Data sheet for final exam reinforced concrete

8
1 DATA SHEET FOR FINAL EXAM Reinforced Concrete Design II A- R. C. Members subjected to Flexural Moments 1. Compression zone factor 1 = 0.85 β€² ≀ 28 = 0.85 βˆ’ 0.05 ( β€² βˆ’28 7 ) 28 < β€² ≀ 56 = 0.65 β€² > 56 2. Reinforcement ratio limitation, singly reinforced sections (rectangular and T section β€œtension in the web”) = 1 4 √ β€² β‰₯ 1.4 , , = = 0.319 1 β€² 3. reinforcement ratio limitation, doubled reinforced sections (rectangular and T section β€œtension in the web”) = 1 4 √ β€² β‰₯ 1.4 , , = = 0.04 4. Reinforcement ratio limitation, singly reinforced T section β€œtension in the flange” = 1 4 √ β€² β‰₯ 1.4 , , = (2 ) = 0.319 1 β€² The least of 2 Where 5. Material Reduction Factor Ο† = 0.9 for tension controlled sections Ο† = 0.65 for compression controlled sections = 0.65 + 0.25 βˆ— { βˆ’ } { βˆ’ } 6. Data used for designing a section with tension steel only subjected to flexure moment : Reinforcing Index = β€² with = 1 4 Flexural Resistance Factor = β€² (1 βˆ’ 0.59) Nominal Moment capacity = 2 Ultimate Moment capacity = 2 , Ο† = 0.9 7. Data used for designing a section with doubled steel (tension and compression reinforcements) subjected to flexure moment :when > 0.319 1 Single Moment capacity( ) = 2 , Ο† = 0.9 and = β€² (1 βˆ’ 0.59), β„Ž = 0.319 1 Remaining moment to be resist by compression steel and part of tension reinforcements ( ) 1 = βˆ’ ( ) = β€² [ β€² βˆ’ 0.85 β€² ]( βˆ’ β€² )

Transcript of Data sheet for final exam reinforced concrete

1

DATA SHEET FOR FINAL EXAM Reinforced Concrete Design II

A- R. C. Members subjected to Flexural Moments 1. Compression zone factor 𝛽1 = 0.85 π‘“π‘œπ‘Ÿ 𝑓𝑐

β€² ≀ 28 π‘€π‘ƒπ‘Ž

= 0.85 βˆ’ 0.05 (𝑓𝑐

β€²βˆ’28

7) π‘“π‘œπ‘Ÿ 28 < 𝑓𝑐

β€² ≀ 56 π‘€π‘ƒπ‘Ž

= 0.65 π‘“π‘œπ‘Ÿ 𝑓𝑐′ > 56 π‘€π‘ƒπ‘Ž

2. Reinforcement ratio limitation, singly reinforced sections (rectangular and T section β€œtension in the web”)

πœŒπ‘šπ‘–π‘› = 1

4

βˆšπ‘“π‘β€²

𝑓𝑦β‰₯

1.4

𝑓𝑦, 𝐴𝑠,π‘šπ‘–π‘› = 𝑏𝑑 πœŒπ‘šπ‘Žπ‘₯ = 0.319𝛽1

𝑓𝑐′

𝑓𝑦

3. reinforcement ratio limitation, doubled reinforced sections (rectangular and T section β€œtension in the web”)

πœŒπ‘šπ‘–π‘› = 1

4

βˆšπ‘“π‘β€²

𝑓𝑦β‰₯

1.4

𝑓𝑦, 𝐴𝑠,π‘šπ‘–π‘› = 𝑏𝑑 πœŒπ‘šπ‘Žπ‘₯ = 0.04

4. Reinforcement ratio limitation, singly reinforced T section β€œtension in the flange”

πœŒπ‘šπ‘–π‘› = 1

4

βˆšπ‘“π‘β€²

𝑓𝑦β‰₯

1.4

𝑓𝑦, 𝐴𝑠,π‘šπ‘–π‘› = πœŒπ‘šπ‘–π‘›(2𝑏𝑀 π‘œπ‘Ÿ 𝑏𝑒)𝑑 πœŒπ‘šπ‘Žπ‘₯ = 0.319𝛽1

𝑓𝑐′

𝑓𝑦

The least of 2𝑏𝑀 π‘œπ‘Ÿ 𝑏𝑒

Where 𝑏𝑒

5. Material Reduction Factor

Ο† = 0.9 for tension controlled sections

Ο† = 0.65 for compression controlled sections

πœ‘ = 0.65 + 0.25 βˆ—{πœ–π‘ βˆ’πœ–π‘¦}

{πœ–π‘‘βˆ’πœ–π‘¦}

6. Data used for designing a section with tension steel only subjected to flexure moment 𝑀𝑒:

Reinforcing Index πœ” = 𝜌 𝑓𝑦

𝑓𝑐′ with πœ” =

𝛽1

4

Flexural Resistance Factor 𝑅 = πœ” 𝑓𝑐′(1 βˆ’ 0.59πœ”)

Nominal Moment capacity 𝑀𝑛 = 𝑅𝑏𝑑2

Ultimate Moment capacity 𝑀𝑒 = πœ‘π‘…π‘π‘‘2, Ο† = 0.9

7. Data used for designing a section with doubled steel (tension and compression reinforcements) subjected to flexure

moment 𝑀𝑒:when πœ” > 0.319𝛽1

Single Moment capacity(𝑀𝑒 ) 𝑠 = πœ‘π‘…π‘π‘‘2, Ο† = 0.9 and 𝑅 = πœ” 𝑓𝑐′(1 βˆ’ 0.59πœ”), π‘€π‘–π‘‘β„Ž πœ” = 0.319𝛽1

Remaining moment to be resist by compression steel and part of tension reinforcements (𝐴𝑠) 1

π‘€π‘Ÿ = 𝑀𝑒 βˆ’ (𝑀𝑒 ) 𝑠 = πœ‘π΄π‘ β€² [𝑓𝑦 π‘œπ‘Ÿ 𝑓𝑠

β€² βˆ’ 0.85𝑓𝑐′](𝑑 βˆ’ 𝑑′)

2

B- Shear Strength of Concrete of Beams

πœ‘π‘‰π‘ = πœ‘πœ†βˆšπ‘“π‘

β€²

6𝑏𝑑 With πœ† = 1 (N. W. C), πœ† = 0.85 (S. L.W. C), πœ† = 0.75 (A. L.W. C)

(𝑉𝑒)π‘Ÿ = (𝑉𝑒)𝑐 βˆ—

𝐿2

βˆ’ (𝑑 +𝑐2

)

𝐿2

𝑉𝑒 = πœ‘π‘‰π’„ + πœ‘π‘‰π’”

πœ‘π‘‰π‘  = πœ‘π΄π‘£π‘“π‘¦π‘‘(𝑠𝑖𝑛𝛼 + π‘π‘œπ‘ π›Ό)𝑑

𝑆

Minimum shear reinf. 𝐴𝑣 π‘šπ‘–π‘› =1

16

βˆšπ‘“π‘β€²

𝑓𝑦𝑑𝑏𝑆 𝑂𝑅 0.35

𝑏𝑆

𝑓𝑦𝑑

Case 1 If 𝑉𝑒 ≀ 0.5 βˆ…π‘‰π’„ ---> No reinforcements needed

Case 2 If 0.5 βˆ…π‘‰π’„ ≀ V𝑒 ≀ βˆ…π‘‰π’„ ---> Minimum reinforcements

Case 3 If 𝑉𝑒 ≀ βˆ… (𝑉𝑐 +βˆšπ‘“π‘

β€²

3𝑏𝑑) , π‘†π‘šπ‘Žπ‘₯ =

𝑑

2 and ≀ 600 π‘šπ‘š

Case 4 If 𝑉𝑒 > βˆ… (𝑉𝑐 +βˆšπ‘“π‘

β€²

3𝑏𝑑) , π‘†π‘šπ‘Žπ‘₯ =

𝑑

4 and ≀ 300 π‘šπ‘š

Case 5 If 𝑉𝑒 > βˆ… (𝑉𝑐 +2

3βˆšπ‘“π‘

′𝑏𝑑) , π‘†π‘’π‘π‘‘π‘–π‘œπ‘› π‘‘π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘›π‘  π‘ β„Žπ‘œπ‘’π‘™π‘‘ 𝑏𝑒 π‘–π‘›π‘π‘Ÿπ‘’π‘Žπ‘ π‘’π‘‘

Table B.5 Minimum Bar Width(mm) for Beams

Size

of Bars

Number of Bars in Single Layer of reinforcement

2 3 4 5 6 7 8

#13 175 213 251 288 326 364 401

#16 178 219 260 301 342 383 424

#19 182 226 270 314 358 402 446

#22 185 232 279 326 373 421 468

#25 188 239 290 341 391 442 493

#29 195 252 310 367 424 482 539

#32 202 267 331 396 460 526 590

#36 209 281 353 424 496 567 639

#43 228 314 400 486 572 658 744

#57 271 386 501 615 730 844 959

C- ACI Moment and Shear Coefficients (used for indeterminate continuous beams or one way

slabs)

Bar

Designation

Nominal

dia.

(mm)

Area

(mm2)

#10 9.5

71

#13 12.7

129

#16 15.9

199

#19 19.1

284

#22 22.2

387

#25 25.4

510

#29 28.7

645

#32 32.3

819

#36 35.8

1006

#43 43.0

1452

#57 57.3

2581

3

D- Minimum thickness of beams and one way slabs using Empirical Method

Cantilevers

4

ACI code provisions to control crack width

The ACI code provision on crack control limits the spacing between tension reinforcement to values

given by :

S max = 380βˆ—280

π‘“π‘ βˆ’ 2.5𝐢𝑐 β‰―

300βˆ—280

𝑓𝑠≯ 450π‘šπ‘š

Where : 𝑓𝑠 = 2/3𝑓𝑦

Cc = Clear cover of the steel reinforcement (mm)

S = spacing of tension reinforcement closest to the tension face (mm)

Minimum reinforcement area to control the crack: Ash=0.0018bh for fy=420Mpa

E – Two Way Slabs 1. Beam –slab stiffness ratio

2. Beam cross Sections

3. Beam stiffness

scs

bcb

scs

bcbf

IE

IE

/lIE

/lIE

4

4

5

4. Slab thickness

(a)

Ξ² = Ratio of the long to short span of the panel Note: At discontinuous edge, beams shall have minimum stiffness ratio:

Otherwise, slab thickness as determined by equations must be increased by 10%

4.Paneled beams

Where r is the ratio of long to short side of edge beams.

WB=(Wu)(S)(sin)

5. Statical Moment Mo

.

6. Moments in the Equivalent Frame

For interior panels, the total factored moment Mo is divided into:

- Positive moment = 0.35 Mo

- Negative moment = 0.65 Mo

For exterior panels, the total factored moment Mo is divided into M+ and M- according to table 13.6.3.3

2m

(b) Slabs with beams between interior supports

22.0 m

8

2

n12u0

llqM X

8

2

n21u

0

llqM Y

cn

n

2

u

0.886d h using calc. columns,circular for

columnsbetween span clear

strip theof width e transvers

areaunit per load factored

l

l

l

q

6

7. Distribution of Moments between column and middle strips

Where: x is the short side of the rectangle

y is the long side of the rectangle

The above Tables 4-3, 4-4 and 4-5 can also be calculated from the following relations:

(i) % Column strip M-v

factors for interior spans

= 75 + 30 (𝛼1𝐿2

𝐿1

) (1 βˆ’πΏ2

𝐿1

)

(ii) % Column strip M-v

factors for exterior spans

= 100 βˆ’ 10𝛽𝑑 + 12𝛽𝑑 (𝛼1𝐿2

𝐿1

) (1 βˆ’πΏ2

𝐿1

)

(iii) % Column strip M+v

factors for interior and exterior spans

= 60 + 30 (𝛼1𝐿2

𝐿1

) (1.5 βˆ’πΏ2

𝐿1

)

8. Moment Transfer to columns For interior columns

qDu

and qLu

= the factored DL and LL on the longer span.

q’Du

= The factored DL on the shorter span adjacent to the column.

Punching shear equations (least of the followings):

3

63.01

2

3

scs

cbt

scs

bcb1

yx

y

xC

IE

CE

IE

IE

d.t.eng.zasaleh
Stamp
d.t.eng.zasaleh
Stamp

7

1. Punching Shear strength by stirrups

2. Punching Shear strength by shear studs

3. Moment transfer

4.

8

5. Polar moment of inertia Jc

6.

7. Equivalent Stiffness to be used for EFM