D09.06.06.presentation

46
RelHy International Workshop on High Temperature Electrolysis Limiting Factors June 09-10, 2009 Karlsruhe, Germany S. Elangovan, J. Hartvigsen, Feng Zhao, Insoo Bay, and Dennis Larsen Office of Naval Research Contract: N00014-08-C-0680 DOE subcontract through Idaho National Lab.

Transcript of D09.06.06.presentation

Page 1: D09.06.06.presentation

RelHy International Workshop on High Temperature Electrolysis Limiting Factors

June 09-10, 2009 Karlsruhe, Germany

S. Elangovan, J. Hartvigsen, Feng Zhao, Insoo Bay, and Dennis Larsen

Office of Naval Research Contract: N00014-08-C-0680DOE subcontract through Idaho National Lab.

Page 2: D09.06.06.presentation

Energy, Environment & Economy• Environment

– Climate Change• GHG sources

– 8 tons CO2 /kW-yr from coal or oil– Leaky natural gas pipelines– Ruminants

• Ozone hole - no, that’s a different topic– Habitat Impacts

• Drilling in Arctic National Wildlife Refuge• Wind turbines in Chesapeake Bay

– Air pollution• Limited Resources

– Oil• National security

– Gas• Heating vs. power generation• Transportation issues

– Renewables

One Thing Is ClearEnergy Is The Key To Prosperity

Page 3: D09.06.06.presentation

Carbon Free Energy Source Options

http://www.eia.doe.gov/emeu/aer/pdf/pages/sec1_6.pdf

• Renewable energy resources– Large Scale Wind

• 800 GW at class 4+ US wind sites– Small Hydro

• 45GW potential, 2000 sites– Concentrator Photovoltaic

• Land area 12km2 /GW – Biomass

• Ag/Forestry byproduct• Carbon neutral cycle assuming production

and processing are carbon free• Nuclear

– 25 new plants announced– Increased output of existing units

• Note trend in figure since 1970

• Hydrogen production from electrolysis• High temperature 29 tons/GW-hr• Conventional 21 tons/GW-hr

Page 4: D09.06.06.presentation

Storing Hydrogen With CO2• Energy Sources

– Wind, Solar (PV & heat), Hydro, Nuclear• Carbon Sources

– Metallurgical Reduction, Cement Kilns– Fermentation, Digester gas– Biomass gasifiers– Fossil Power Systems

• Conversion Technology– SOFC electrolyzer, steam+CO2 => syngas

• Products– SNG, Fischer Tropsch liquids

Page 5: D09.06.06.presentation

Why Electrolytic Synfuels

• Electrolysis efficiency• Energy storage density• Fits in existing distribution infrastructure• Synergy with intermittent energy sources• No added CO2 emissions• Reduced work of compression• Compatible with existing vehicle fleet

– 20 to 50 year crossover

Page 6: D09.06.06.presentation

The New Alchemy: C ⇒ Au

• Turning carbon into gold– Low value carbon

• CO2 -$55/ton (Norway C tax)• Coal $20-100/ton• Bitumen ~ $100/ton

– High value carbon• Natural Gas $444/ton carbon

($7/decatherm)• Crude Oil $888/ton carbon ($105/bbl)• Refined fuel (pre-tax) ~$1000/ton carbon

Page 7: D09.06.06.presentation

Synthetic methane from electrolysis of CO2

From Electrolysis

FromMethanation

Unit

CH4 CO H2 CH4 CO H2

Test 1 .0 14.3 60.7 42.5 0 13.8

Test 2 .7 18.5 58.0 47.7 0 9.2

Test 3 .3 20.1 63.5 50.0 0 9.4

Test 4 .1 15.8 58.9 42.0 0 4.6

Test 5 .1 15.2 59.5 40.4 0 8.2

FEED TO ELECTROLYSIS IS CO2 + H2 O + ELECTRIC ENERGY

Gas analysis in volume %

Page 8: D09.06.06.presentation

FT- Liquid Products

• Ceramatec produced catalyst– FeCuK composition– 8mm La promoted alumina rings– Automated in-situ reduction

profile using dewpoint controlled temperature ramp

– Oil fraction– Water fraction

235°C Reactor Operation

Page 9: D09.06.06.presentation

One Technology - Multiple Modes Of Operation

Fuel

Solid Oxide Stack Module

Electricity

Steam +Electricity

Hydrogen(High Purity)

CO2 & Steam+ Electricity

SyngasNGBiogasDieselJP-8Coal

Page 10: D09.06.06.presentation

SOFC - SOEC Differences

• Cells tested to date are virtually identical– Same electrolyte, electrodes, pattern, etc.

• SOEC seals more challenging– Higher back pressure on seals due to product

collection – Low molecular weight stream vs. reformate

• Diffusion mechanism more active relative to hydrodynamic

• Hydrogen permeation in metal icon destabilizes air side scale

Page 11: D09.06.06.presentation

Sc - ZrO2 (partially stabilized)

Manganite + Zirconia Composite

Cobaltite (current distribution layer)

Ferritic Stainless Steel Separator

air electrode

electrolyte

Corrugated Ferritic Stainless Steel or High Ni alloy

H electrode

Ni + ceria cermet

50 µm50 µm

Ni (current distribution layer)

Corrugated Ni flow field on hydrogen side

Repeat Unit Elements

Page 12: D09.06.06.presentation

Stack Components

Page 13: D09.06.06.presentation

SOEC Limiting Factors• Degradation/Lifetime

– Oxygen bond layer stability– Oxygen electrode

delamination– Electrolyte stability– Chromium migration– Seals– Interconnect scale growth &

resistance– Electrode microstructure

• Electrode coarsening

• Cell Size & Stack Height– Very large cells feasible– Porous metal support

• Thermodynamics– Operating Voltage– Steam Utilization– Co-electrolysis of CO2

• High Temp Heat Duty– 0-15% of energy input– Wind hydrogen feasible

• Energy Cost– $50/MW-hr => $1.72/kg H2

• Amortized CAPEX– 24 month life => $0.46/kg H2

Page 14: D09.06.06.presentation

SOFC-SOEC Contrasts in (Potential:Composion) Space

Vtn

Page 15: D09.06.06.presentation

operating voltage, V

current density, A/cm2he

atflu

x,W

/cm2

-1.4-1.2-1-0.8-0.6-0.4

-0.3-0.2-0.100.10.20.30.4

-0.2

0

0.2

0.4

reactionohmicnet

thermal neutralvoltage

open-cellpotential

electrolysisfuel cell

Stack ASR = 1.25, T = 927 C, yH2,i = 0.1, yH2,o = 0.95

Vtn =−ΔhR

2F

(1.291 V at 1200 K)

Energy of fuel-cell vs. electrolysis mode

|<- 100% Efficiency Range ->|

Page 16: D09.06.06.presentation

Typical SOEC and SOFC Temperature Maps

SOFC ΔT > 90°CResistance doubling ~ 67 °CThermal expansion issues

Page 17: D09.06.06.presentation

System Efficiency vs. Steam+CO2 Utilization

INL Process Model shows little need tooperate with utilization much beyond 50%

Page 18: D09.06.06.presentation

Humidified CO2 Cell V-I CharacteristicCO2ELEC01:800°C

80F H2O, 45CC CO2, 8CC H2

y = -0.6907x + 0.8717

R2 = 0.9997

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

-0.80 -0.70 -0.60 -0.50 -0.40 -0.30 -0.20 -0.10 0.00 0.10 0.20 0.30

Current Density, A/cm^2

Vo

ltag

e,

Vo

lts

No reduction in performance compared to cells with steam electrolysis

Page 19: D09.06.06.presentation

Electrolysis Cells at 20cm Scale

Page 20: D09.06.06.presentation

Half ILS 2x60 Cell Stack Module

Page 21: D09.06.06.presentation

Pre-ILS Module Test at Ceramatec• “Half-ILS Module” test at Ceramatec

– Integrated Laboratory Scale (ILS) Demonstration– 2x60 cell stacks, 10x10 cm cells– Summer 2006, ~2000 hr operation– Cells & Stacks same as full ILS modules 2007,2008– Show performance scales with stack height– Assess system issues with tall stacks– Exercise component production capacity– Probably most extensive post test examination

• Tested component examination– ANL, MIT, UNLV, Ceramatec

Page 22: D09.06.06.presentation

Half ILS Initial Performance

– 3.8 kW– 1,200 Liters/hr– Electrical Efficiency = 96.4%– System thermal distribution issues– 2,000 hrs total operation– 1,000 hrs on CO2 /H2O

• Syngas production sufficient for 100 gallons of FT diesel

Page 23: D09.06.06.presentation

Half ILS module load history

Page 24: D09.06.06.presentation

Half-ILS Post-Test Observations• Electrodes

– Oxygen electrode delamination for 2,000 hr test• No delamination in short stacks tested for shorter periods (~300 hrs)

– Hydrogen electrode & current distribution layer in good condition• Electrolyte

– No cracking– Some cubic to tetragonal/mono-clinic transition noted

• Metal Interconnect Edge Corrosion– Edge rail coating & elimination of silica in seal eliminated the corrosion seen

in early SOEC stacks– Cr transport to air electrode bond layer– Sr migration from air electrode/bond layer

• Gross changes in bond layer chemistry, phase assemblage, conductivity and performance

• Initial Performance Reproducible – short to tall stacks• Unacceptably High Initial Degradation

Page 25: D09.06.06.presentation

720 Cell Full-ILS System at INL 5.7 Nm3/hr - 17.5kW H2 Production

Page 26: D09.06.06.presentation

Full-ILS Module #3 Post Test Examination

Oxygen electrode delamination

Hydrogen electrode attached,bond layer separated with icon

Page 27: D09.06.06.presentation

ILS Module #3 Post Test Examination

Oxygen electrode and iconcontacting layer (bond layer)

It appears a layer depositedat electrode interface is causingthe delamination

Page 28: D09.06.06.presentation

ILS Module #3 Post Test Examination

EDS Indicates only ScSz at theinterface. The apparent depositionlayer is a layer of zirconia thathas spalled off. Our hypothesis isthat Mn diffusing in from the manganite electrode introducesenough electronic conductivityto allow oxygen to evolve insidethe electrolyte, build up pressureand split off a layer near theelectrode.

Page 29: D09.06.06.presentation

ILS Module #3 Post Test Examination

Cobaltite (LSCo) iconcontacting layer (bond layer)

Manganite-Zirconia Composite

Manganite Electrode

Electrode section in following EDS Maps

Page 30: D09.06.06.presentation

Co-Mn Inter-diffusion in Oxygen Electrode

Page 31: D09.06.06.presentation

SOFC Button Cell (early - mid ‘90s)

Fully stabilized custom electrolyte from undoped zirconia LaSrMnO3 ; Ni-YSZ

Page 32: D09.06.06.presentation

SOFC Button Cell (2002)

YSZ electrolyte; Ni-ceria anode; modified manganite

Page 33: D09.06.06.presentation

SOFC Stack (1996)

YSZ electrolyte; Ni-ceria; Modified manganite; ceramic interconnect (doped lanthanum chromite)

Page 34: D09.06.06.presentation

Prioritized Areas of Focus• O2 Electrode Delamination – inherent to SOEC operation?

– Electronic conductivity due to Mn diffusion into electrolyte• Barrier layer & alternative compositions

• O2 Electrode Bond Layer Stability– Sintering-shrinkage, phase change, Cr tol, stoichiometry changes

• O2 Electrode Chromium Poisoning– Solid state diffusion by interconnect contact

• CrMn & CuMn spinel coatings

– Evaporation/Condensation from interconnect, manifold, piping

• Electrolyte Stability– Minimum dopant level (strength trade-off)– How much degradation is allowable

• System BOP Reliability• Seal Stability

Page 35: D09.06.06.presentation

Electrolyte Composition Effect

Page 36: D09.06.06.presentation

Fully Stabilized (FS-ScSZ) Cell Performance

30% Reduction in initial ASRvs. PS-ScSZ

Page 37: D09.06.06.presentation

Initial O2 Electrode Microstructure

Page 38: D09.06.06.presentation

Initial O2 Electrode Microstructure

Page 39: D09.06.06.presentation

Initial H2 Electrode Microstructure

Page 40: D09.06.06.presentation

Initial H2 Electrode Microstructure

Page 41: D09.06.06.presentation

Hydrogen Electrode & Bond Layer

Adherent and conductive hydrogen electrodeMost areas of bond layer separated with flowfield

Page 42: D09.06.06.presentation

Oxygen Electrode and Bond Layer

Extensive delamination of standard manganite Perovskite electrodes

No delamination of new cobalt-ferrite Perovskite electrodes

Page 43: D09.06.06.presentation

O2 Electrode Comparison Stack

Page 44: D09.06.06.presentation

New O2 Electrode Improves Stack Stability

Page 45: D09.06.06.presentation

Metal Interconnect Contact Resistance

Page 46: D09.06.06.presentation

• Leverage decades of SOFC R&D• Inputs

– e- (green electrons)– steam => hydrogen– co-electrolysis of H2 O + CO2 => syngas– heat input optional, depends on operating point

• Most efficiency means of hydrogen production– e- to hydrogen

• η=100% at 1.285V• η= 95% at 1.35V• η=107% at 1.20V, (heat required)

• Hot O2 and steam byproduct– Valuable for biomass gasification

High Temperature Electrolysis