0.003eV

•Pulse power of up to 1 mJ

•Pulse rates of 1 kHz or greater

MIT/ Bates Laboratory

Science: single molecule imaging, femtochemistry, nanometer lithography…

Technology: superconducting FEL, Ti:Sapp HHG seeding technology

Education: accelerator science curriculum, synergy with CMSE programs

Cost/Schedule: $300M; design: FY04-FY06; construct: FY07-FY10