Dalewood Dam 2017 Topographic Survey€¦ · Dam area was conducted using a DJI Matrice 600...

34
Dalewood Dam 2017 Topographic Survey Prepared for: Kettle Creek Conservation Authority Prepared by: Clifford Patterson, PhD. GIS/IT Supervisor November 2017

Transcript of Dalewood Dam 2017 Topographic Survey€¦ · Dam area was conducted using a DJI Matrice 600...

  • Dalewood Dam 2017 Topographic Survey

    Prepared for:

    Kettle Creek Conservation Authority

    Prepared by:

    Clifford Patterson, PhD. GIS/IT Supervisor

    November 2017

  • TABLE OF CONTENTS1 Abstract..........................................................................................................................................32 Survey methodologies...................................................................................................................4

    2.1 Phase 1: UAV Survey Methodology......................................................................................42.2 Phase 2: Ground Survey Methodology..................................................................................52.3 Phase 3: Reservoir Survey Methodology...............................................................................52.4 Additional Ground Survey Methodology...............................................................................6

    3 Results...........................................................................................................................................73.1 UAV-Derived Products...........................................................................................................73.2 Classified Survey Points......................................................................................................103.3 Survey-derived DTM...........................................................................................................113.4 Fusion Digital Elevation Model...........................................................................................12

    4 Future Work.................................................................................................................................12Appendices.....................................................................................................................................13

    Appendix 1: UAV Survey Quality Report.................................................................................13Appendix 2: RTK GPS Ground Survey Points (land and reservoir).........................................23Appendix 3: Total Station Survey Points...................................................................................30

    2

  • 1  ABSTRACTA  topographic   survey  was   conducted  at   the  Dalewood  Dam to   support   the

    planned replacement of the Dalewood Drive Bridge (Figure 1). There is concern thatthe   new   bridge   could   change   water   flow   in   the   area,   which   could   impact   thenorthern   and   southern   upstream   soil   embankments,   so   mapping   the   presenttopography of the area east of the dam was the primary objective of the survey. Asecondary   objective   was   to   measure   the   depth   of   the   reservoir   immediatelyupstream of the dam. The primary survey was conducted on November 1, 2017, anda subsequent survey was conducted on November 21, 2017. 

    Figure 1: Survey location.

    Elevation data in the area were captured using a combination of low altitudeaerial photography and field surveying. In the first phase, 2D and 3D products were

    3

  • produced   photogrammetrically   using   an   unmanned   aerial   vehicle   (UAV)   andspecialized  software.   In   the  second  phase,  ground  surveying  using  a  Real  TimeKinematic Global Positioning System (RTK GPS) and a Total Station was conductedto   supplement   the   UAVderived   DSM   in   areas   where   there   was   substantialvegetation cover (e.g. northern and southern upstream soil embankments). In thethird   phase,   an   RTK   GPS   survey   was   conducted   to   measure   the   depth   of   thereservoir. Due to sparse data collection in certain areas and the inherent limitationsof RTK GPS beneath tree cover, a subsequent ground survey was also conductedusing a Total Station.  

    2  SURVEY METHODOLOGIESThe Dalewood Dam topographic survey was conducted in accordance with the

    Guidelines   for   RTK/RTN   GNSS   Surveying   in   Canada   (2015)   and   the   NationalStandards for the Survey of Canada Lands (2014). 

    All   vertical   data  were   collected  and provided  using   the  Canadian  GeodeticVertical Datum of 2013 Version A (CGVD2013a) – EPSG: 6647. All horizontal dataare provided in Universal Transverse Mercator (UTM) zone 17N, North AmericanDatum of 1983 (Canadian Spatial Reference System) – EPSG: 2958. 

    Field   data   collection   activities   encompassed   three   (3)   main   phases   onNovember 1, 2017, and a subsequent ground survey on November 21, 2017.

    2.1  Phase 1: UAV Survey MethodologyPhase 1 took place on November 1, 2017. An aerial survey of the Dalewood

    Dam area was conducted using a DJI Matrice 600 Professional UAV mounted with aDJI Zenmuse X5 RBG camera. The UAV was flown   over a grid pattern at 60mabove ground level (AGL) with an 80% front and side overlap. Ten ground controlpoints (GCPs) were located using an RTK GPS, and the resulting data producedfrom these photographs have a mean root mean square error (RMSE) of 0.026m. 

    A   total   of   93   images  were   captured   over  an  area  measuring  1.75  ha.  Theimages were processed using Pix4Dmapper Pro (version 4.0.25) to produce an RGBencoded dense point cloud, a raster digital surface model, a raster orthomosaic, and

    4

  • a   raster   digital   terrain   model   (DTM)   (see   Section  3.2).   The   Average   GroundSampling Distance (GSD) for each product is 1.34cm, and the pixel resolution of allraster   products   is   0.01345m.   The   vertical   accuracy   of   the   DSM   was   externallyassessed  using  a   series   of  RTK  GPS  points.   In  bare   earth  areas,  the   model   isvertically   accurate   to   within   3cm.   The   horizontal   error   was   not   systematicallyassessed, but expected to be half of the vertical error.  

    2.2  Phase 2: Ground Survey MethodologyPhase 2 took place on November 1, 2017. A Topcon Hiper SR RTK GPS was

    used to collect points on the northern and southern  upstream soil embankments. ATopcon FC500 data collector was used running Topcon’s Magnet Field software. Allpoints  were   collected  using   corrected   (fixed)   values   with   a   horizontal   error   notexceeding 2cm. A total  of  133 points were collected with a mean horizontal  rootmean square (HRMS) error of 0.010m and a mean vertical root mean square error(VRMS) of 0.014m relative to the nearest base station (see Figure  6).  The meanposition dilution of precision (PDOP) value for these points was 2.201. The surveywas opened and closed using control points located on the corners of the dam and asemipermanent post near the southwest corner of the bridge. 

    2.3  Phase 3: Reservoir Survey MethodologyPhase 3 took place on November 1, 2017. The reservoir depth was surveyed

    from a row boat using an extended survey pole. The Topcon Hiper SR was attachedto the 3m pole and data were collected using the FC500 data collector (i.e. the sameequipment used during Phase 2). Staff held ropes on the shore to steer the boat overthe entire reservoir to attain complete coverage. 

    As with Phase 2, all points were collected using corrected (fixed) values with ahorizontal  error not  exceeding 2cm. A total of  115 points were collected over anirregular grid with an HRMS error of 0.010m and a VRMS error of 0.017m relativeto the nearest base station (see Figure  6). The mean PDOP value for these pointswas 2.219. The survey was opened and closed using control points located on thefour corners of the dam and a semipermanent post near the southwest corner of thebridge. 

    5

  • 2.4  Additional Ground Survey MethodologyThe ground points collected using the RTK GPS were insufficient to produce a

    quality digital terrain model. The main problem was an inability to collect accuratedata beneath trees on November 1, 2017. Consequently, it was decided to collectadditional points using a Nikon DTM322+ Total Station on November 21, 2017. Thetotal station was set up by free stationing (i.e. resection) using three known points,namely two corners of the dam and a semipermanent survey marker located nearthe southwest corner of the bridge; all of which were located during Phase 2. Thestandard   deviations   of   the   station   setup   were   0.010m   for   easting,   0.004m   fornorthing, and 0.030m for the vertical. The survey were opened with a back shot tothe survey marker to verify the setup was correct and two additional back shotswere made during the survey operation. The survey was closed with a back shot tothe survey marker, where the residual error to the RTK GPS coordinates was 0.01mfor the northing, 0.035 for the easting, and 0.003 for the vertical. The thresholderror of  4cm was used for  all  back shots,  so  the closing values were within theacceptable margin of error. A total of 74 points were collected on the southern andnorthern   upstream   soil   embankments.   Notably,   the   top   and   bottom   of   bothembankments were surveyed as well as points along each slope. 

    The Total Station and RTK GPS points were combined and used to produce aDTM for the area which covers the northern and southern embankments and thereservoir (see Figure  7). The DTM was produced in QGIS (version 2.18.2) using atriangular interpolation method (TIN). The resulting DTM has a pixel resolution of0.01345m to match that of the UAVderived DSM and DTM. Contour lines were alsoproduced off of this model at 50cm intervals – it should be noted that the contoursare for informational purposes only and not meant to be used in any other way. TheDTM was fused with the UAVderived DSM to visualize all data in a single raster(see Figure 8).

    6

  • 3  RESULTS 

    3.1  RGB Encoded Point Cloud

    7

    Figure 2: RGB encoded dense point cloud produced using Pix4DMapper.

  • 3.2  UAVDerived Products

    Figure 3: UAVderived orthomosaic created using Pix4DMapper. 

    8

  • Figure 4: UAVderived digital surface model created using Pix4DMapper.

    9

  • Figure 5: UAVderived digital terrain model created using Pix4DMapper.

    10

  • 3.3  Classified Survey Points

    Figure 6: Classified survey points.

    11

  • 3.4  Surveyderived DTM 

    Figure 7: Surveyderived digital terrain model.

    12

  • 3.5  Fusion Digital Elevation Model

    Figure 8: Digital elevation model produced by fusing the UAVderived DSM with the surveyderived DTM.

    4  FUTURE WORKIn the future it would be best to complete a topographic survey of the entire

    area surrounding the dam. Although the UAVderived DSM is useful in bare earth

    13

  • areas,   more   ground   surveying   will   be   needed   wherever   there   is   above   groundbiomass. Further, more work could be completed with the UAV to produce a moredetailed point cloud of the dam itself by incorporating oblique photographs into themodel, a process that will likely require much trial and error. 

    14

  • APPENDICES

    Appendix 1: UAV Survey Quality Report

    15

  • 16

  • 17

  • 18

  • 19

  • 20

  • 21

  • 22

  • 23

  • 24

  • Appendix 2: RTK GPS Ground Survey Points (land and reservoir)

    ID NORTHING EASTING ELEVATION CODE600 4738404.11 485241.02 217.41 LAND601 4738414.41 485240.63 217.37 LAND602 4738436.24 485243.59 217.38 LAND603 4738436.8 485232.04 212.58 LAND604 4738437.27 485234.33 213.48 LAND605 4738437.87 485237.07 215.04 LAND606 4738437.66 485239.93 216.47 LAND607 4738439.12 485241.99 217.23 LAND608 4738445.53 485244.15 217.11 LAND609 4738465.6 485263.01 215.94 LAND610 4738463.72 485263.39 215.73 LAND611 4738465.31 485265.94 216.16 LAND612 4738467.24 485267.47 216.64 LAND613 4738467.81 485270.56 217.17 LAND614 4738470.56 485271.18 217.56 LAND615 4738469.3 485267.1 216.71 LAND616 4738459.07 485241.77 216.6 LAND617 4738456.99 485240.54 216.14 LAND618 4738447.76 485222.02 211 LAND619 4738447.63 485212.31 208.95 LAND620 4738449.71 485213.37 209.55 LAND621 4738450.32 485214.94 209.99 LAND622 4738407.08 485230.37 212.49 LAND623 4738407.07 485232.18 213.11 LAND624 4738405.02 485233.24 214.1 LAND625 4738403.35 485235.52 215.59 LAND626 4738402.46 485237.98 216.9 LAND627 4738394.36 485224.7 212.88 LAND628 4738398.61 485225.1 212.62 LAND629 4738400 485228.13 212.58 LAND630 4738400.66 485230.85 213.18 LAND631 4738400.61 485232.16 213.65 LAND

    25

  • 632 4738398.17 485217.45 212.66 LAND633 4738399.65 485218.16 212.18 LAND634 4738399.94 485210.06 212.71 LAND635 4738401.03 485210.7 212.16 LAND636 4738402.37 485211.37 211.44 LAND637 4738406.38 485209.36 210.57 LAND638 4738408.17 485209.85 209.86 LAND639 4738409.76 485207.38 209.77 LAND640 4738409.27 485205.28 210.27 LAND641 4738412.49 485203.49 209.51 LAND642 4738412.65 485205.79 209.14 LAND643 4738411.17 485207.56 209.31 LAND644 4738412.35 485208.36 208.87 LAND645 4738408.95 485214.78 209.05 LAND646 4738412.13 485215.67 208.76 LAND647 4738414.68 485215.02 208.72 LAND648 4738416.03 485217.62 208.82 LAND649 4738414.54 485213.35 208.6 LAND650 4738407 485213.6 209.43 LAND651 4738405.38 485214.15 209.8 LAND652 4738405.8 485216.12 209.57 LAND653 4738406.87 485217.22 209.24 LAND654 4738406.82 485217.23 209.22 LAND655 4738395.52 485218.95 212.76 LAND656 4738397.53 485222.44 212.64 LAND776 4738418.93 485280.49 215.01 LAND777 4738465.02 485249.79 217.24 LAND778 4738460.86 485246.97 217.21 LAND779 4738456.32 485244.77 217.18 LAND780 4738451.48 485244.04 217.22 LAND781 4738443.83 485245.54 217.13 LAND782 4738442.68 485247 216.51 LAND783 4738442.64 485247.73 216.11 LAND784 4738444.47 485247.81 215.93 LAND785 4738446.03 485248.06 216.02 LAND786 4738453.27 485248.28 216.16 LAND787 4738457.53 485252.46 215.14 LAND

    26

  • 788 4738459.92 485257.89 215.17 LAND789 4738458.81 485261.26 215.47 LAND790 4738464.99 485263.83 215.79 LAND791 4738465.5 485269.03 216.63 LAND792 4738461.96 485269.55 215.41 LAND793 4738460.94 485273.35 215.26 LAND794 4738462.39 485275.09 216.04 LAND795 4738464.42 485275.91 217.03 LAND796 4738466.02 485275 217.19 LAND797 4738467.55 485276.54 218.26 LAND798 4738468.46 485275.08 217.96 LAND799 4738467.59 485273.56 217.45 LAND800 4738465.6 485272.95 216.66 LAND801 4738464.04 485272.18 215.9 LAND802 4738463.09 485268.7 215.73 LAND803 4738457.69 485274.64 215.37 LAND804 4738455.97 485275.49 215.54 LAND805 4738453.09 485276.01 215.72 LAND806 4738450.43 485278.02 215.85 LAND807 4738449.1 485278.85 216.12 LAND808 4738447.59 485279.42 216.22 LAND809 4738446.36 485279.64 216.21 LAND810 4738444.87 485280 216.37 LAND811 4738444.76 485281.08 217.08 LAND812 4738447.01 485280.99 217.08 LAND813 4738449.55 485281.06 217.28 LAND814 4738452.23 485281.05 217.38 LAND815 4738455.34 485280.82 217.65 LAND816 4738457.46 485279.92 217.29 LAND817 4738458.36 485277.65 216.39 LAND818 4738460.94 485274.52 215.45 LAND819 4738463.18 485276.12 216.75 LAND820 4738466.41 485277.51 218.11 LAND821 4738463.42 485279.85 218.14 LAND822 4738460.91 485280.45 218 LAND823 4738459.23 485275.05 215.57 LAND825 4738386.81 485278.49 217.3 LAND

    27

  • 826 4738388.9 485277.73 216.59 LAND827 4738386.4 485276.56 216.13 LAND828 4738381.48 485276.84 217.29 LAND829 4738383.67 485275.42 216.24 LAND830 4738378.82 485275.03 217.3 LAND831 4738381.21 485269.39 215.34 LAND832 4738381.2 485267.87 215.36 LAND833 4738381.8 485265.39 215.45 LAND834 4738382.8 485262.79 215.36 LAND835 4738380.18 485258.44 217.15 LAND836 4738377.18 485262.84 217.24 LAND837 4738376.08 485266.39 217.1 LAND838 4738375.7 485271.98 217 LAND839 4738379.96 485259.93 217.14 LAND840 4738383.17 485259.66 216.4 LAND841 4738384.31 485255.11 217.11 LAND842 4738388.96 485250.39 217.08 LAND843 4738389.19 485252.8 216.35 LAND844 4738405.58 485243.53 217.37 DAM CORNER845 4738405.9 485238.88 217.4 DAM CORNER846 4738437.97 485240.73 217.4 DAM CORNER847 4738437.78 485245.45 217.36 DAM CORNER657 4738452.52 485265.48 214.64 WATER658 4738452.67 485267.2 214.63 WATER659 4738452.46 485269.14 214.59 WATER660 4738451.16 485271.24 214.56 WATER661 4738445.13 485272.31 214.19 WATER662 4738444.35 485268.34 214.07 WATER663 4738445.59 485266.08 214.1 WATER664 4738441.55 485270.4 214.02 WATER665 4738440.53 485272.13 213.92 WATER666 4738443.26 485272.04 214.04 WATER667 4738437.63 485251.26 213.71 WATER668 4738438.42 485253.64 213.6 WATER669 4738439.58 485256.39 213.67 WATER670 4738437.13 485258.35 213.63 WATER671 4738436.62 485258.92 213.55 WATER

    28

  • 672 4738436.74 485261.16 213.61 WATER673 4738437.38 485263.39 213.69 WATER674 4738437.79 485265.03 213.67 WATER675 4738438.21 485267.27 213.71 WATER676 4738438.59 485269.13 213.73 WATER677 4738439.07 485271.36 213.76 WATER678 4738440.21 485275.78 214.03 WATER679 4738441.06 485278.75 214.61 WATER680 4738428.96 485275.47 213.58 WATER681 4738429.67 485279.52 214.86 WATER682 4738429.04 485271.65 213.47 WATER683 4738428.47 485268.57 213.34 WATER684 4738427.89 485265.16 213.33 WATER685 4738427.67 485262.61 213.26 WATER686 4738427.87 485259.52 213.19 WATER687 4738427.71 485255.83 213.1 WATER688 4738427.52 485253.92 213.05 WATER689 4738427.18 485250.43 213.05 WATER690 4738427.23 485247.85 213.53 WATER691 4738426.42 485246.21 213.49 WATER692 4738420.39 485245.99 213.35 WATER693 4738419.6 485249.49 212.93 WATER694 4738419.31 485252.73 213.02 WATER695 4738419.36 485256.36 213.07 WATER696 4738419.21 485259.82 213.06 WATER697 4738419.35 485263.48 213.06 WATER698 4738419.06 485266.93 213.02 WATER699 4738419.3 485271.36 213 WATER700 4738418.96 485274.53 213 WATER702 4738420.19 485279.39 213.1 WATER703 4738417.24 485274.44 212.99 WATER704 4738413.66 485272.86 213.02 WATER705 4738407.99 485270.87 213.16 WATER706 4738403.97 485270.72 213.09 WATER707 4738402.71 485269.34 213.13 WATER708 4738398.21 485269.88 213.13 WATER709 4738396.45 485269.82 213.17 WATER

    29

  • 710 4738394.1 485272.57 213.24 WATER711 4738392.72 485274.17 213.19 WATER712 4738390.86 485277.42 213.28 WATER713 4738395.25 485271.11 213.22 WATER714 4738397.98 485268.35 213.2 WATER715 4738400.4 485264.97 213.16 WATER716 4738404.45 485260.27 213.12 WATER717 4738409 485255.03 213.03 WATER718 4738412.54 485251.34 212.94 WATER719 4738416.5 485247 212.86 WATER720 4738412.8 485244.95 212.82 WATER721 4738408.59 485245.34 212.73 WATER722 4738407.31 485246.9 212.69 WATER723 4738406.34 485248.05 212.75 WATER728 4738398.32 485254.24 213.33 WATER730 4738395.98 485257.27 213.41 WATER731 4738394.44 485261.28 213.4 WATER732 4738393.92 485263.37 213.34 WATER733 4738394.34 485263.75 213.32 WATER734 4738392.75 485268.03 213.3 WATER735 4738390.57 485272.52 213.25 WATER736 4738386.62 485269.52 213.67 WATER737 4738384.42 485268.22 214.01 WATER738 4738387.98 485258.89 213.97 WATER739 4738385.4 485261.1 214.18 WATER740 4738385.47 485264.48 213.93 WATER741 4738388.17 485258.47 213.97 WATER742 4738392.13 485255.84 213.79 WATER743 4738396.54 485250.9 213.83 WATER744 4738400.44 485249.04 214.06 WATER745 4738395.14 485255.05 213.47 WATER746 4738392.65 485258.28 213.55 WATER747 4738397.75 485261.28 213.24 WATER748 4738398.67 485261.3 213.24 WATER749 4738404.06 485260.87 213.09 WATER750 4738407.57 485261.98 213.09 WATER751 4738411.51 485262.07 213.03 WATER

    30

  • 752 4738413.92 485262.15 213.06 WATER753 4738419.63 485262.13 213.06 WATER754 4738418.21 485259.01 213.05 WATER755 4738418.13 485256.63 213.02 WATER756 4738424.99 485255.16 213.03 WATER757 4738428.9 485259.55 213.17 WATER758 4738432.54 485262.06 213.35 WATER759 4738438.99 485261.3 213.58 WATER760 4738442.07 485257.28 213.87 WATER761 4738442.59 485252.48 213.88 WATER762 4738442.44 485249.99 214.24 WATER763 4738443.85 485253.38 213.98 WATER764 4738445.03 485252.33 214.09 WATER765 4738446.62 485253.86 214.24 WATER766 4738448.31 485252.29 214.33 WATER767 4738447.74 485251.05 214.31 WATER768 4738450.95 485251.57 214.62 WATER769 4738450.62 485253.47 214.51 WATER770 4738451.5 485255.44 214.63 WATER771 4738449.41 485260.67 214.5 WATER772 4738451.97 485262.81 214.63 WATER773 4738452.29 485265.28 214.61 WATER774 4738453.91 485267.89 214.71 WATER775 4738455.39 485270.44 214.74 WATER

    31

  • Appendix 3: Total Station Survey Points

    ID EASTING NORTHING ELEVATION CODE1 485261.15 4738457.11 215.32 LAND2 485276.98 4738380.9 217.44 LAND3 485272.73 4738469.17 217.63 LAND4 485275.22 4738470.07 218.07 LAND5 485278.43 4738470.87 218.49 LAND6 485279.88 4738467.99 218.52 LAND7 485280.41 4738463.27 218.22 LAND8 485269.86 4738470.3 217.38 LAND9 485268.68 4738461.4 215.32 LAND

    10 485266.44 4738459.62 215.43 LAND11 485263.91 4738459.24 215.53 LAND12 485273.17 4738470.88 217.91 LAND13 485268.98 4738467.34 216.96 LAND14 485262.76 4738464.98 215.85 LAND15 485260.28 4738465.07 216.03 LAND16 485255.64 4738464.58 216.96 LAND17 485251.36 4738463.06 217.15 LAND18 485247.85 4738460.43 217.26 LAND19 485246.48 4738454.59 217.1 LAND20 485245.85 4738449.62 217.13 LAND21 485245.72 4738443.98 217.08 LAND22 485241.62 4738442.26 217.09 LAND23 485242.12 4738448.45 217.06 LAND24 485242.54 4738453.62 217.13 LAND25 485243.03 4738458.26 217.09 LAND26 485244.35 4738463.6 217.31 LAND27 485247.15 4738466.16 217.4 LAND28 485251.77 4738466.5 217.1 LAND29 485257.28 4738467.61 216.8 LAND30 485260.52 4738467.92 216.05 LAND31 485264.05 4738468.69 216.19 LAND32 485267.41 4738470.81 217.13 LAND33 485271.79 4738474.42 217.75 LAND34 485256.77 4738460.21 215.19 LAND

    32

  • 35 485252.99 4738458.22 215.16 LAND36 485252.32 4738460.71 216.02 LAND37 485250.52 4738456.99 215.24 LAND38 485249.7 4738454.73 215.54 LAND39 485249.42 4738452.66 215.5 LAND40 485247.56 4738453.16 216.51 LAND41 485247.24 4738448.36 216.53 LAND42 485248.6 4738445.67 215.58 LAND43 485249.41 4738458.27 216.29 LAND44 485240.72 4738438.02 217.41 LAND45 485277.01 4738380.9 217.45 LAND46 485275.99 4738378.87 217.36 LAND47 485271.15 4738375.84 216.95 LAND48 485265.93 4738376.26 217.17 LAND49 485261.3 4738379.22 217.23 LAND50 485255.87 4738383.59 217.2 LAND51 485250.42 4738388.55 217.2 LAND52 485247.21 4738392.43 217.21 LAND53 485248.25 4738393.45 216.51 LAND54 485249.04 4738394.01 215.89 LAND55 485250.59 4738392.42 215.67 LAND56 485250.28 4738390.77 216.65 LAND57 485253.27 4738389.9 215.66 LAND58 485253.01 4738388.12 216.64 LAND59 485254.99 4738388.46 215.7 LAND60 485255.8 4738386.05 216.53 LAND61 485256.14 4738387.36 215.59 LAND62 485257.16 4738385.37 216.31 LAND63 485257.8 4738386.35 215.53 LAND64 485259.41 4738383.48 216.31 LAND65 485260.42 4738384.34 215.39 LAND66 485261.23 4738381.98 216.29 LAND67 485264.55 4738382.18 215.4 LAND68 485266.82 4738381.31 215.43 LAND69 485269.53 4738381.28 215.35 LAND70 485271.71 4738381.79 215.43 LAND71 485268.62 4738379.12 216.39 LAND

    33

  • 72 485265.56 4738378.62 216.6 LAND73 485275.5 4738384.68 215.89 LAND74 485277.01 4738380.92 217.45 LAND

    34

    1 Abstract2 Survey methodologies2.1 Phase 1: UAV Survey Methodology2.2 Phase 2: Ground Survey Methodology2.3 Phase 3: Reservoir Survey Methodology2.4 Additional Ground Survey Methodology

    3 Results3.1 RGB Encoded Point Cloud3.2 UAV-Derived Products3.3 Classified Survey Points3.4 Survey-derived DTM3.5 Fusion Digital Elevation Model

    4 Future WorkAppendicesAppendix 1: UAV Survey Quality ReportAppendix 2: RTK GPS Ground Survey Points (land and reservoir)Appendix 3: Total Station Survey Points