CSD(5)

download CSD(5)

of 22

Transcript of CSD(5)

  • 8/18/2019 CSD(5)

    1/22

    Computation of  K 

    : Design methods

    Dr. Abdul Qayyum Khan

    Room No. SE-302Department of Electrical Engineering,Pakistan Institute of Engineering and Applied Sciences,

    P.O. Nilore Islamabd Pakistan

    Email: [email protected]

    http://www.pieas.edu.pk/aqayyum/

    ()   Copyrighted@AQKhan. All rights reserved   1 / 22

    http://www.pieas.edu.pk/aqayyum/http://www.pieas.edu.pk/aqayyum/http://find/

  • 8/18/2019 CSD(5)

    2/22

    Lecture Outline

    Discussed so far: how controllability is necessary and sufficientcondition for design of state feedback controller

    Today; we shall discussComputation methods for state feedback gain matrix  K 

    Design of  K  using the transformation methodDesign of  K  using the Direct substitution methodDesign of  K   using Ackermann formula

    ()   Copyrighted@AQKhan. All rights reserved   2 / 22

    http://find/

  • 8/18/2019 CSD(5)

    3/22

    Design of  K  using the method of Transformation matrix  T 

    I

    Consider the system

    ẋ  = Ax  + Bu    (1)

    where  x  ∈ ℜn

    ,  A ∈ ℜn×n

    matrix and  B  ∈ ℜn×1

    . Consider the control of the form  u  = −Kx . Then

    ẋ  = (A − BK ) x    (2)

    Let  µ1, µ2, · · ·µn  be the desired eigenvalues.

    K  must be computed such away that the closed loop eigenvalues shouldbe  µ1,  µ2,  · · · ,  µn

    ()   Copyrighted@AQKhan. All rights reserved   3 / 22

    http://goforward/http://find/http://goback/

  • 8/18/2019 CSD(5)

    4/22

    Design of  K  using the method of Transformation matrix  T 

    II

    The following algorithm is used to compute  K .

    Algorithm 1

    Step I.  Check the controllability, if the system is controllable, then go tostep II. Otherwise exit.

    Step II.  From the characteristics polynomial of  A, i.e.;

    |sI  − A| =  s n + a1s n−1 + a2s 

    n−2 + · · · + an−1s  + an   (3)

    determine the values of the  a′s 

    ()   Copyrighted@AQKhan. All rights reserved   4 / 22

    http://find/

  • 8/18/2019 CSD(5)

    5/22

    Design of  K  using the method of Transformation matrix  T 

    III

    Step III.  Determine the transformation matrix  T   that transform the

    system (1) into CCF. If the system is in CCF, then  T   = I .Otherwise it is given by

    T   = MW    (4)

    where

    M =

      B ...   AB 

    ...   · · ·...   An−1B 

      (5)

    W   =

    an−1   an−2   · · ·   a1   1an−2   an−3   · · ·   1 0

    ...  ...

      ...  ...

      ...a1   1 0 0 0

    1 0   0   0   0

    (6)

    ()   Copyrighted@AQKhan. All rights reserved   5 / 22

    http://find/

  • 8/18/2019 CSD(5)

    6/22

    Design of  K  using the method of Transformation matrix  T 

    IV

    This transformation is not only necessary to find CCF, it is also used tocompute  K 

    Step IV.  Form a characteristics polynomial using the desired eigenvalues

    µ1, µ2, · · ·   , µn  as

    (s  − µ1) (s  − µ2) · · · (s  − µn)

    = s n + α1s n−1 + α2s 

    n−2 + · · · + αn−1s  + αn

    Step V.   Compute  K   as

    K  =  αn − an

    ...   αn−1 − an−1...   · · ·

    ...   α1 − a1

    T −1 (7)

    ()   Copyrighted@AQKhan. All rights reserved   6 / 22

    http://find/

  • 8/18/2019 CSD(5)

    7/22

    Design of  K  using the method of Transformation matrix  T 

    V

    Example 1: Consider

    ẋ  =

    0 1 00 0 1

    −1   −5   −6

    x  +

    00

    1

    u    (8)

    Find, if possible, a state feedback control of the form  u  = −Kx   whichplaces the closed loop poles at  s 12 = −2 ± j 4,  s 3  = −10. Use the methodof transformation.

    Solution:

    Following the steps given in algorithm 1, we have

    ()   Copyrighted@AQKhan. All rights reserved   7 / 22

    http://find/

  • 8/18/2019 CSD(5)

    8/22

    Design of  K  using the method of Transformation matrix  T 

    VI

    Step I.   Controllability:

    M  =

      B AB A2B 

     =

    0 0 10   −1   −6

    1   −6   −31

      (9)

    Here the  Rank (M ) = 3, since  |M | =  −1.

    Step II.  Form the characteristic polynomial of A

    |sI  − A| =

    s    −1 00   s    −11 5   s  + 6

    = s 3 + 6s 2 + 5s  + 1 (10)

    Here  a1  = 6,  a2  = 5,  a3  = 1

    Step III.  Since the system is already in CCF, the transformation matrix

    T   = I ()   Copyrighted@AQKhan. All rights reserved   8 / 22

    http://find/

  • 8/18/2019 CSD(5)

    9/22

    Design of  K  using the method of Transformation matrix  T 

    VII

    Step IV.  Form the characteristic polynomial using the desired poles; i.e.;

    (s  + 2 +  j 4) (s  + 2 − j 4) (s  + 10) (11)

    = s 3 + 14s 2 + 60s  + 200 (12)

    Here  α1  = 14,  α2  = 60,  α3  = 200

    Step V.   Form  K   as

    K   =   α3 − a3   α2 − a2   α1 − a1  =   199 55 8   (13)

    ()   Copyrighted@AQKhan. All rights reserved   9 / 22

    http://find/

  • 8/18/2019 CSD(5)

    10/22

    Design of  K  using the direct substitution method I

    This method is relatively straight forward and easy

    Very suitable for the systems with  n ≤ 3

    For  n  > 3, the computations are tidy

    Consider the case  n = 3.  The  K  matrix is then

    K   =   k 1   k 2   k 3 Also note that

    |sI  − A + BK | =  s 3 + δ 1s 2 + δ 2s  + δ 3   (14)

    is a polynomial whose coefficient contains  k 1, k 2  and  k 3.

    Form a characteristic polynomial of the desired poles  µ1, µ2, µ3; i.e;

    (s  − µ1) (s  − µ2) (s  − µ3) = s 3 + α1s 

    2 + α2s  + α3   (15)

    ()   Copyrighted@AQKhan. All rights reserved   10 / 22

    http://find/

  • 8/18/2019 CSD(5)

    11/22

    Design of  K  using the direct substitution method II

    Comparing the coefficient in the similar power of  s   in (14) and (15),

    Calculate the value of  K Example 2

    Consider the same example as discussed under the section of the methodof transformation.

    Solution:

    Here in this example, we have

    K  =

      k 1   k 2   k 3

      (16)

    ()   Copyrighted@AQKhan. All rights reserved   11 / 22

    http://find/

  • 8/18/2019 CSD(5)

    12/22

    Design of  K  using the direct substitution method III

    Then

    |sI  − A + BK | = s    −1 00   s    −1

    1 + k 1   5 + k 2   s  + 6 + k 3

    = s 3 + (6 + k 3s 2 + (5 + k 2)

    (17)

    The desired polynomial is

    (s  + 2 + j 4) (s  + 2 − j 4) (s  + 10) (18)

    = s 3 + 14s 2 + 60s  + 200 (19)

    Comparing the coefficients, the  K   matrix is

    K  =

      k 1   k 2   k 3

    =

      200 − 1 60 − 5 14 − 6

    =

      199 55 8

    ()   Copyrighted@AQKhan. All rights reserved   12 / 22

    http://find/

  • 8/18/2019 CSD(5)

    13/22

    Design of  K  using the formula of Ackermann I

    Consider again (14)

    ẋ  = (A − BK ) x    (20)

    = Ãx    (21)

    and the desired eigenvalues are  µ1, µ2, · · · µn. The required characteristics

    equation is

    |sI  − A + BK | = |sI  − Ã|

    = (s  − µ1) (s  − µ2) · · · (s  − µn)

    = s n

    + α1s n−1

    + · · · + αn−1s  + αn   (22)

    Recall Calay-Hamilton Theorem which is

    φ(Ã) = Ãn + α1Ãn−1 + α2Ã

    n−2 + · · · + αn−1à+ αnI    (23)

    ()   Copyrighted@AQKhan. All rights reserved   13 / 22

    http://find/http://goback/

  • 8/18/2019 CSD(5)

    14/22

    Design of  K  using the formula of Ackermann II

    (23) is used to derive Ackermann’s formula

    Consider the case for  n = 3. Notice from (23) that

    I   = I 

    à=  A − BK 

    Ã2 = (A − BK )2 = A2 − ABK  − BK  Ã

    Ã3

    = (A − BK )3

    = A3

    − A2

    BK  − ABK  Ã − BK  Ã2

    ()   Copyrighted@AQKhan. All rights reserved   14 / 22

    http://find/

  • 8/18/2019 CSD(5)

    15/22

    Design of  K  using the formula of Ackermann III

    multiply these equation by  α1,α2,α3  and adding them as follows

    φ(Ã) = α3I  + α2à+ α1Ã2 + Ã3

    = α3I  + α2(A − BK ) + α1(A2 − ABK  − BK  Ã)

    + A3 − A2BK  − ABK  Ã − BK  Ã2

    = α3I  + α2A + α1A2 + A3   

    φ(A)

    −α2BK 

    − α1ABK  − α1BK  Ã − A2BK  − ABK  Ã − BK  Ã2

    φ(Ã) = φ(A) − α2BK  − α1ABK  − α1BK  Ã − A2BK  − ABK  Ã − BK  Ã2

    ()   Copyrighted@AQKhan. All rights reserved   15 / 22

    http://find/

  • 8/18/2019 CSD(5)

    16/22

    Design of  K  using the formula of Ackermann IV

    As  φ(Ã) = 0 from CH-Theorem. Here note that  φ(A) = 0, since it is notthe characteristic polynomial of A. The above equation can be re-writtenas

    φ(A) = B (α2K  + α1K  Ã + K  Ã2) + AB (α1K  + K  Ã) + A

    2BK 

    =

      B ...   AB 

    ...   A2B 

    α2K  + α1K  Ã + K  Ã2

    α1K  + K  ÃK 

    φ(A) = M α2K  + α1K  Ã + K  Ã

    2

    α1K  + K  ÃK 

    ()   Copyrighted@AQKhan. All rights reserved   16 / 22

    D i f K i h f l f A k V

    http://find/

  • 8/18/2019 CSD(5)

    17/22

    Design of  K  using the formula of Ackermann V

    As  φ(Ã) = 0 from CH-Theorem. Here note that  φ(A) = 0, since it is notthe characteristic polynomial of A. The above equation can be re-writtenas

    φ(A) = B (α2K  + α1K  Ã + K  Ã2) + AB (α1K  + K  Ã) + A

    2BK 

    =

      B ...   AB 

    ...   A2B 

    α2K  + α1K  Ã + K  Ã2

    α1K  + K  ÃK 

    φ(A) =   M   Controllability Matrix

    α2K  + α1K  Ã + K  Ã

    2

    α1K  + K  ÃK 

    ()   Copyrighted@AQKhan. All rights reserved   17 / 22

    D i f K i h f l f A k VI

    http://find/

  • 8/18/2019 CSD(5)

    18/22

    Design of  K  using the formula of Ackermann VI

    Since the system is completely state controllable,  M −1 exist. Therefore

    M −1φ(A) =

    α2K  + α1K  Ã + K  Ã2α1K  + K  Ã

    or

    α2K  + α1K 

     Ã + K  Ã2

    α1K  + K  ÃK 

     =  M −1φ(A)

    Pre-multiplying both sides by   0 0 1 , we getK  =

      0 0 1

    M −1φ(A)

    =

      0 0 1

      B ...   AB 

    ...   A2B 

    φ(A)

    ()   Copyrighted@AQKhan. All rights reserved   18 / 22

    D i f K i h f l f A k VII

    http://find/

  • 8/18/2019 CSD(5)

    19/22

    Design of  K  using the formula of Ackermann VII

    Generalizing this equation for n-dimensional system, we have

    K  =   0 0   · · ·   1 M −1φ(A)=

      0 0   · · ·   1

      B 

    ...   AB ...   · · ·   An−1B 

    φ(A)

    This equation is referred to as Ackermann’s formula for the determination

    of state feedback gain matrix.

    Example 3:

    Consider the same example as discussed before.

    Solution

    ()   Copyrighted@AQKhan. All rights reserved   19 / 22

    D i f K i th f l f A k VIII

    http://find/

  • 8/18/2019 CSD(5)

    20/22

    Design of  K  using the formula of Ackermann VIII

    Here the controllability matrix  M   is

    M  =

      B AB A2B 

     = 0 0 10 1   −6

    1   −6 31

    From example 1 and 2, we have  α1  = 14,  α2  = 60,  α3  = 200. Therefore,

    φ(A) = α3I  + α2A + α1A2 + A3

    = 200I  + 60A + 14A2 + A3 =

    199 55 8−8 159 7

    −7   −43 117

    The matrix  K  can be computed as

    K  =

      0 0 1

    M −1φ(A)

    =

      199 55 8

    ()   Copyrighted@AQKhan. All rights reserved   20 / 22

    C t d R k

    http://find/

  • 8/18/2019 CSD(5)

    21/22

    Comments and Remarks

    For SISO systems,  K   is unique for the desired poles from the client

    For MIMO systems,  K   is not unique.

    The desired closed loop poles is a compromise between rapidity of theresponse of the error and sensitivity to disturbance and noises, If these are at the dispense of designer.

    For 2nd order system, the response characteristics can be precisely

    correlated with the location of the desired closed loop poles.For higher order system, this is not easy job.

    MATLAB function: acker and place  ⇒  These function compute  K   byplacing the closed loop poles at the desired location; i.e.;Given matrices  A  and  B  and a vector of desired closed loop poles  p ,

    K  can be computed as

    K  = acker (A,B , p )

    K  = place (A,B , p )

    ()   Copyrighted@AQKhan. All rights reserved   21 / 22

    Comments and Remarks

    http://find/

  • 8/18/2019 CSD(5)

    22/22

    Comments and Remarks

    For SISO systems,  K   is unique for the desired poles from the clientFor MIMO systems,  K   is not unique.

    The desired closed loop poles is a compromise between rapidity of theresponse of the error and sensitivity to disturbance and noises, If these are at the dispense of designer.For 2nd order system, the response characteristics can be preciselycorrelated with the location of the desired closed loop poles.For higher order system, this is not easy job.MATLAB function: acker and place  ⇒  These function compute  K   byplacing the closed loop poles at the desired location; i.e.;Given matrices  A  and  B  and a vector of desired closed loop poles  p ,

    K  can be computed asK = acker(A,B,p)

    ⇑Function ’Acker’ is used for single input systems

    =()   Copyrighted@AQKhan. All rights reserved   22 / 22

    http://find/