D. L. Bruhwiler, 1 G. I. Bell, 1 A. Sobol, 1 P. Messmer, 1 J. Qiang, 2 R. Ryne, 2 W. Mori, 3 A....

40
D. L. Bruhwiler, 1 G. I. Bell, 1 A. Sobol, 1 P. Messmer, 1 J. Qiang, 2 R. Ryne, 2 W. Mori, 3 A. Fedotov, 4 I. Ben- Zvi, 4 V. Litvinenko, 4 S. Derbenev, 5 R. Li, 5 Y. Zhang, 5 L. Merminga 5 COMPASS – Community Petascale Project for Accelerator Science and Simulation Parallel Electron Cooling Simulations for SciDAC 1. Tech-X Corporation 2. Lawrence Berkeley National Lab 3. Univ. of California at Los Angeles 4. Brookhaven National Lab 5. Thomas Jefferson National Lab

Transcript of D. L. Bruhwiler, 1 G. I. Bell, 1 A. Sobol, 1 P. Messmer, 1 J. Qiang, 2 R. Ryne, 2 W. Mori, 3 A....

Page 1: D. L. Bruhwiler, 1 G. I. Bell, 1 A. Sobol, 1 P. Messmer, 1 J. Qiang, 2 R. Ryne, 2 W. Mori, 3 A. Fedotov, 4 I. Ben-Zvi, 4 V. Litvinenko, 4 S. Derbenev,

D. L. Bruhwiler,1 G. I. Bell,1 A. Sobol,1

P. Messmer,1 J. Qiang,2 R. Ryne,2

W. Mori,3 A. Fedotov,4 I. Ben-Zvi,4

V. Litvinenko,4 S. Derbenev,5

R. Li,5 Y. Zhang,5 L. Merminga5

COMPASS – Community Petascale Project for Accelerator Science and

Simulation

Parallel Electron CoolingSimulations for SciDAC

1. Tech-X Corporation2. Lawrence Berkeley National Lab3. Univ. of California at Los Angeles4. Brookhaven National Lab5. Thomas Jefferson National Lab

Page 2: D. L. Bruhwiler, 1 G. I. Bell, 1 A. Sobol, 1 P. Messmer, 1 J. Qiang, 2 R. Ryne, 2 W. Mori, 3 A. Fedotov, 4 I. Ben-Zvi, 4 V. Litvinenko, 4 S. Derbenev,

COMPASS Kick-Off Meeting p. 2SciDAC – September 17, 2007 – Fermilab

Physics Motivation for Cooling Ion Beams

• A future polarized e-/ion collider is required to better probe the hadronic structure of matter– goal of the international nuclear physics community– ion luminosity of order 1033-1035 cm-2 s-1 is required

• orders of magnitude larger than present state-of-the-art– DOE Office of Nuclear Physics has two long-term concepts

• eRHIC (add e- linac+ring to the RHIC complex)• ELIC (add e- ring & ion linac+ring to Jefferson Lab)

• Higher luminosity requires cooling of ion beams– “electron cooling” is included in all present designs

• RHIC II luminosity upgrade requires e- cooling– near-term priority of the Office of Nuclear Physics– stochastic cooling is being implemented and may be good enough

• recent success of M. Blaskiewicz, M. Brennan & many collaborators• won’t work at higher intensities of eRHIC or ELIC

• Low-energy operation of RHIC is planned in 2010– recent idea to explore new physics– adequate statistics may require cooling for high luminosity

• Completely new idea: “coherent electron cooling”– combination of e- cooling and stochastic cooling– if it works, could provide 10x increase of friction or more

Page 3: D. L. Bruhwiler, 1 G. I. Bell, 1 A. Sobol, 1 P. Messmer, 1 J. Qiang, 2 R. Ryne, 2 W. Mori, 3 A. Fedotov, 4 I. Ben-Zvi, 4 V. Litvinenko, 4 S. Derbenev,

COMPASS Kick-Off Meeting p. 3SciDAC – September 17, 2007 – Fermilab

Courtesy of A. Fedotov et al., COOL ’07 Presentation (Sep. 10, 2007)

Page 4: D. L. Bruhwiler, 1 G. I. Bell, 1 A. Sobol, 1 P. Messmer, 1 J. Qiang, 2 R. Ryne, 2 W. Mori, 3 A. Fedotov, 4 I. Ben-Zvi, 4 V. Litvinenko, 4 S. Derbenev,

COMPASS Kick-Off Meeting p. 4SciDAC – September 17, 2007 – Fermilab

Electron Cooling for RHIC II

Page 5: D. L. Bruhwiler, 1 G. I. Bell, 1 A. Sobol, 1 P. Messmer, 1 J. Qiang, 2 R. Ryne, 2 W. Mori, 3 A. Fedotov, 4 I. Ben-Zvi, 4 V. Litvinenko, 4 S. Derbenev,

COMPASS Kick-Off Meeting p. 5SciDAC – September 17, 2007 – Fermilab

tp

Image courtesy of V. Litvinenko, BNL

Page 6: D. L. Bruhwiler, 1 G. I. Bell, 1 A. Sobol, 1 P. Messmer, 1 J. Qiang, 2 R. Ryne, 2 W. Mori, 3 A. Fedotov, 4 I. Ben-Zvi, 4 V. Litvinenko, 4 S. Derbenev,

Merminga, EIC2007, Apr 6-7 2007

ELIC LayoutELIC Layout

30-225 GeV protons15-100 GeV/n ions

3-9 GeV electrons3-9 GeV positronsGreen-field design of ion

complex directly aimed at full exploitation of science program.

Page 7: D. L. Bruhwiler, 1 G. I. Bell, 1 A. Sobol, 1 P. Messmer, 1 J. Qiang, 2 R. Ryne, 2 W. Mori, 3 A. Fedotov, 4 I. Ben-Zvi, 4 V. Litvinenko, 4 S. Derbenev,

COMPASS Kick-Off Meeting p. 7SciDAC – September 17, 2007 – Fermilab

Dynamical Friction/Diffusion is Long in the Tooth

• Case of isotropic plasma, with no external fields, was first explained 65 years ago– S. Chandrasekhar, Principles of Stellar Dynamics

(U. Chicago Press, 1942).– B.A. Trubnikov, Rev. Plasma Physics 1 (1965), p. 105.– NRL Plasma Formulary, ed. J.D. Huba (2000).

– Physics can be understood in two different ways• Binary collisions (integrate over ensemble of e-/ion collisions)• Dielectric plasma response (ion scatters off of plasma waves)

e-

e-

e-

e-

Page 8: D. L. Bruhwiler, 1 G. I. Bell, 1 A. Sobol, 1 P. Messmer, 1 J. Qiang, 2 R. Ryne, 2 W. Mori, 3 A. Fedotov, 4 I. Ben-Zvi, 4 V. Litvinenko, 4 S. Derbenev,

COMPASS Kick-Off Meeting p. 8SciDAC – September 17, 2007 – Fermilab

Idea for Electron Cooling is 40 Years Old

• Budker developed the concept in 1967– G.I. Budker, At. Energ. 22 (1967), p. 346.

• Many low-energy electron cooling systems:– continuous electron beam is generated– electrons are nonrelativistic & very cold– electrons are magnetized with a strong solenoid field

• suppresses transverse temperature & increases friction

• Fermilab has shown cooling of relativistic p-bar’s– S. Nagaitsev et al., PRL 96, 044801 (2006).

– 4.3 MeV e-’s (≈8) from a customized DC source– electrons are unmagnetized (solenoid for focusing)

• RHIC II, eRHIC, ELIC need “high-energy” cooler– 100 GeV/n -> ≈108 -> 54 MeV bunched electrons– Cooling is less efficient; new parameter regime

Page 9: D. L. Bruhwiler, 1 G. I. Bell, 1 A. Sobol, 1 P. Messmer, 1 J. Qiang, 2 R. Ryne, 2 W. Mori, 3 A. Fedotov, 4 I. Ben-Zvi, 4 V. Litvinenko, 4 S. Derbenev,

COMPASS Kick-Off Meeting p. 9SciDAC – September 17, 2007 – Fermilab

tp

RHIC II Electron Cooling System

Image taken from “RHIC II White Paper,” http://www.bnl.gov/cad/ecooling/docs/PDF/RHIC%20II_White_Paper.pdf

Page 10: D. L. Bruhwiler, 1 G. I. Bell, 1 A. Sobol, 1 P. Messmer, 1 J. Qiang, 2 R. Ryne, 2 W. Mori, 3 A. Fedotov, 4 I. Ben-Zvi, 4 V. Litvinenko, 4 S. Derbenev,

Merminga, EIC2007, Apr 6-7 2007

ELIC Circulator CoolerELIC Circulator Cooler

ion bunch

electron bunch

Electron circulator ring

Cooling section

solenoid

kickerkicker

SRF Linac

dump

electron injector

energy recovery

Page 11: D. L. Bruhwiler, 1 G. I. Bell, 1 A. Sobol, 1 P. Messmer, 1 J. Qiang, 2 R. Ryne, 2 W. Mori, 3 A. Fedotov, 4 I. Ben-Zvi, 4 V. Litvinenko, 4 S. Derbenev,

COMPASS Kick-Off Meeting p. 11SciDAC – September 17, 2007 – Fermilab

VORPAL supports use of BETACOOL

• BETACOOL code is used to model many turns• A.O. Sidorin et al., Nucl. Instrum. Methods A 558, 325 (2006).• A.V. Fedotov, I Ben-Zvi, D.L. Bruhwiler, V.N. Litvinenko, A.O. Sidorin,

New J. Physics 8, 283 (2006).

– a variety of electron cooling algorithms are available• in particular, models for the dynamical friction force

– many mechanisms for emittance growth are included

• VORPAL is used to study microphysics of friction– to increase understanding & make BETACOOL more effective

Page 12: D. L. Bruhwiler, 1 G. I. Bell, 1 A. Sobol, 1 P. Messmer, 1 J. Qiang, 2 R. Ryne, 2 W. Mori, 3 A. Fedotov, 4 I. Ben-Zvi, 4 V. Litvinenko, 4 S. Derbenev,

COMPASS Kick-Off Meeting p. 12SciDAC – September 17, 2007 – Fermilab

Numerical Approaches for Electron Cooling Simulations

• Langevin approach to solve Fokker-Planck equation– uses Rosenbluth potential (or Landau integral)– proof-of-principle demonstrated; to be extended to e-/ion interactions

• Fast multipole method (FMM) and tree-based algorithms– requires constant time step; inefficient for MD with a few close collisions– being reconsidered as part of the Langevin approach

• 4th-order predictor-corrector “Hermite” algorithm– taken from astrophysical dynamics community– generalized to include solenoid field– used successfully in molecular dynamics (MD) approach with a few ions– didn’t parallelize well, so we used a task farming approach

• astrophysicists use special “Grape” hardware to parallelize• Semi-analytic binary collision model

– also MD approach; very close connection to “Hermite” algorithm above– accurately models arbitrarily strong Coulomb collisions– arbitrary external fields included via 2nd-order operator splitting– scales well up to ~128 processors; must be generalized for petascale

• Electrostatic particle-in-cell (PIC)– cannot directly capture close Coulomb collisions– will rely on PETSc/Aztec00 for effective use of petascale hardware– could be combined effectively with “binary collision” model

Page 13: D. L. Bruhwiler, 1 G. I. Bell, 1 A. Sobol, 1 P. Messmer, 1 J. Qiang, 2 R. Ryne, 2 W. Mori, 3 A. Fedotov, 4 I. Ben-Zvi, 4 V. Litvinenko, 4 S. Derbenev,

COMPASS Kick-Off Meeting p. 13SciDAC – September 17, 2007 – Fermilab

Self-Consistent Langevin Solution of the Fokker-Planck/Landau Equation

Page 14: D. L. Bruhwiler, 1 G. I. Bell, 1 A. Sobol, 1 P. Messmer, 1 J. Qiang, 2 R. Ryne, 2 W. Mori, 3 A. Fedotov, 4 I. Ben-Zvi, 4 V. Litvinenko, 4 S. Derbenev,

COMPASS Kick-Off Meeting p. 14SciDAC – September 17, 2007 – Fermilab

A Test Example Showing Temperature Exchange in a 2-Species System

Page 15: D. L. Bruhwiler, 1 G. I. Bell, 1 A. Sobol, 1 P. Messmer, 1 J. Qiang, 2 R. Ryne, 2 W. Mori, 3 A. Fedotov, 4 I. Ben-Zvi, 4 V. Litvinenko, 4 S. Derbenev,

COMPASS Kick-Off Meeting p. 15SciDAC – September 17, 2007 – Fermilab

The Parallel VORPAL Framework is used to Simulate the Microphysics of Electron Cooling

• Electromagnetic PIC for laser-plasma– Nieter & Cary, J. Comp. Phys. (2004).

• Electrostatic PIC for beams & plasma– Messmer & Bruhwiler, Comp. Phys. Comm. (2004)

• Algorithms for simulating electron cooling physics– Fedotov, Bruhwiler, Sidorin, Abell, Ben-Zvi, Busby, Cary & Litvinenko, Phys. Rev.

ST/AB (2006).– Fedotov, Ben-Zvi, Bruhwiler, Litvinenko & Sidorin, New J. Phys. (2006).– Bell, Bruhwiler, Fedotov, Sobol, Busby, Stoltz, Abell, Messmer, Ben-Zvi &

Litvinenko, “Simulating the dynamical friction force on ions due to a briefly co-propagating electron beam,” J. Comp. Phys., in preparation.

• SRF Cavities, Electron guns, Dielectric structures (PBG)…– Nieter et al., J. Comp. Phys., in preparation.– Dimitrov, Bruhwiler, Smithe, Messmer, Cary, Kayran & Ben-Zvi, Proc. ICFA Beam

Dynamics Workshop on Energy Recovery Linacs (2007), in press.– Werner & Cary, J. Comp. Phys., in preparation.

• Large software development team (Tech-X & CU)– C++/MPI, object-oriented, template techniques, multi-physics– parallel or serial; cross-platform (Linux, AIX, OS X, Windows)

• Actively used throughout the beam & plasma communities– BNL, JLab, Fermilab, LBL, ANL, some universities, also outside the USA– commercial customers

• Development and use has been supported by several agencies since 2000– US DOE Office of Science (HEP, NP, FES & ASCR)– NSF (original grant); DOD (AFOSR, OSD)

Page 16: D. L. Bruhwiler, 1 G. I. Bell, 1 A. Sobol, 1 P. Messmer, 1 J. Qiang, 2 R. Ryne, 2 W. Mori, 3 A. Fedotov, 4 I. Ben-Zvi, 4 V. Litvinenko, 4 S. Derbenev,

COMPASS Kick-Off Meeting p. 16SciDAC – September 17, 2007 – Fermilab

Molecular dynamics approach – model each e-

Diffusive spreading of ion trajectories obscures any velocity drag due to dynamical friction.

For many millions of turns, friction forces will dominate diffusion.

Page 17: D. L. Bruhwiler, 1 G. I. Bell, 1 A. Sobol, 1 P. Messmer, 1 J. Qiang, 2 R. Ryne, 2 W. Mori, 3 A. Fedotov, 4 I. Ben-Zvi, 4 V. Litvinenko, 4 S. Derbenev,

COMPASS Kick-Off Meeting p. 17SciDAC – September 17, 2007 – Fermilab

Diffusive dynamics can obscure friction/drag

• Numerical trick of e-/e+ pairs can suppress diffusion– idea came from Alexey Burov– simulate with e-/e+ pairs that have identical initial conditions

• sign of external fields must be flipped for the positrons

– friction force, independent of sign of charge, is unchanged– diffusive kicks are approximately cancelled

• also use ~1,000 trajectories for each electron– RMS is reduced by Ntraj

1/2 from that of the original distribution

• from the Central Limit Theorem

• Use of many trajectories sometimes changes results !!– always true for field free case:

– in presence of external fields• some other limitation on min may hide this problem

• also,higher effective e- velocity can decrease res

trajreserel

trajcsimres N

nv

NN

,

Page 18: D. L. Bruhwiler, 1 G. I. Bell, 1 A. Sobol, 1 P. Messmer, 1 J. Qiang, 2 R. Ryne, 2 W. Mori, 3 A. Fedotov, 4 I. Ben-Zvi, 4 V. Litvinenko, 4 S. Derbenev,

COMPASS Kick-Off Meeting p. 18SciDAC – September 17, 2007 – Fermilab

CLT is used to pull <F> and error bars from binned data

Page 19: D. L. Bruhwiler, 1 G. I. Bell, 1 A. Sobol, 1 P. Messmer, 1 J. Qiang, 2 R. Ryne, 2 W. Mori, 3 A. Fedotov, 4 I. Ben-Zvi, 4 V. Litvinenko, 4 S. Derbenev,

COMPASS Kick-Off Meeting p. 19SciDAC – September 17, 2007 – Fermilab

Diffusive dynamics of ions can be correctly modeled

Page 20: D. L. Bruhwiler, 1 G. I. Bell, 1 A. Sobol, 1 P. Messmer, 1 J. Qiang, 2 R. Ryne, 2 W. Mori, 3 A. Fedotov, 4 I. Ben-Zvi, 4 V. Litvinenko, 4 S. Derbenev,

COMPASS Kick-Off Meeting p. 20SciDAC – September 17, 2007 – Fermilab

Perturbative calculations lead to Coulomb log

• Assume each e- trajectory is infinite and straight– integrate Coulomb force along trajectory to obtain v~-1

• integrating over all angles leads to zero

– by symmetry, v|| = 0 for each trajectory

• however, energy conservation requires v|| ≈ - v2 / 2v ~-2

• Approximation is very good for large – assumption of infinite trajectories not valid for finite

– choose physically reasonable cutoff max

• Approximation breaks down for small – choose cutoff min, for which v = vrel 90 deg scattering

e-

v=vi-ve vv||

Page 21: D. L. Bruhwiler, 1 G. I. Bell, 1 A. Sobol, 1 P. Messmer, 1 J. Qiang, 2 R. Ryne, 2 W. Mori, 3 A. Fedotov, 4 I. Ben-Zvi, 4 V. Litvinenko, 4 S. Derbenev,

COMPASS Kick-Off Meeting p. 21SciDAC – September 17, 2007 – Fermilab

Dynamical friction & finite-time effects on max

• For pe >> 2 and vi << e

– electron cloud screens ion charge; max = D = e/pe

• In opposite limit, pe < 2 (RHIC II param’s)– no screening of ion charge; choose max ~ max(vi,e)

– or calculate Coulomb log with finite-length trajectories• completely removes logarithmic singularity at large

for

for min ln d

Page 22: D. L. Bruhwiler, 1 G. I. Bell, 1 A. Sobol, 1 P. Messmer, 1 J. Qiang, 2 R. Ryne, 2 W. Mori, 3 A. Fedotov, 4 I. Ben-Zvi, 4 V. Litvinenko, 4 S. Derbenev,

COMPASS Kick-Off Meeting p. 22SciDAC – September 17, 2007 – Fermilab

Finite-time effects limit # of collisions for small

• Poisson statistics predict likelihood of Nc collisions– for all impact parameters less than

ne

= Nc

Page 23: D. L. Bruhwiler, 1 G. I. Bell, 1 A. Sobol, 1 P. Messmer, 1 J. Qiang, 2 R. Ryne, 2 W. Mori, 3 A. Fedotov, 4 I. Ben-Zvi, 4 V. Litvinenko, 4 S. Derbenev,

COMPASS Kick-Off Meeting p. 23SciDAC – September 17, 2007 – Fermilab

Finite-time effects on min lead to concept of res

• Friction force integrals assume, for all – there are plenty of trajectories to sample 4 sr

• so perpendicular kicks average out• so longitudinal kicks accumulate correctly

– and sufficient trajectories to sample e- velocities

• How many collisions are needed?– good agreement with simulations for Nc = 120

– for RHIC II parameters shown above• min ≈ 2.2 e-7 m res ≈ 1.8 e-5 m

• for max ~ vi ≈ 7.5 e-4 m >20% smaller Coulomb log

Page 24: D. L. Bruhwiler, 1 G. I. Bell, 1 A. Sobol, 1 P. Messmer, 1 J. Qiang, 2 R. Ryne, 2 W. Mori, 3 A. Fedotov, 4 I. Ben-Zvi, 4 V. Litvinenko, 4 S. Derbenev,

COMPASS Kick-Off Meeting p. 24SciDAC – September 17, 2007 – Fermilab

Physical Parameters from 2006 RHIC II Design

Page 25: D. L. Bruhwiler, 1 G. I. Bell, 1 A. Sobol, 1 P. Messmer, 1 J. Qiang, 2 R. Ryne, 2 W. Mori, 3 A. Fedotov, 4 I. Ben-Zvi, 4 V. Litvinenko, 4 S. Derbenev,

COMPASS Kick-Off Meeting p. 25SciDAC – September 17, 2007 – Fermilab

Failure to sample small reduces friction force

yields choice Nc ≈ 120

Page 26: D. L. Bruhwiler, 1 G. I. Bell, 1 A. Sobol, 1 P. Messmer, 1 J. Qiang, 2 R. Ryne, 2 W. Mori, 3 A. Fedotov, 4 I. Ben-Zvi, 4 V. Litvinenko, 4 S. Derbenev,

COMPASS Kick-Off Meeting p. 26SciDAC – September 17, 2007 – Fermilab

Numerical effects of domain size are understood

Page 27: D. L. Bruhwiler, 1 G. I. Bell, 1 A. Sobol, 1 P. Messmer, 1 J. Qiang, 2 R. Ryne, 2 W. Mori, 3 A. Fedotov, 4 I. Ben-Zvi, 4 V. Litvinenko, 4 S. Derbenev,

COMPASS Kick-Off Meeting p. 27SciDAC – September 17, 2007 – Fermilab

Unmagnetized high-energy cooling w/ undulator

• Purpose of the helical undulator magnet– provides focusing for electrons– suppresses e-/ion recombination

• Modest fields (~10 Gauss) effectively reduce recombination via ‘wiggle’ motion of electrons:

• What’s the effect of ‘wiggle’ motion on cooling?– increases minimum impact parameter of Coulomb log

][][104.1~ 232

GBmxvk ww

beamw

gyroosc

resosc ,2max min

Page 28: D. L. Bruhwiler, 1 G. I. Bell, 1 A. Sobol, 1 P. Messmer, 1 J. Qiang, 2 R. Ryne, 2 W. Mori, 3 A. Fedotov, 4 I. Ben-Zvi, 4 V. Litvinenko, 4 S. Derbenev,

COMPASS Kick-Off Meeting p. 28SciDAC – September 17, 2007 – Fermilab

VORPAL simulations verify effect of undulator

• Coherent e- wiggle motion – increases the effective minimum impact parameter– dynamical friction force is only reduced logarithmically

Page 29: D. L. Bruhwiler, 1 G. I. Bell, 1 A. Sobol, 1 P. Messmer, 1 J. Qiang, 2 R. Ryne, 2 W. Mori, 3 A. Fedotov, 4 I. Ben-Zvi, 4 V. Litvinenko, 4 S. Derbenev,

COMPASS Kick-Off Meeting p. 29SciDAC – September 17, 2007 – Fermilab

Simple model of single-wavelength error fields

zBzyxB erry 2sin,,

2,, max err

z

y BzyxBdzM

TmMm/sxMm

ev

eerr

65 10for 102

m 80 cm 10 MBerr 2 TmxMTm 56 10210

ctcBtyxE errx 2sin,,' Lorentz transform to beam frame:

e- oscillations:

mTmMmxvc

xerr 1 ,10for 109 2

67err

Page 30: D. L. Bruhwiler, 1 G. I. Bell, 1 A. Sobol, 1 P. Messmer, 1 J. Qiang, 2 R. Ryne, 2 W. Mori, 3 A. Fedotov, 4 I. Ben-Zvi, 4 V. Litvinenko, 4 S. Derbenev,

COMPASS Kick-Off Meeting p. 30SciDAC – September 17, 2007 – Fermilab

Long wavelengths increase effective e- temp

Page 31: D. L. Bruhwiler, 1 G. I. Bell, 1 A. Sobol, 1 P. Messmer, 1 J. Qiang, 2 R. Ryne, 2 W. Mori, 3 A. Fedotov, 4 I. Ben-Zvi, 4 V. Litvinenko, 4 S. Derbenev,

COMPASS Kick-Off Meeting p. 31SciDAC – September 17, 2007 – Fermilab

Short wavelengths increase effective min

Page 32: D. L. Bruhwiler, 1 G. I. Bell, 1 A. Sobol, 1 P. Messmer, 1 J. Qiang, 2 R. Ryne, 2 W. Mori, 3 A. Fedotov, 4 I. Ben-Zvi, 4 V. Litvinenko, 4 S. Derbenev,

COMPASS Kick-Off Meeting p. 32SciDAC – September 17, 2007 – Fermilab

Key Questions for Electron Cooling Simulations

• Electron cooling is key to future NP accelerators– never demonstrated for high-energy ions– cooling effectiveness may be “just enough”– simulations must help to improve design & reduce risk

• How best to suppress e-/ion recombination?– strong solenoid (used in all low-energy coolers)– helical undulator magnet (recent alternative concept)

• Quantify all phenomena that weaken cooling– e- wiggle motion in undulator– wide variety of magnetic field errors– high density of ions, complicated e- distributions, …

• New ideas must be supported– concept of “coherent electron cooling”– low-energy cooling for RHIC and/or RHIC II

Page 33: D. L. Bruhwiler, 1 G. I. Bell, 1 A. Sobol, 1 P. Messmer, 1 J. Qiang, 2 R. Ryne, 2 W. Mori, 3 A. Fedotov, 4 I. Ben-Zvi, 4 V. Litvinenko, 4 S. Derbenev,

COMPASS Kick-Off Meeting p. 33SciDAC – September 17, 2007 – Fermilab

Courtesy of V. Litvinenko & Y. Derbenev (FEL 2007)

Page 34: D. L. Bruhwiler, 1 G. I. Bell, 1 A. Sobol, 1 P. Messmer, 1 J. Qiang, 2 R. Ryne, 2 W. Mori, 3 A. Fedotov, 4 I. Ben-Zvi, 4 V. Litvinenko, 4 S. Derbenev,

COMPASS Kick-Off Meeting p. 34SciDAC – September 17, 2007 – Fermilab

Courtesy of V. Litvinenko & Y. Derbenev (FEL 2007)

Page 35: D. L. Bruhwiler, 1 G. I. Bell, 1 A. Sobol, 1 P. Messmer, 1 J. Qiang, 2 R. Ryne, 2 W. Mori, 3 A. Fedotov, 4 I. Ben-Zvi, 4 V. Litvinenko, 4 S. Derbenev,

COMPASS Kick-Off Meeting p. 35SciDAC – September 17, 2007 – Fermilab

Courtesy of A. Fedotov et al., COOL ’07 Presentation (Sep. 14, 2007)

Page 36: D. L. Bruhwiler, 1 G. I. Bell, 1 A. Sobol, 1 P. Messmer, 1 J. Qiang, 2 R. Ryne, 2 W. Mori, 3 A. Fedotov, 4 I. Ben-Zvi, 4 V. Litvinenko, 4 S. Derbenev,

COMPASS Kick-Off Meeting p. 36SciDAC – September 17, 2007 – Fermilab

Courtesy of A. Fedotov et al., COOL ’07 Presentation (Sep. 14, 2007)

Page 37: D. L. Bruhwiler, 1 G. I. Bell, 1 A. Sobol, 1 P. Messmer, 1 J. Qiang, 2 R. Ryne, 2 W. Mori, 3 A. Fedotov, 4 I. Ben-Zvi, 4 V. Litvinenko, 4 S. Derbenev,

COMPASS Kick-Off Meeting p. 37SciDAC – September 17, 2007 – Fermilab

Parallel Scaling for Electron Cooling Simulations

Execution times for Trillinos-based Poisson solve of a 3D Gaussian beam, for a 1026×65×65 grid (solid) and 4104×65×65 grid (dotted), using AMG precon-ditioned CGS (diamond) or Gauss-Seidel preconditioned CGS (stars).

To date, sim’s have been confined to ~256 processors or less.

Page 38: D. L. Bruhwiler, 1 G. I. Bell, 1 A. Sobol, 1 P. Messmer, 1 J. Qiang, 2 R. Ryne, 2 W. Mori, 3 A. Fedotov, 4 I. Ben-Zvi, 4 V. Litvinenko, 4 S. Derbenev,

COMPASS Kick-Off Meeting p. 38SciDAC – September 17, 2007 – Fermilab

Challenges for Petascale Cooling simulations

• Petascale path for MD involves move to PIC– O(Nion*Ne) scaling of pure MD limits problem size– hybrid electrostatic PIC/MD model will be considered

• PIC efficiently captures distant interactions– pure PIC will be useful, if min is bounded from below

• e.g. L, xerr, res

• Input needed from CETs– use of PETSc or Trilinos to rapidly solve Poisson eq.

• path to petascale for PIC and/or hybrid PIC/MD• VORPAL uses Trilinos for electrostatic PIC now

– plan to implement PETSc as an option– assistance in scaling and speed for other algorithms

• particle push, charge deposition, etc.– access to additional computing resources?

• will request 10x-50x larger allocation from NERSC this year– visualizing details of the electron wake

• one solution is IDL + AVS (used successfully in the past)• will try to benefit from ongoing work with VORPAL & VisIT

Page 39: D. L. Bruhwiler, 1 G. I. Bell, 1 A. Sobol, 1 P. Messmer, 1 J. Qiang, 2 R. Ryne, 2 W. Mori, 3 A. Fedotov, 4 I. Ben-Zvi, 4 V. Litvinenko, 4 S. Derbenev,

COMPASS Kick-Off Meeting p. 39SciDAC – September 17, 2007 – Fermilab

Future Plans for Langevin Approach

• Extend the Langevin approach to electrons and ions• Include effects of magnetic fields in the calculation of

Fokker-Planck collisional operator• Explore an efficient FMM-based technique to compute

the F-P collisional operator• Implement improved time integration schemes for

electrons and ion dynamics• Integrate the Fokker-Planck solver with our other

modules for multi-physics modeling

Page 40: D. L. Bruhwiler, 1 G. I. Bell, 1 A. Sobol, 1 P. Messmer, 1 J. Qiang, 2 R. Ryne, 2 W. Mori, 3 A. Fedotov, 4 I. Ben-Zvi, 4 V. Litvinenko, 4 S. Derbenev,

COMPASS Kick-Off Meeting p. 40SciDAC – September 17, 2007 – Fermilab

Acknowledgements

We thank O. Boine-Frankenheim, A. Burov, A. Jain, S. Nagaitsev, A. Sidorin, G. Zwicknagel & members of the Physics group of the RHIC Electron Cooling Project for many useful discussions.

We acknowledge assistance from the VORPAL team: J. Carlsson, J.R. Cary, B. Cowan, D.A. Dimitrov, A. Hakim, P. Messmer, P. Mullowney, C. Nieter, K. Paul, S.W. Sides, N.D. Sizemore, D.N. Smithe, P.H. Stoltz, S.A. Veitzer, D.J. Wade-Stein, G.R. Werner & N. Xiang.

Work at LBNL was supported by SciDAC-1.

Work at BNL and JLab was supported by the U.S. DOE Office of Science, Office of Nuclear Physics.

Work at Tech-X Corp. was supported by the U.S. DOE Office of Science, Office of Nuclear Physics under grants DE-FG03-01ER83313 and DE-FG02-04ER84094. We used computational resources of NERSC, BNL and Tech-X Corp.