D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in...

62
D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology m Safety Interest Group, pert’s meeting 9 November, 2004

Transcript of D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in...

Page 1: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

D. Schertzer, ENPC, Paris

S. Lovejoy, Physics, McGill

Part 2: Introduction to scaling in precipitation and hydrology

Dam Safety Interest Group,Expert’s meeting 9 November, 2004

Page 2: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Overview

• Fractal Sets, dimensions

• Co-dimensions

• Spectra

• Examples from hydrology

• Nonclassical Probability distributions

Page 3: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Some Classical Fractal sets and their dimension

– Cantor set• Cantor square

• Devil’s staircase

– Koch snowflake– Sierpinski Triangle

• Sierpinski Pyramid

– Peano curve

Page 4: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Cantor set

• Let us start with:

and let us iterate:

Page 5: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Koch snowflake

Let us start with:

and let us iterate:

Page 6: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Fractal Dimension• THE SIMPLEST METHOD

– take advantage of self-similarity. – a 1-dimensional line segment with the

magnification of 2, yields 2 identical line segments,

– a 2-dimensional (e.g.square or a triangle), with the magnification of 2, yields 4 identical shapes,

– a 3-dimensional cube, magnify it 2 times. you will get 8 identical cubes,

Page 7: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Fractal Dimension (2)

• Let’s use a variable D for dimension, for magnification, and N for the number of identical shapes:

» DN=

• Or:

• D = log N / log

Page 8: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

First Examples

– Cantor Set:

D = log N / log log 2 / log ≈ 0.63

-Koch Snowflake:

D = log N / log log 4 / log ≈1.26.

Page 9: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

– Daily Rain Fall Events in Dedougou (SW Africa):1922-1966

– Each line is a different year,

– eachblack point a rainy day.

– Cantor-like set– D≈log(7)/log(12):

• i.e. divide into 12 parts keep only 7..

– (Hubert et Carbonnel, 1990)

Rain Fall Events

Page 10: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Cantor Square

D= log 4/ log 3≈1.26

Page 11: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

CASCADES

• Isotropic Cascade. The left hand side shows an non-intermittent (“homogeneous”) cascade, the right hand side shows how intermittency which can be modeled by assuming that sub-eddies are either “alive” or “dead” (model”).

L

LL/2

L/2

L/2

L/2

N(L) ã L- D N(L) ã L- Ds

Ln 4

Ln 2Ln 3™™

D = ™™Ln 2

= 2

D =s= 1.58

ISOTROPIC

= self similarity

Page 12: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

-model

•The -model for   2, C = 0.2. •the set of the surviving “active” regions has a dimension equal to D= 2-C = 1.8.•the cascade process is iterated an infinite number of times, here it is followed for only four generations on a 256  256 point grid,

•Novikov and Steward (1963), Mandelbrot (1974), Frisch et al (1978)

Page 13: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Sierpinski Triangle

• or :

Page 14: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Sierpinski Triangle (2)

• D= log 3 /log 2 ≈ 1.58.

Page 15: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Sierpinski Pyramid

• First iteration:

D = log 4/ log 2 But DT = 1

10 th iteration:

Page 16: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Topological Dimension

– Definition:• the empty set Ø has topological dimension -1. • the topological dimension of a set is DT if and only if you can

disconnect it (by cutting it) by taking out a subset of topological dimension DT-1.

– Classical examples:» isolated point(s) DT = 0 can be cut only by Ø» lines DT =1 can be cut by an isolated point» Surfaces DT = 2 can be cut by a line.

– indeed a topological invariant, i.e. invariant under 1:1 and bicontinuous transformations.

Page 17: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Peano Curve

• motif:

D=log 9 / log 3 = 2i.e. it is a plane filling line

iterations:

A model of hydraulic network, From Steinhaus 1962

Page 18: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Geometric Method•The similarity method is

great for a fractal composed of a certain number of identical versions of itself…

•A way out: graph log(size) against log(magnification),

•details add additional irregularities, which add to the measurement.

• Fractal dimension = slope

Cloud perimeters over 5 decades yield D≈1.35 (Lovejoy, 1982)

Page 19: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Isotropic Scale Invariance and fractal sets

Fractal Dimension:

L

d=dimension of spaceD= fractal dimension of set

C=d-D= fractal codimension

Scale invariance:

Same form after zoom by factor .

n L( ) ∝ L

D

ρ L( ) =

n L( )

L

d

= ∝ L

D − d

= L

− C

n L( ) =

D

n L( ) D=scale invariant

Page 20: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Box Counting Dimension

• Sketch of the lava flow field from Etna (1900-1974) using box-counting technique:

• resolution is decreased by factors of 2 at each step. The finest resolution was 43 m.

• From Gaonac'h et al (1992).

N( λB ∩ A)~ −Dg(A)λ

“Defined” as the scaling exponent of the number of (nearly) disjoint boxes necessary to cover A:

Better understood as a crude “approximation” of the Hausdorff dimension

Page 21: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Are classical geostatistics Applicable to rain?

A

B C D

E F G

NT (L) ≈ −D(T)L

A) the field is shown with two isolines that have thresholds values; the box size is unity. In B), C) and D), we cover areas whose value exceeds by boxes that decrease in size by factors of two. In E), F) and G) the same degradation in resolution is

applied to the set exceeding the threshold.

-Classical geostatistics: D(T)=2-Monofractal: D(T)=const <2 , -Multifractal: D(T)<2,

decreasing function

Test using functional box

counting

Area =LimL→ 0 L2NT (L)( )

≈LimL→ 02−D(T )L → 0;

D T( ) < 2

Page 22: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Functional Box counting on 3D radar rain scans

102101100

L

101

102

103

104

N(L

)

101

L

101

102

103

104

105

N(L

)

reflectivity thresholds increasing (top to bottom) by factors of 2.5 (dat from Montreal).

NT (L) ≈ −D(T)L

Log10 N(L)

Log10 L

horizontal

Vertical and horizontal

Science: Lovejoy, Schertzer and Tsonis 1987

100km1km 1km 10km

Classical geostatistics

Page 23: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Functional box counting on French topography: 1 -1000km

103102101100100

101

102

103

104

105

106

L

N(L)

N(L) = number of covering boxes for exceedance sets at various altitudes. The dimensions d increase from 0.84 (3600m) to 1.92 (at 100m).

3600m

1800m100m

km

N(L)L-D

Multifractal: slopes vary with threshold

Lovejoy and Schertzer 1990

Slope =2 (required for classical geostatistics -regularity of Lebesgue measures)

Systematic resolution dependence

Page 24: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Fractal Codimension– Geometric definition:

• natural extension of vector subspace codimension

• If the set is A included in E (embedding space): D(A)=dim(A)< dim(E)=d

• Geometrical codimension: Cg (A)=d-D(A)

– As a consequence Cg is bounded:

• O≤Cg (A)≤d

Ex. In 3D space (dim(E)=3), the codimension of a line (dim(A)=1) is: Cg=3-1=2

Page 25: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Fractal Codimension (2)– stochastic processes:

• Probability of events, not the number of occurences

– Statistical definition:

• Codimension = scaling exponent of the

probability that a -dimensional ball of

resolution coversintersects A

Pr(Bλ ∩ A)=λ−c(A)

Pr(B3λ

∩ A)Pr(Bλ ∩ A)

=23

=3−C(A) ⇒ C(A)=log(3/2)log(3)

=1−log(2)log(3)

Example of the Cantor Set

Page 26: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Fractal Codimension (3)

Pr( λB ∩ A)~N( λB ∩ A)N( λB ∩ E)

~ −Dg(A)λ

−dλ

C(A)>d⇒ C(A) >Cg(A) (≡d)C(A)>d

D(A)≡d−C(A)⎫ ⎬ ⎭

⇒ D(A)<0

gC (A)<d=dim(E) <∞⇒ Cg(A)≡C(A)

• Relating the two definitions:

‘ latent dimension ’ paradox, in fact a statistical exponent !

Unbounded codimension

bounded codimension

Page 27: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Meteorological measuring network

L

Fractal set: each point is a station

9962 stations (WMO)

Number

n L( ) ∝ LD

Density ρ L( ) = n L( )L−2 ∝ L−C ; C = d − D; d = 2

Page 28: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

The fractal dimension of the network=

1.75

Slope=D=1.75

L et al 86

C=2-1.75=0.25

Page 29: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Intersection Theorem

• if independent:

E1 ⊂E E2 ⊂E

C(E1 ∩ E2)=C(E1)+C(E2)

Pr(E1 ∩ E2) =Pr(E1)Pr(E2)

a trivial consequence of:

no trivial results for geometrical codimensions !

Ex. Sparse but violent regions of storms - no matter how “large” - with D<0.25 cannot be detected by the global network

Consequence: if C (E1 ∩E2 ) > D then the intersection is almost surely empty

Page 30: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Energy Spectra

Page 31: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Correlation functions, structure functions

For stationary processes X (statisticallytranslationally invariant along the time axis), wedefine

R τ( ) = X t( ) X t − τ( )

S τ( ) = X t( ) − X t − τ( )( )

2

R( )t is the correlation function, S( )t is thestructurefunctionandtherandomprocessX( )t isnonzerooverthe intervalfrom- /T 2to+ /T 2.The y arerelate d b:y

S τ( ) = 2 R 0( ) − R τ( )( )

wh en R(τ),R(0)diverge, (S τ)ca nconverge.

tT/2-T/2

X(t)

Page 32: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Spectral densities

%X ω( ) = X t( )−∞

∫ e−iωtdt

P ω( ) =

1T

%X ω( )2

in 1-D "spectral density" (e.g. time) is defined as:

in D dimensions (e.g. space):

%X k( ) = X r( )∫ e−i k⋅rdr

P k( ) =

1N

%X k( )2

Page 33: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

The(isotropic)

“spectrum”E k( ) = P k( )dD k

k=k∫

In D dimensions:

E ω( ) =P ω( ) + P −ω( ) =2P ω( )

In 1-D:

k = kwhere

Page 34: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Wiener-Khintchin Theorem

P k( ) = R r( )−∞

∫ e−ik⋅rdr

This is the "Wiener Khintchin theorem" which relates the spectral density to autocorrelation function of a stationary process.

Page 35: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Tauberian theorem

E ω( ) ≈ω−

POWER LAWS F.T. POWER LAWS

S τ( ) ≈τ 2H ; H = −1( ) / 2

Note this is valid for 1<<3 (0≤H≤1) for S(τ), 1< (H<0) for R(τ).

Fourier scaling:

Structure function scaling:

Page 36: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Spectra in hydrology

Page 37: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

1m

QuickTime™ and aAnimation decompressor

are needed to see this picture.

f295, 11293 drops

Page 38: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

The angle averaged drop spectra5 storms, 18 triplets

Top: f142, 2nd= f145, 3rd=f295, 4th=f229, 5th=f207 thick line has theoretical slope: -2-5/3

1m-1

White noise(standard theory)

Corrsin-Obukov passive scalar theory

E k( ) ≈k−5/

Page 39: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Temporal Scaling of radar rain reflectivities

Temporal spectrum of the radar reflection from a single 30X27X37m pulse volume at 1km altitude. ω is in Hz.

(Duncan 1993)

E k( ) ≈k−5/

Page 40: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Hourly Rainfall

11 Years of hourly rainfall in Assink.De Lima 1998.

Synoptic maximum

Log10 frequency (hr-1)

Log

10

En e

r gy

0.00001 0.0001 0.001 0.01 0.1 1 r-

.

0.01

0.10.2

Page 41: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

7

6

5

4

3

log

10

E(

ω

)

-.5 -.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

log10

ω (days

-1

)

16days

1Year

Temporal scaling and the Synoptic maximum

6.0

5.5

5.0

4.5

4.0

3.5

3.0

log

10

E(

ω

)

-.5 -.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

log10

ω (days

-1

)

16days

1Year

16 days = « synoptic maximum » = the lifetime of planetary size structures.

Tessier, Lovejoy, Schertzer, 1996

2 days11 years

RAIN

RIVER FLOWAverage daily river flow and rain for 30 French stations (catchments< 200km2).

Page 42: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

a= Mississippib=Susquahanac=Arkansas d= Osagee=Colorado f=McCloudg=North Nashuah=Milli= Pendeltonj=Rocky Brook

Synoptic maximum

Pandey, Lovejoy, Schertzer, 1998

Spectra of

rivers from 1 day to

70 years

Ensemble average

Page 43: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Low frequency rain spectra

Fraedrich and Larnder 1993

=0.5

The average spectrum from 13 stations in Germany (daily precip)

Annual peak

Synoptic maximum

Page 44: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Climate: Northern Hemisphere average temperatures

From Lovejoy and Schertzer 1985

=1.8

Page 45: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Scaling of paleotemperatures: GRIP Greenland Ice Core

2001501005000

-44

-42

-40

-38

-36

-34

-32

-30

Figure 1

Time (kyr BP)

δΟ18

(%)

0,50,0-0,5-1,0-1,5-2,0-2,5

1

2

3

4

5

6

Figure 2

log (f) (kyr)

log (E(f))

f

-1.4

10

10

-1

High resolution (200 yr average) record the GRIP Greenland ice

core (Johnsen et al., 1992; GRIP members, 1993; Dansgaard et al.,

1993): •3,000 m long, 1,200 data points • sharp fluctuations at small time scales.

The power spectrum of the data (log-log plot); •global straight line is an indication of scaling. •no obvious frequency at (20 kyr)-1 or (40 kyr)-1

Schmitt, Schertzer Lovejoy 1995

Page 46: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Spatial Spectrum of radar reflectivity

k-1.45

Horizontal spectrum of 256X256 (McGill) radar scan with 75m resolution (from Tessier et al 1993).

Page 47: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Montreal Clouds: spectra

10

15

20

25

30

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5

log E(k)

log k (1/m)

10

10

5

10

15

20

25

30

35

-3.5 -3 -2.5 -2 -1.5 -1 -0.5

log E(k)

log k (1/m)

10

10

Spectra of the smaller scenes, seperated in the vertical for clarity, with power law regressions shown

Sachs, Lovejoy, Schetzer 2002

Larger scenes

Page 48: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

What is the outer scale of atmospheric turbulence?

Spectra of hundreds of satellite images spanning the scale range 1-5000 km, and 38 clouds spectra (1m-1km) from ground camera.

A multifractal analysis is more informative (see below).

Leff > 5 000 km !!

7

8

9

10

11

12

13

14

15

-4 -3 -2 -1 0 1 2 3

log E(k)10

log k (1/km)

AVHRR 12

GMS 5

SPOT

Photography

10

Lovejoy and Schertzer 2002

Page 49: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Topo-graphy

Spectrum

(20000km)-1 (1m)-1

Energy spectra over a scale range of 108 Global (ETOPO5, 10km), continental US (GTOPO30: 1km and 90m), Lower Saxony, 20cm).

Inadequate dynamic range

Slope -1.8

Page 50: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Fractional Integration and Differentiation

Page 51: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Brownian motion

Brownian motion X(t) is given by:dX

dt

= p ( t ) X t( ) = p ′t( ) d ′t

− ∞

t

p(t) is a white noise.

In Fourier space:

i ω

˜

X ( ω ) =˜

p ( ω )

The structure function:

S τ( ) = τ σ

2

Page 52: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Fractional Integration, Fractional Brownian Motion

Consider the generalization:

d

s

X

s

dt

s

= p ( t )

withsoluti :on

X

s

t( ) = I

s

p t( )( )

whereIsisthefractionalintegral(s>0)derivative( <s 0) of the

function .pInfourierspace this isparticularlysimple:

i ω( )

s

˜

X

s

t( ) =˜p ω( )

˜

X

s

t( ) =˜p ω( ) i ω( )

− s

henc e for thespectr :um

E

Xs

ω( ) = E

p

ω( ) ω

− 2 s

= σ

2

ω

− 2 s

Page 53: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Real space properties

The structure function of Xs is obtained by the Tauberian theoremas above:

S τ( ) = τ

2 H

withH=-1s /2.For thesolutionXs(t):

X

s

t( ) = p t( ) ∗

Θ t( )

t

1 − s

whereΘ t( ) istheHeavisidefunction(=1,t<0,=0, ≥0t )andwehaveusedthetheconvol ution theorem ontheequation

˜

Xs

t( ) = ˜p ω( ) i ω( )

− s

and:

Thi s yields:

i ω( )

− s

F . T .

1

Γ s( )

Θ t( )

t

1 − s

X

s

t( ) =

1

Γ s( )

p ′t( )

t − ′t( )

s − 1

d ′t

− ∞

t

Page 54: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Dimensions and spectraFor monofractal functions:

C=H=(-1)/2

So that for surfaces defined by d dimensional processes:

Dsurf=d+1-C=d+(3-)/2

Although this relation has been frequently used to estimate Dsurf

from , it is only valid for monofractals

Page 55: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Probability Distributions

Pr x > s( ) = p x( )dxs

Pr x > s( ) < e−as; s>>1

Pr x > s( ) ≈s−qD ; s>>1

(Tail) Cumulative Distribution Function

“Thin tailed” distributions

“Fat tailed” distributions (e.g. “Pareto” / power law)

Moments xq = xqdPr

−∞

∫ xq → ∞; q≥qD

Page 56: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Hydrometeorological long time series

Return period 100 years (algebraic law)

Return period 1000 years (exponential law)

Padova series (Italy): empirical probability distribution (dots), normal fit (continouous line) and aymptotic power-law (dashed line).

Bendjoudi et Hubert Rev. Sci. Eau,1999

qD ≈4

Page 57: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Radar reflectivity of rain:

Probability distributions

Probability distribution of radar reflectivities from 10 constant altitude maps (resolution varying from 0.25 to 2.5 km, range 20 to 200km).

qD=1.06

From Schertzer and Lovejoy 1987.

Page 58: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

French rivers and precipitation (<200km2)

-6

-5

-4

-3

-2

-1

0

210-1

log Pr (P' > P)

10

log P

10

210-1

-6

-5

-4

-3

-2

-1

0

log Q

10

log Pr (Q' > Q)

10

Prob of a daily river flow Q' exceeding Q from 30 time series from the corresponding river.

Prob of a daily rainfall accumulation P' exceeding P from 30 time series,

France.qD = 2.7

qD = 3.6

Pr ′P > P( )≈P−qD

PqD → ∞; q>qD

French river, small basins Tessier, L+S 1996

Page 59: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Probability distributions of Normalized US Rivers: Divergence of moments

Pr ′Q >Q( ) ≈Q−qD

QqD → ∞; q> qDExtreme events

20 US rivers with basins in the range 4-106 km2; 10-75 years in length

Pandey, Lovejoy, Schertzer 1998

Page 60: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Temperature distributions, northern hemisphere

4 years

16 years

64 years

qD=5

Lovejoy and Schertzer 1985 (data from Jones et al 1982)

Page 61: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Temperature probability distributions for paleotemperatures

qD=5

350 years

1400 years

5600 years22400 years

Lovejoy and Schertzer 1985 (data from Greenland Camp Century core)

Page 62: D. Schertzer, ENPC, Paris S. Lovejoy, Physics, McGill Part 2: Introduction to scaling in precipitation and hydrology Dam Safety Interest Group, Expert’s.

Conclusions1. Scaling/scale invariant sets are fractalsFractal dimensions and codimensions are scaling exponents

2. Scaling fields multifractals, spectral analysis.

3. Rain, temperature, topography, river flow show wide range scaling.

4. Probabilities can have “fat tails”: slow, algebraic fall-off.