D E L 'EN E S VIR C O N E I N C S É O C E R E G E

31
G É O S C I E N C E S D E L ' E N V I R O N N E MENT CENTRE EUROPÉEN DE RECHERCHE ET D'ENSEIGNEMENT DE GÉOSCIENCES DE L'ENVIRONNEMENT C E R E G E Nanofiltration and adsorption for water treatment – The need for nanotechnologies Armand MASION* ; Jean-Yves BOTTERO* ; Jérôme ROSE* ; Mélanie AUFFAN & ; Jérôme LABILLE* ; Mark R WIESNER & * CEREGE UMR 6635 CNRS-Aix-Marseille Université. Europole de l’Arbois BP 80 13545 Aix-en-Provence France. International Consortium for Implications of Nanotechnology (CNRS-CEA) & Center for the Environmental Implications of NanoTechnology (CEINT). Pratt School of Engineering. Nicholas School of the Environment. Duke University. Box 90287. 120 Hudson Hall . Durham, NC 27708-0287 . International Consortium for Implications of Nanotechnology (CNRS-CEA)

Transcript of D E L 'EN E S VIR C O N E I N C S É O C E R E G E

Page 1: D E L 'EN E S VIR C O N E I N C S É O C E R E G E

OS

CIE

NC

ES

DE L'ENVIRO

NN

EM

EN

T

CENTRE EUROPÉEN DE RECHERCHE ET D'ENSEIGNEMENTDE GÉOSCIENCES DE L'ENVIRONNEMENT

C E R E G E

Nanofiltration and adsorption for water treatment – The need fornanotechnologies

Armand MASION* ; Jean-Yves BOTTERO* ; Jérôme ROSE* ; Mélanie AUFFAN& ; JérômeLABILLE* ; Mark R WIESNER&

* CEREGE UMR 6635 CNRS-Aix-Marseille Université. Europole de l’Arbois BP 8013545 Aix-en-Provence France. International Consortium for Implications ofNanotechnology (CNRS-CEA)& Center for the Environmental Implications of NanoTechnology (CEINT). PrattSchool of Engineering. Nicholas School of the Environment. Duke University. Box90287. 120 Hudson Hall . Durham, NC 27708-0287 . International Consortium forImplications of Nanotechnology (CNRS-CEA)

Page 2: D E L 'EN E S VIR C O N E I N C S É O C E R E G E

Environmental Nanotechnology

MembranesAdsorbentsOxidantsCatalystsEnergySensingAnalytical

•Water•Waste•Soil treatment

Page 3: D E L 'EN E S VIR C O N E I N C S É O C E R E G E

A definitionThere is no universal definition of a nanoparticle, but one is: "Aparticle having one or more dimensions of the order of 100nmor less".

There is a note associated with this definition: "Novel propertiesthat differenciate nanoparticles from the bulk materialtypically develop at a critical length scale of under 100 nm".

Why makes nanoparticles unique ?

Page 4: D E L 'EN E S VIR C O N E I N C S É O C E R E G E

0

10

20

30

40

50

60

70

80

90

100

0 40 80 120 160 200

Diameter (nm)

% d

'ato

mes e

n s

urfa

ce Surface

Volume

High Surface area

High Surface reactivity

properties ≠ atnano and micro scale

ex : Gold

Inert (microscopic scale)

Active Surface(3 - 4 nm)

20 100

Why makes nanoparticules unique ?

Page 5: D E L 'EN E S VIR C O N E I N C S É O C E R E G E

Environmental benefits of nanotechnology :pollution treatment

Page 6: D E L 'EN E S VIR C O N E I N C S É O C E R E G E

•Proportion of tube wells thattested positive for As inBangladesh (i.e., >50 µg/L).Map prepared by UNICEF-Dhaka onthe basis of 51,000 field tests•At least 25 million peopledrink tube well (TW) watercontaining As > 50 ug/L.•Arsenic-related diseases :short term : skin lesions,respiratory illnesses, and eyeproblems, long term: cancer(skin, bladder, lung, and otherinternal organs), heart diseaseand neurological disorders.•WHO : 10 µg/l, … but

Nanoparticles and water treatment• Example of arsenic:

Page 7: D E L 'EN E S VIR C O N E I N C S É O C E R E G E

Nanoparticles and water treatment

• Difficulties to decrease [As]<10 µg/l• Adsorbent: Iron oxides and oxy-hydroxides

Akaganeite=FeOOHGoethite=FeOOH; ferrihydrite etc…

3 to 4 As/nm2 =>10 µg/l

Page 8: D E L 'EN E S VIR C O N E I N C S É O C E R E G E

Iron oxides as adsorbents

• Mechanisms of As adsorption

Fe

Fe

FeFe

As

As

As

Fe

As

H

HO

OO

H

H O

Fe Fe

As

H

HO

H

HOO

H

H O

Fe Fe

As

H

HO

H

HOH

H O

H

H O

X-ray Absorption Spectroscopy

(O. Proux)

Page 9: D E L 'EN E S VIR C O N E I N C S É O C E R E G E

0.01

0.1

1

10100

Diametre (nm)

mmol/g

Rétention de l'AsIII

par des particules de magnétite

Effet surfacespécifique

Qua

ntité

d'a

rsen

ic a

dsor

béA

mou

nt o

f As

adso

rbed

Diameter (nm)

Iron oxide NP : strong adsorption capacity

0.02

0.3

2

Per unit of mass...

The surface available toadsorb As is larger for NP

100 m2/g

20 m2/g

3 m2/gSpecific surfacearea effect

Page 10: D E L 'EN E S VIR C O N E I N C S É O C E R E G E

Iron oxide NP : strong adsorption capacity

0.01

0.1

1

10100

Diametre (nm)

mmol/g

Rétention de l'AsIII

par des particules de magnétite

Effet surfacespécifique

Qua

ntité

d'a

rsen

ic a

dsor

0.01

0.1

1

0.001

0.01

10100

Diametre (nm)

mmol/m2mmol/g

Rétention de l'AsIII

par des particules de magnétite

Effet surfacespécifique

Effet reactivité de surface

Qua

ntité

d'a

rsen

ic a

dsor

Per unit surface...

Different adsorptionmechanisms NP<20nm

10 As/nm2

4 As/nm2

Per unit mass...

The surface available toadsorb As is larger for NP

Am

ount

of A

s ad

sorb

ed

Diameter (nm)

Specific surfacearea effect

Surface reactivityeffect

Page 11: D E L 'EN E S VIR C O N E I N C S É O C E R E G E

Adsorption of AsIII at the surface of iron oxide NP

γ-Fe2O3 (nano-maghemites)

• 6 nm, 174 m2/g• FeIII

• Spinel Structure

• Pyramidal

As (OH) 3

10-7

10-6

10-5

0.1

1

10

0 2 10-4 4 10-4 6 10-4 8 10-4 1 10-3

Cad

s (mol

/m2 )

As concentration at equilibrium (mol/L)

Cads (arsenic/nm

2)

~ 10 AsIII / nm2

High density ofadsorption sites

Auffan et al., Langmuir 2008

Page 12: D E L 'EN E S VIR C O N E I N C S É O C E R E G E

Cad

s (mol

/m2 )

As concentration at equilibrium (mol/L)

10% : most reactive sites

100% : all the adsorption sites

EXAFS, As K-edge

2 4 6 8 10 12

100%

10%

k(Å-1)

k2 .chi

(k)

100%

1.7 ± 0.3 Fearound As

3.3Å

Fe Fe

As

10%

3.1 ± 0.5 Fearound As3.4Å

Fe Fe

AsFe Fe

Identification of the adsorption sites

Page 13: D E L 'EN E S VIR C O N E I N C S É O C E R E G E

As occupies the vacant tetrahedralsurface sites

16 18 20 22 24 26

21.3 21.4 21.5

Inte

nsity

(a.u

.)

2 theta (°) - Co K(!)

0.6

0.7

0.8

0.9

1.0

Taux occupation Fe (III) tetra

0.5

21.3 21.4 21.5

Inte

nsity

(a.u

.)

2 theta (°) - Co K(!)

0.6

0.7

0.8

0.9

1.0

Taux occupation Fe (III) tetra

0.5

100%

10%

0%

Experimental

Nano-maghémite

Vacant tetrahedral Fe(III) surface sites

21.3 21.4 21.5

Inte

nsity

(a.u

.)

2 theta (°) - Co K(!)

0.6

0.7

0.8

0.9

1.0

Taux occupation Fe (III) tetra

0.5

"New" adsorption sites

Larger particle

Theoretical

Page 14: D E L 'EN E S VIR C O N E I N C S É O C E R E G E

Proposed sorption mechanism...

10% d’As 100% d’As

Particle size increases

Radius increases by 8-10%Surface energy diminihes by 8-10%Nano

6 nm 6,5 nm

Nano-maghémite

Page 15: D E L 'EN E S VIR C O N E I N C S É O C E R E G E

Reactivity of Fe2O3 nanoparticles

Arsenic adsorption themodynamically stabilises NPs,

« like crystal growth ».

Decrease of surface energy is probably the leading mechanism.

When Ø of 0.5nm, surface energy of 8%

Decreases the surfaceenergy significantly

Saturation of theadsorption sites with As

Increases the size of NP+ 0.5 nm

Surface reactivity: C.Chanéac

Page 16: D E L 'EN E S VIR C O N E I N C S É O C E R E G E

Nanoparticles in water treatment• Use of crystalline nanoparticles :

– High reactivity– Nanoparticles can exhibit particular properties:

magnetic systems for the recovery of the pollutantloaded nanoparticles.

– Possibilities to re-use (NaOH pH 12, 3 or 4 times)Sorption efficiency by 25 % after each regeneration (‘erosion’,dissolution)

No mud to dehydrate

Superparamagnetic properties

Page 17: D E L 'EN E S VIR C O N E I N C S É O C E R E G E

Nanoparticles and filtration

• Membranes and nanoparticles

Raw waterIN OUT

Treated water(permeat)

(Water treatment…)

Organic membranes: low costCeramic membrane: thermal chemical resistance

Page 18: D E L 'EN E S VIR C O N E I N C S É O C E R E G E

Oxane process

CH3COOH

Al AlO

O

O OC

CH3

AlumoxanesAlumoxanes

Large Mineral

Boehmite (γAlOOH)

Lépidocrocite (γFeOOH) → (Alumoxanes®) (Callender et al., 1997)

→ (Ferroxanes®) (Rose et al., 2001)

top-downapproach

Micrometers Nanometers

Page 19: D E L 'EN E S VIR C O N E I N C S É O C E R E G E

Membrane making using nanoparticles

Ceramic membrane made from ‘metal-oxane’ nanoparticles

Particule ‘templating’

2 µm

Pore size < 4 nm, MWCO < 1,000

Cortalezzi, Rose, Barron and Wiesner, Membrane Science, 2002DeFriend, Wiesner, and Barron, Membrane Science, 2003

From A.Barron (Rice Univ.)

Page 20: D E L 'EN E S VIR C O N E I N C S É O C E R E G E

Important : mono dispersesuspension of Oxane

nanoparticles

CracksSintering

Page 21: D E L 'EN E S VIR C O N E I N C S É O C E R E G E

From the mineral to the smallparticles

Lepidocrocite + AA (in excess) 24 hours.

100011001200130014001500160017001800

Inte

nsity (

arb

.un

it)

Wave number (Cm-1)

10

22

11

65

12

60

14

21

15

85

iron acetate

acetate

Lep+AALep

DifferenceC-O-Fe

C-O-O

Page 22: D E L 'EN E S VIR C O N E I N C S É O C E R E G E

0

2000

4000

6000

8000

10000

12000

3 13 23 33 43 53 63 73

Angle 2?

coun

ts

lépidocrociteferroxanes

7,88Å

6,26Å

(020) clivage

Page 23: D E L 'EN E S VIR C O N E I N C S É O C E R E G E

Acetic acid

Acetic acid

Acetic acid

Acetic acid

Lepidocrocite Ferroxane®

Page 24: D E L 'EN E S VIR C O N E I N C S É O C E R E G E

Membrane propertiesAfter firring at 300°C

22-28 nm10-20 nmPore size

60-100 nm28 nmParticule size

FerroxanesAlumoxanes

Flux : 5,9.10-5 m3/m2.s (P=0,7bar)

Ferroxanes

0

5

10

15

20

25

0 0.2 0.25 0.75 1

Perm

eabili

ty (

nm

2)

[Ferroxane] for the coating (mg)

Whatman Anodisc 100nm

Page 25: D E L 'EN E S VIR C O N E I N C S É O C E R E G E

Membrane making

• A second effect: surface reactivity

transformation

• Surface reactivityFiltration of 5.10-4 mol.L-1 (Na2CrO4) solution

% Cr fixed 40,4

NCr fixed by nm2 0,159

surface sites density 3,5

Page 26: D E L 'EN E S VIR C O N E I N C S É O C E R E G E

Membranes made from nanoparticles

Perspectives

1. Control of the pore size distribution2. Synthesis of doped membranes: reactive membranes.3. Combination of nanoparticles to create membranes with

various properties (UV sensitive, magnetic, reactive…)

Page 27: D E L 'EN E S VIR C O N E I N C S É O C E R E G E

Biological effects

Wanted and unwanted

Page 28: D E L 'EN E S VIR C O N E I N C S É O C E R E G E

Oxidation of iron

Structural stabilityin contact with E.coli

maghemites

nZVI

Increasingtoxicity

Maghemite Maghemite

Oxidative stress

Magnetite MaghemiteOxidation

Release of Fe (II)

Fe° Green rust

LepidocrociteγFeOOH

MagnetiteFe3O4

Dissolution Recrystallization

Oxidation

OxidativestressRelease of

Fe (II)

Fe°

Fe3+

Fe2+

Fe3+

magnetites

Page 29: D E L 'EN E S VIR C O N E I N C S É O C E R E G E

Surface reactivity vs biological responseNano-maghemites

nZVI Fe°

Nano-magnetitesFe3

2+/3+O4

γ-Fe23+O3

0

20

40

60

80

100

120E.Coli Qc1301Sauvage

Control7 mg/L70 mg/L

175 mg/L350 mg/L700 mg/L

Perc

enta

ge o

f via

ble

cells

***

***

*****

***

Nano-magh Nano-magnet nZVI

7 mg/L70 mg/L

175 mg/L

0

20

40

60

80

100

120E.Coli Qc1301Sauvage

Control7 mg/L70 mg/L

175 mg/L350 mg/L700 mg/L

Perc

enta

ge o

f via

ble

cells

***

***

*****

***

Nano-magh Nano-magnet nZVI

7 mg/L70 mg/L

175 mg/L

Cytotoxicity

Oxidative stress

Cytotoxicity test E.coli

Page 30: D E L 'EN E S VIR C O N E I N C S É O C E R E G E

Conclusion and Perspectives

• NP promising materials: nano-specific bindingsites for enhanced pollution removal; tayloringadsorbants for specific purposes.

• Membrane pore size distribution controlled by NP• "Reactive" (doped) membranes• NP for disinfection ?

Page 31: D E L 'EN E S VIR C O N E I N C S É O C E R E G E

Google: nanomonster song

For everything else you want to know aboutnanotechnolgies…