Cyclone Separation

75
21053 2105382 82 21053 2105382 82 UNIT OPERATIONS I UNIT OPERATIONS I UNIT OPERATIONS I UNIT OPERATIONS I Separation of Particle from fluid: Cyclone Separation of Particle from fluid: Cyclone fluid: Cyclone fluid: Cyclone Apinan Soottitantawat Apinan Soottitantawat Apinan Soottitantawat Apinan Soottitantawat [email protected]

Transcript of Cyclone Separation

Page 1: Cyclone Separation

2105321053828221053210538282

UNIT OPERATIONS IUNIT OPERATIONS IUNIT OPERATIONS IUNIT OPERATIONS I

Separation of Particle from fluid: Cyclone

Separation of Particle from fluid: Cyclonefluid: Cyclonefluid: Cyclone

Apinan SoottitantawatApinan SoottitantawatApinan SoottitantawatApinan [email protected]

Page 2: Cyclone Separation

SeparationSeparation

There are many cases during the processing and handling of particulatesolids when particles are required to be separated from suspension in asolids when particles are required to be separated from suspension in agas or a liquid. How to separate them ?

Classification of separation techniques according to phases involvedp q g p

2S.Apinan

Page 3: Cyclone Separation

Separation: CycloneSeparation: Cyclone

One of the widely used is Cyclone.

GasGas CycloneCyclone: Separate the particle solid (aerosol) from- GasGas CycloneCyclone: Separate the particle solid (aerosol) fromthe gas.

- HydrocycloneHydrocyclone: Separate the particle solid (aerosol) fromthe liquid.

3S.Apinan

Page 4: Cyclone Separation

LOGO

Gas CycloneGas Cyclone

Apinan SootitantawatApinan [email protected]

Page 5: Cyclone Separation

SolidSolid--gas separation (Dust Collection)gas separation (Dust Collection)

Purpose of the separationPurpose of the separation1 Ai ll ti t l i fl h l f l t fl1. Air-pollution control, as in fly-ash removal from power-plant flue

gases2. Equipment-maintenance reduction, as in filtration of engine intake

air or pyrites furnace-gas treatment prior to its entry to a contactsulfuric acid plant

3. Safety- or health-hazard elimination, as in collection of siliceous andymetallic dusts around grinding and drilling equipment and in somemetallurgical operations and flour dusts from milling or baggingoperationsoperations

4. Product-quality improvement, as in air cleaning in the production ofpharmaceutical products and photographic film

5 Recovery of a valuable product as in collection of dusts from dryers5. Recovery of a valuable product, as in collection of dusts from dryersand smelters

6. Powdered-product collection, as in pneumatic conveying; the spraydrying of milk eggs and soap; and the manufacture of high purity

5S.Apinan

drying of milk, eggs, and soap; and the manufacture of high purityzinc oxide and carbon black

Page 6: Cyclone Separation

SolidSolid--gas separation (Dust Collection)gas separation (Dust Collection)

• In any application, the size of the particles to be removed from the gas determine the method to be used for their separationdetermine, the method to be used for their separation.

• Generally speaking, particles larger than about 100 mm can be separated easily by gravity settling.

• For particles less than 10 mm more energy intensive methods such as• For particles less than 10 mm more energy intensive methods such as filtration, wet scrubbing and electrostatic precipitation must be used.

6S.Apinan

Page 7: Cyclone Separation

CycloneCyclone

7S.Apinan

Page 8: Cyclone Separation

CycloneCyclone

• ใชแยกอนภาคขนาดใหญ > 10 μm

ไ ใ • กลไกในการแยกอนภาคคอ แรง

เหวยงและ แรงดงดดของโลก

• อนภ าคขอ ง ขอ ง แข ง ต กล ง สอ น ภ า คขอ ง ขอ ง แข งตกล ง ส

ดานลางของเครอง

• กาซจะถกปลอยออกทางดานบน

ของเครอง

8S.Apinan

Page 9: Cyclone Separation

CycloneCyclone

Particles in the gas are subjected to centrifugal forces which move them radiallyoutwards, against the inward flow of gas and towards the inside surface of thecyclone on which the solids separate. The direction of flow of the vortex reversesnear the bottom of the cylindrical section and the gas leaves the cyclone via theoutlet in the top. The solids at the wall of the cyclone are pushed downwards byth t t d t f th lid itthe outer vortex and out of the solids exit.

9S.Apinan

Page 10: Cyclone Separation

CycloneCyclone

10S.Apinan

Page 11: Cyclone Separation

Cyclone: ComponentsCyclone: Components

(cylinder)

11S.Apinan

Page 12: Cyclone Separation

Cyclone: Type of inletCyclone: Type of inlet รปแบบทอทางเขาของไซโคลนรปแบบทอทางเขาของไซโคลน

Tangential entryTangential entry Tangential entryTangential entryWith deflector vanesWith deflector vanes

Helical entryHelical entry InvoluteInvolute entryentryWith deflector vanesWith deflector vanes

12S.Apinan

Page 13: Cyclone Separation

Cyclone: Solid discharge valveCyclone: Solid discharge valve

Rotary valveRotary valveSimple manual slide gateSimple manual slide gate Double flap valueDouble flap value

Discharge screw feederDischarge screw feeder

13S.Apinan

Page 14: Cyclone Separation

Cyclone: Outlet of cycloneCyclone: Outlet of cyclone

InvoluteInvolute scroll outletscroll outlet Rotary valveRotary valveInvoluteInvolute scroll outletscroll outlet Rotary valveRotary valve

14S.Apinan

Page 15: Cyclone Separation

Cyclone: Type of CycloneCyclone: Type of Cyclone

BasedBased onon gasgas inletsinlets::

1. Tangential Entry cyclone Tangential Entry cyclone จะปอนกาซผสมเขาในทางแนวเสนสมผส

ของหนาตดเครอง

15S.ApinanTop inletTop inlet Bottom inletBottom inlet

Page 16: Cyclone Separation

Cyclone: Type of CycloneCyclone: Type of Cyclone

BasedBased onon gasgas inletsinlets::

2. Axial Entry cycloneAxial Entry cyclone จะปอนกาซผสมเขาในทางดานบนของเครอง

อาศยแผนครบ ชวยปรบทศทางใหเปนในแนวเสนสมผส ซงสามารถ

ไ แบงไดเปนสองประเภทยอยคอ

16S.Apinan

Page 17: Cyclone Separation

Cyclone: Type of CycloneCyclone: Type of Cyclone

BasedBased onon gasgas inletsinlets::

2. Axial Entry cycloneAxial Entry cyclone

17S.ApinanMultiple CycloneMultiple Cyclone

Page 18: Cyclone Separation

Cyclone: Type of CycloneCyclone: Type of Cyclone

BasedBased onon cyclonecyclone performanceperformance::

1. Conventional cyclone

2. High efficiency cyclone

18S.Apinan

Page 19: Cyclone Separation

ประสทธภาพของไซโคลนแตละประเภทประสทธภาพของไซโคลนแตละประเภท

19S.Apinan

Page 20: Cyclone Separation

สดสวนของไซโคลนมาตรฐาน สดสวนของไซโคลนมาตรฐาน

ชนดของไซโคลน

ไซโคลน ไซโคลนทใช

ไซโคลนอตรา

ประสทธภาพสง ทวไป การไหลสง

Body diameter D/D 1.0 1.0 1.0

Height of inlet H/D 0 44 0 5 0 8Height of inlet H/D 0.44 0.5 0.8

Width of inlet W/D 0.21 0.25 0.35

Diameter of gas De/D 0.4 0.5 0.75

Length of vortex S/D 0.5 0.6 0.85

Length of body Lb/D 1.4 1.75 1.7

Length of cone L /D 2 5 2 0 2 0Length of cone Lc/D 2.5 2.0 2.0

Diameter of dust outlet Dd/D 0.4 0.4 0.4

20S.Apinan

Page 21: Cyclone Separation

LOGO

Over all and Grad Over all and Grad Over all and Grad Over all and Grad efficiency of collector efficiency of collector

( l )( l )(cyclone)(cyclone)

Apinan SootitantawatApinan [email protected]

Page 22: Cyclone Separation

Efficiency of separationEfficiency of separation

• It is useful to represent the efficiency with which various sizes or grades ofparticles are distributed between the outputs of separation devicesparticles are distributed between the outputs of separation devices.

1. Grade or fractional efficiency2. Overall efficiency

22S.Apinan

Page 23: Cyclone Separation

Total Efficiency and Grade EfficiencyTotal Efficiency and Grade Efficiency

Materials Balance

cf MMM +=fMcf

f Component Balance

Mfmif ,

fccmiffmimi MfMfMf ,, +=M

Mmifcmif , FractionMassfmi =

cM

23S.Apinan

Page 24: Cyclone Separation

Total EfficiencyTotal Efficiency

Total efficiency

ME ct =fM

MEt

MM

McM

24S.Apinan

Page 25: Cyclone Separation

Grade Efficiency G(x)Grade Efficiency G(x)

Grade efficiency G(x)

fM

M MfMM

MMfMf

MM

xGmi

ccmi

fi

cii

,

,

,)( =

cM f

25S.Apinan

Page 26: Cyclone Separation

Know Grade Efficiency G(x) to calculate EtKnow Grade Efficiency G(x) to calculate Et

M MfMG ccmici)(

MME c

t = Mff

MxG

mi

ccmi

feedi

cii

,

,

,)( =

MxGMM )(∑∑feedmii

feediiicct fxG

MMxG

MM

MME ,

, )()(

∑∑∑ ====

fGE )(∑ feedmiit fxGE ,)(∑=26S.Apinan

Page 27: Cyclone Separation

Know Et to calculate Grade Efficiency G(x)Know Et to calculate Grade Efficiency G(x)

Mf MMf

MfxG

f di

ccmii

,)( =MME c

t =Mf feedmi, MGrade efficiency G(x)

f cmit f

fExG ,)( =

feedmif ,

27S.Apinan

Page 28: Cyclone Separation

Total & Grade Efficiency G(x)Total & Grade Efficiency G(x)

ME c MMM +=M

E ct = cf MMM +=

MfMfMf +=

ifccmiffmimi MfMfMf ,, +=

mi

cmit f

fExG ,)( =

mif

EfEff )1( +−= tcmitfmimi EfEff ,, )1( +−=

28S.Apinan

Page 29: Cyclone Separation

Example: Total & Grade EfficiencyExample: Total & Grade Efficiency

Tests on a reverse flow gas cyclone give the results shown in th t bl b lthe table below:

Lower Upper Mass in feed (g) Coase product size (g)

0 5 10.00 0.10

5 10 15.00 3.53

10 15 25 00 18 0010 15 25.00 18.00

15 20 30.00 27.30

20 25 15.00 14.63

25 30 5.00 5.00

From these results determine the total efficiency of the cyclone and grade efficiency of each particle range

29S.Apinan

Page 30: Cyclone Separation

Solution: Total efficiencySolution: Total efficiency

Lower Upper Di Mass in feed (g) Coase product size (g)0 5 2.5 10.00 0.10 5 10 7.5 15.00 3.53 10 15 12 5 25 00 18 0010 15 12.5 25.00 18.00

15 20 17.5 30.00 27.30

20 25 22 5 15 00 14 6320 25 22.5 15.00 14.63

25 30 27.5 5.00 5.00 Total 100 00 68 56

5668M

Total 100.00 68.56

68.0100

56.68===

MME c

t

30S.Apinan

100M

Page 31: Cyclone Separation

Solution: Grade efficiencySolution: Grade efficiency

MfMMfMf

MM

xGmi

ccmi

feedi

ci ,,)( =fmifeedi,

Lower Upper Di Mass in feed (g) Coase product size (g) G(x)=Mci/Mi0 5 2.5 10.00 0.10 0.0100 5 10 7.5 15.00 3.53 0.2353

10 15 12.5 25.00 18.00 0.7200 15 20 17.5 30.00 27.30 0.9100 20 25 22.5 15.00 14.63 0.9753 25 30 27.5 5.00 5.00 1.0000

Total 100.00 68.56

31S.Apinan

Page 32: Cyclone Separation

Grade efficiency curveGrade efficiency curve

1.00

0.80 , G

(x)

0.60

ficiency ,

0 20

0.40

Grade

 Eff

0.00

0.20 G

0 10 20 30Diameter (μm)

32S.Apinan

Page 33: Cyclone Separation

Example: Size distribution and cyclone efficiency Example: Size distribution and cyclone efficiency

Air in a foundry is dusty because of handling sand used to makemolds, shaking castings out of the sand molds, and so on. A, g g ,sample of the workplace air was draw through a cyclone at a rateof 0.15 L/min for a period of 100 s. The sampled air contained 240particles which were counted and size optically on the basis ofparticles, which were counted and size optically on the basis ofdiameter as shown in the table. (density of particle = 1.74 g/cm3)

33S.Apinan

Page 34: Cyclone Separation

Example: Size distribution and cyclone efficiency Example: Size distribution and cyclone efficiency

It has been proposed to remove particle from the air with acyclone whose fractional (grade) efficiency is given below.y (g ) y g

1 Pl t th i di t ib ti f th l i b th f l h1. Plot the size distribution of the sample in both of normal graphand lognormal graph for number and mass basis.

2. Will this cyclone be able to bring the workplace air intoy g pcompliance with the OSHA standard that specifies that themaximum allowable concentration for nonrespirable nusancedust is 15 mg/m3?

34S.Apinan

dust is 15 mg/m3?

Page 35: Cyclone Separation

Solution:Solution:

Dlower Dupper Di ΔD ni fi=ni/Σni hi=fni/ΔD niDp3 fmi=niDp3/ΣniDp3 hmi=fmi/ΔD5 6 5.5 1 0 0.0000 0.0000 0 0.0000 0.000000 6 9 7.5 3 0 0.0000 0.0000 0 0.0000 0.000000 9 13 11 4 2 0 0083 0 0021 2662 0 0002 0 0000499 13 11 4 2 0.0083 0.0021 2662 0.0002 0.000049 13 18 15.5 5 29 0.1208 0.0242 107992 0.0080 0.001596 18 26 22 8 54 0.2250 0.0281 574992 0.0425 0.005311 26 37 31 5 11 84 0 3500 0 0318 2625494 0 1940 0 01763826 37 31.5 11 84 0.3500 0.0318 2625494 0.1940 0.017638 37 52 44.5 15 54 0.2250 0.0150 4758541 0.3516 0.023443 52 73 62.5 21 14 0.0583 0.0028 3417969 0.2526 0.012028 73 103 88 30 3 0.0125 0.0004 2044416 0.1511 0.005036

Total 240 1.000 13532065 1.0000

35S.Apinan

Page 36: Cyclone Separation

Solution:Solution:

0.0350

0 0250

0.0300 ction/μm Number fraction

0.0200

0.0250

r Mass frac

0.0150

tion

/μm o

Mass fraction

0.0050

0.0100

umbe

r fract

0.0000 1 10 100

Nu

36S.Apinan

1 10 100Diameter (μm)

Page 37: Cyclone Separation

Solution:Solution:

2. Will this cyclone be able to bring the workplace air intocompliance with the OSHA standard that specifies that thecompliance with the OSHA standard that specifies that themaximum allowable concentration for nonrespirable nusancedust is 15 mg/m3?g

Step 1: Determine the initial over all dust mass concentration

Lparticles/96060/10015.0

240ionconcentratNumber =×

=

35 mparticles/1060.9ionconcentratNumber ×=

6ionConcentratNumberionconcentratMass

3mDρπ

×=

37S.Apinan

massaverageofDiameter=mD

Page 38: Cyclone Separation

Solution:Solution:

Determine the diameter of average mass

Dlower Dupper Di ΔD ni fn,i=ni/nt niDp3 fiDp35 6 5.5 1 0 0.0000 0 0 6 9 7.5 3 0 0.0000 0 0 9 13 11 4 2 0.0083 2662 11

13 18 15.5 5 29 0.1208 107992 450 18 26 22 8 54 0.2250 574992 2396 26 37 31 5 11 84 0 3500 2625494 1094026 37 31.5 11 84 0.3500 2625494 10940 37 52 44.5 15 54 0.2250 4758541 19827 52 73 62.5 21 14 0.0583 3417969 14242 73 103 88 30 3 0.0125 2044416 8518

( ) 34383/13

3/13

⎟⎞

⎜⎛

∑∑ i dfdn

d i

Total 240 1.000 13532065 56384

( ) 34.38==⎟⎟⎠

⎜⎜⎝

= ∑∑iim df

Nd

38S.Apinan

massaverageofDiameter=mD

Page 39: Cyclone Separation

Solution:Solution:

Determine the initial over all dust mass concentration

35 mparticles/1060.9ionconcentratNumber ×=

6ionConcentratNumberionconcentratMass

3mDρπ

×=

6)1034.38(kg/m17401060.9ionconcentratMass

3635

−××××=

π

335 mg/m3.49kg/m1093.4ionconcentratMass =×= −

39S.Apinan

Page 40: Cyclone Separation

Solution:Solution:

Step 2: The minimumum over all efficiency to pass the standard (concentration for nonrespirable nusance dust is 15 mg/m3)concentration for nonrespirable nusance dust is 15 mg/m3)

Mass Balance

3mg/m3.34152.49 =−=−= finefeedc MMM

334M 6957.03.493.34

minimum, ===MME c

t 3.49M

40S.Apinan

Page 41: Cyclone Separation

Solution:Solution:

Step 3: Determine the actual overall efficiency from gradeefficiencyefficiency

fxGE )(∑= feedmiit fxGE ,)(∑=

41S.Apinan

Page 42: Cyclone Separation

Solution:Solution:

Dlower Dupper Di ni fi=ni/Σni fmi=niDp3/ΣniDp3 G(xi) G(xi)fmiDlower Dupper Di ni fi ni/Σni fmi niDp3/ΣniDp3 G(xi) G(xi)fmi5 6 5.5 0 0.0000 0.0000 0.42 0.0000 6 9 7.5 0 0.0000 0.0000 0.5 0.0000 9 13 11 2 0 0083 0 0002 0 6 0 00019 13 11 2 0.0083 0.0002 0.6 0.0001

13 18 15.5 29 0.1208 0.0080 0.68 0.0054 18 26 22 54 0.2250 0.0425 0.72 0.0306 26 37 31.5 84 0.3500 0.1940 0.8 0.1552 37 52 44.5 54 0.2250 0.3516 0.83 0.2919 52 73 62.5 14 0.0583 0.2526 0.93 0.2349 73 103 88 3 0.0125 0.1511 0.98 0.1481

240 1.000 1.0000 0.8662

8662.0)( , ==∑ feedmiit fxGE

42S.Apinan

Page 43: Cyclone Separation

Solution:Solution:

EE standard,tt EE >

Consequently, the collector is capable of q y, psatisfying the OSHA standard.

43S.Apinan

Page 44: Cyclone Separation

Collectors in seriesCollectors in series แบบอนกรมแบบอนกรม

1fM 2fM 2, −nfM 1, −nfM fMfeedMCyclone 1 Cyclone 2 Cyclone

n-1Cyclone

n

M M 1M Mc

t MME 1

1 =

1cM 2cM 1, −ncM ncM ,

22

ct M

ME = 1,1

−= ncnt

ME ,= nc

t

ME

feedM 1fM2,

1,−

−nf

nt M 1,,

−nfnt M

E

fM 1 M M Mfeed

ft M

ME 1

11 =−1

221

f

ft M

ME =−

2,

1,1,1

−− =−

nf

nfnt M

ME

1,

,,1

=−nf

nfnt M

ME

4444S.Apinan

Page 45: Cyclone Separation

Collectors in seriesCollectors in series แบบอนกรมแบบอนกรม

cME 11 = 2cME = 1, −ncM

E ncME

feedt M

E 11

2f

t ME =

2,

1,1,

−− =

nf

ncnt M

E1,

,,

=nf

ncnt M

E

feed

ft M

ME 1

11 =−1

221

f

ft M

ME =−

2

1,1,1

−− =−

nf

nfnt M

ME

1

,,1

=−nf

nfnt M

ME

2,nf 1,nf

nfcifeed MMM ,∑ +=Mass Balance

ict M

ME ∑= , nf

t MM

E ,1 =−feed

t M feedM,1,21 ...1 − ××××=− nfnfff

t

MMMME

45

1,2,1 −− nfnfffeedt MMMM

45S.Apinan

Page 46: Cyclone Separation

Collectors in seriesCollectors in series แบบอนกรมแบบอนกรม

Therefore121 ffff MMMM

1,

,

2,

1,

1

21 ...1−−

− ××××=−nf

nf

nf

nf

f

f

feed

ft M

MMM

MM

MM

E

)1()1()1()1(1 EEEEE −×−××−×−=− )1()1(...)1()1(1 ,1,21 ntntttt EEEEE ××××= −

4646S.Apinan

Page 47: Cyclone Separation

Collectors in parallel: Collectors in parallel: แบบขนานแบบขนาน

M1cM

Cyclone 11fM

1,feedM

feedM fMM

,f

MCyclone 2

2fM2,feedM

2cM

∑∑∑ +=+= cifcififeed MMMMMMass Balance

47

∑∑∑ cifcififeed

47S.Apinan

Page 48: Cyclone Separation

Collectors in parallel: Collectors in parallel: แบบขนานแบบขนาน

M1cM

Cyclone 11fM

1,feedM

feedM fMM

,f

MCyclone 2

2fM2,feedM

2cM

fffeedcit M

MM

MMM

ME −=

−== ∑ 1

48

feedfeedfeedt MMM

48S.Apinan

Page 49: Cyclone Separation

Collectors in parallel: Collectors in parallel: แบบขนานแบบขนาน

M1cM

Cyclone 11fM

1,feedM

feedM fMM

,f

MCyclone 2

2fM2,feedM

2cM

111 1 fc

t MM

MME −== 22

2 1 fct M

MMME −==

49

11 feedfeed MM 22 feedfeedt MM

49S.Apinan

Page 50: Cyclone Separation

Collectors in parallel: Collectors in parallel: แบบขนานแบบขนาน

)1( 111 tfeedf EMM −= )1( 222 tfeedf EMM −=)( 111 tfeedf 222 tfeedf

fif MM ∑feed

fi

feed

ft MM

E ∑−=−= 11

tiif d EM∑ − )1(

f d

tiifeedt M

EME ∑−=

)1(1 ,

feedM

5050S.Apinan

Page 51: Cyclone Separation

Grade efficiency curveGrade efficiency curve

1.00

0.80 , G

(x)

0.60

ficiency ,

0 20

0.40

Grade

 Eff

0.00

0.20 G

0 10 20 30Diameter (μm)

51S.Apinan

Page 52: Cyclone Separation

ประสทธภาพของไซโคลนแตละประเภทประสทธภาพของไซโคลนแตละประเภท

52S.Apinan

Page 53: Cyclone Separation

Cyclone Grade Efficiency in PracticeCyclone Grade Efficiency in Practice

• There are the another way to show the efficiency of collector/separator as cut diameter (critical size criticalcollector/separator as cut diameter (critical size, critical diameter, xcrit, dpcirt)

• For cyclone, the grade efficiency curve for gas cyclones is y , g y g yusually S-shaped.

• The particle size for which the grade efficiency is 50%, cut size, x50, is often used as a single number measurement of the efficiency of the cyclone.

• x is sometimes simply referred to as the cut size of the• x50 is sometimes simply referred to as the cut size of the cyclone (or other separation device).

• The concept of x50 cut size is useful where the efficiency p 50 yof a cyclone is to be expressed as a single number independent of the feed solid size distribution, such as in

53S.Apinan

scale-up calculation.

Page 54: Cyclone Separation

Cut size/ Cut diameter in cycloneCut size/ Cut diameter in cyclone

1.00

0.80 , G

(x)

0.60

ficiency ,

0 20

0.40

Grade

 Eff

0.00

0.20 G

0 10 20 30Diameter (μm)

sizeCut xD ==54S.Apinan

5050sizeCut xDp ==

Page 55: Cyclone Separation

LOGO

Prediction of collection Prediction of collection efficiency efficiency efficiency efficiency

Apinan SootitantawatApinan [email protected]

Page 56: Cyclone Separation

Prediction of collection efficiencyPrediction of collection efficiency

• Theoretical approach (Laminar flow)

• Cut diameter approach (Lapple`s method)

• Leith and Licht`s method

56S.Apinan

Page 57: Cyclone Separation

Prediction of collection efficiencyPrediction of collection efficiency

11. Theoretical approach (Laminar flow). Theoretical approach (Laminar flow)

VdN gppeρπ)(

2

WxG gppe

μρ

η9

)( ==

)2

(1 cbe

LLH

vortexofturnsofNumberN +≅=2be H

57S.Apinan

Page 58: Cyclone Separation

Prediction of collection efficiencyPrediction of collection efficiency

Number of turns of vortex (Ne)Number of turns of vortex (Ne)

vortexofturnsofNumberNe = ffe

)(1 cLLN +≅ )2

( cbe L

HN +≅

58S.Apinan

Page 59: Cyclone Separation

Prediction of collection efficiencyPrediction of collection efficiency

2. Cut diameter approach2. Cut diameter approach• A semiempirical approach developed by Lapple used larminar

flow treatment but introduced the concept of a cut size, dp50.p50• Therefore he could fine the cut diameter as

VdN ρπ 2

WVdN gppe

μρπ

η9

5.0 ==

Wμ9

μ

gpep VN

Wdρπμ

29

50 =

59S.Apinan

gpeρ

Page 60: Cyclone Separation

Prediction of collection efficiencyPrediction of collection efficiency

Lapple`graphLapple`graph

1( )250 /1

1)(pip

i dddpG

+=

pp

6060S.Apinan

Page 61: Cyclone Separation

Prediction of collection efficiencyPrediction of collection efficiency

3. 3. LeithLeith & & LichtLicht’ s ’ s modelTheoreticalmodelTheoretical approach approach (Laminar flow)(Laminar flow)

• The laminar flow model has limitations, as gas flow in a cyclone is not simply laminar (nor is it fully turbulent, because the boundary layer has a significant depth).

• Leith&Licht have derived the equation which was in the formq

))(2exp(1)( 22/1 +−−== nCDpG ψη ))(p()( p ψηG(Dp) คอ ประสทธภาพในการเกบกกยอยของอนภาค dp

C คอ Configuration parameter

Ψ คอ Impaction parameter V t t

61S.Apinan

n คอ Vortex exponent

Page 62: Cyclone Separation

Parameter of cycloneParameter of cyclone

62S.Apinan

Page 63: Cyclone Separation

Prediction of collection efficiencyPrediction of collection efficiency

3.014.0)(1 ⎟⎞

⎜⎛ TD

2835.2)(1 ⎟

⎠⎞

⎜⎝⎛−=

TDn

D คอ Cyclone diameter (นว)

T คอ อณหภมกาซ(เคลวน)

⎬⎫

−⎟⎞

⎜⎛−+⎥

⎤⎢⎡

⎟⎠⎞

⎜⎝⎛++⎟

⎞⎜⎛ −+

+⎪⎨⎧

⎟⎠⎞

⎜⎝⎛ −⎥⎤

⎢⎡

⎟⎞

⎜⎛−=

SkDLddLkSHSDDC ebbe2222

1112π

⎭⎬⎟

⎠⎜⎝

+⎥⎥⎦⎢

⎢⎣

⎟⎠

⎜⎝

++⎟⎠

⎜⎝

+⎪⎩⎨ ⎟

⎠⎜⎝⎥⎥⎦⎢

⎢⎣

⎟⎠

⎜⎝ DDDDDDDDDDWH

C 132

12

D W H De Lb S คอพารามเตอรของไซโคลนD, W, H, De, Lb, S คอพารามเตอรของไซโคลน

k หาไดจาก 3/12

3.2 ⎟⎟⎞

⎜⎜⎛

=DDk

63S.Apinan

3.2 ⎟⎟⎠

⎜⎜⎝WH

Dk e

Page 64: Cyclone Separation

Prediction of collection efficiencyPrediction of collection efficiency

3.014.0)(1 ⎟⎞

⎜⎛ TD

2835.2)(1 ⎟

⎠⎞

⎜⎝⎛−=

TDn

D คอ Cyclone diameter (นว)

T คอ อณหภมกาซ(เคลวน)

⎬⎫

−⎟⎞

⎜⎛−+⎥

⎤⎢⎡

⎟⎠⎞

⎜⎝⎛++⎟

⎞⎜⎛ −+

+⎪⎨⎧

⎟⎠⎞

⎜⎝⎛ −⎥⎤

⎢⎡

⎟⎞

⎜⎛−=

SkDLddLkSHSDDC ebbe2222

1112π

⎭⎬⎟

⎠⎜⎝

+⎥⎥⎦⎢

⎢⎣

⎟⎠

⎜⎝

++⎟⎠

⎜⎝

+⎪⎩⎨ ⎟

⎠⎜⎝⎥⎥⎦⎢

⎢⎣

⎟⎠

⎜⎝ DDDDDDDDDDWH

C 132

12

D W H De Lb S คอพารามเตอรของไซโคลนD, W, H, De, Lb, S คอพารามเตอรของไซโคลน

k is the farthest distance that the vortex extends below the gas exit duct calculate from

3/12

3.2 ⎟⎟⎠

⎞⎜⎜⎝

⎛=

WHDDk e

64S.Apinan

below the gas exit duct calculate from ⎟⎠

⎜⎝WHe

Page 65: Cyclone Separation

Prediction of collection efficiencyPrediction of collection efficiency

And d is the diameter of conical section at k

cbd LLkSDDDd /))(( −+−−=

In addition

( )118

2

+= nDVd gppρψ ( )

18 Dgμψ

ρ คอ ความหนาแนนของอนภาคρp dp คอ ขนาดของอนภาคVg คอ ความเรวกาซเขาสไซโคลน

65S.Apinan

gμg คอ ความหนดกาซ

Page 66: Cyclone Separation

Prediction of collection efficiencyPrediction of collection efficiency

The accuracy of each model/approach

66S.Apinan

Page 67: Cyclone Separation

Prediction of pressure dropPrediction of pressure drop

บงบอกพลงงานทตองใชในการแยกอนภาคของไซโคลน

คาความดนสญเสยทเพมขนของไซโคลนมผลทาใหประสทธภาพของไซโคลนเพมขนดวย

คาความเรวของอากาศทไหลเขาและคาความดนสญเสยกจะมผลตอประสทธภาพของ

ไซโคลน

1vig HVP 2

21 ρ=Δ

ΔP คอ คาความดนสญเสย, Pa

3ρg คอ ความหนาแนนอากาศ, kg/m3

Vi คอ ความเรวของอากาศทไหลเขาไซโคลน, m/s

H ส ส ใ ป i l t l it h d

67S.Apinan

Hv คอ ความดนสญเสยในรปจานวนของ inlet velocity head

Page 68: Cyclone Separation

Prediction of pressure dropPrediction of pressure drop

⎤⎡⎥⎦

⎤⎢⎣

⎡= 2v D

HWKH⎦⎣ eD

Hv คอ the number of velocity head

K คอ คาคงทมคาเทากบ 16 สาหรบไซโคลนทมทอเขาตามแนวK คอ คาคงทมคาเทากบ 16 สาหรบไซโคลนทมทอเขาตามแนว

สมผส(tangential inlet), มคาเทากบ 7.5 สาหรบไซโคลนทมแผนบงคบ(vane)

H คอ ความสงทอเขาไซโคลน H คอ ความสงทอเขาไซโคลน, m

W คอ ความกวางทอเขาไซโคลน, mD คอ ขนาดของทออากาศออก m

68S.Apinan

De คอ ขนาดของทออากาศออก, m

Page 69: Cyclone Separation

Pressure drop in gas cyclonePressure drop in gas cyclone

• Common ranges of pressure drops are as follows

Low-efficiency cyclones 2-4 in. water

Medium-efficiency cyclones 4-6 in. water

High-efficiency cyclones 8-10 in. water

69S.Apinan

Page 70: Cyclone Separation

Factors that affect to the cyclone efficiencyFactors that affect to the cyclone efficiency

พารามเตอร ความดนสญเสย ประสทธภาพ

เพมขนาดของตวไซโคลน(D) ลดลง ลดลง

เพมความยาวของรปทรงกระบอกและสวนโคน(Lb&Lc) ลดลงเลกนอย เพมขน

เพมขนาดของทออากาศออก(De) ลดลง ลดลง

เพมพนททออากาศเขา(โดยความเรวของอากาศเทาเดม) เพมขน ลดลง

เพมความเรวของอากาศ เพมขน เพมขน

เพมอณหภม(โดยความเรวของอากาศเทาเดม) ลดลง ลดลง

เพมความเขมขนของอนภาค ลดลงเมอความเขมขน

เพมในปรมาณมากๆ

เพมขน

ไ เพมขนาดและ/หรอความหนาแนนของอนภาค ไมมผล เพมขน

70S.Apinan

Page 71: Cyclone Separation

Cyclones in seriesCyclones in series

• Connecting cyclones in series is often done in practice to iincrease recovery.

• Usually the primary cyclone would be of medium or low efficiency design and the secondary and subsequentefficiency design and the secondary and subsequent cyclones of progressively more efficient design or smaller diameter.

SS71S.Apinan

SeriesSeries

Page 72: Cyclone Separation

Cyclones in parallelCyclones in parallel

• The x50 cut size achievable for a given cyclone geometry d ti d d ith d iand operating pressure drop decreases with decreasing

cyclone size. • The size a single cyclone for treating a given volume flowThe size a single cyclone for treating a given volume flow

rate of gas is determined by that gas flow rate. • For large gas flow rates the resulting cyclone may be so g g g y y

large that the x50 cut size is unacceptably high.• The solution is to split the gas flow into several smaller

l ti i ll lcyclones operating in parallel. • In this way, both the operating pressure drop and x50 cut

size requirements can be achievedsize requirements can be achieved.

72S.Apinan

Page 73: Cyclone Separation

Cyclones in series and parallelCyclones in series and parallel

Clean gas

ParallelParallel

73S.Apinan

Page 74: Cyclone Separation

ปจจยทมผลตอสมรรถนะ ของ ไซโคลนปจจยทมผลตอสมรรถนะ ของ ไซโคลน

74S.Apinan

Page 75: Cyclone Separation

ขอดและขอจากดของไซโคลนขอดและขอจากดของไซโคลน

ขอด ขอเสย

- คาลงทนและคาเดนเครองตา - ประสทธภาพในการเกบกกสาหรบ

- ไมมสวนใดของอปกรณทตองเคลอนท

ทาใหปญหาในการรกษาบารงนอย

อนภาคทเลกกวา 10 ไมครอนคอนขางตา

- ไมสามารถใชกบอนภาคทมลกษณะหนด

- คาความดนสญเสยคอนขางตา

- เปนอปกรณทรวบรวมและกาจดอนภาค

เหนยว

- อาจมปญหาเกยวกบการกดกรอน

แบบแหง

- การกอสรางคอนขางใชพนทนอย

- สามารถออกแบบใหเหมาะสมกบชวง

ขนาดอนภาคได

75S.Apinan