CS Polarimetry upgr - High Altitude Observatory · Circumstellar Polarimetry IAUS 305 3 Other...

83
04/Dec/2014 IAUS 305 Circumstellar Polarimetry IAG Universidade de São Paulo Antonio Mário Magalhães

Transcript of CS Polarimetry upgr - High Altitude Observatory · Circumstellar Polarimetry IAUS 305 3 Other...

04/Dec/2014 IAUS 305

Circumstellar Polarimetry

IAG Universidade de São Paulo

Antonio Mário Magalhães

04/Dec/2014

Circumstellar Polarimetry

IAUS 3052

Polarimetry• Polarimetry Group at IAG-USP:

– Antonio Mário Magalhães ! Edgar Ramirez (Postdoc)

! Nadili Ribeiro (PhD)

! Daiane Seriacopi (MSc) Marcelo Rubinho (MSc) Tibério Ferrari (MSc)

– Collaborators: ! Alex Carciofi (IAG) ! Cláudia Rodrigues (INPE/DAS) ! Antonio Pereyra (IG, Peru) ! Elisabete M. G. Dal Pino (IAG) ! Diego Falceta-Gonçalves (USP)

! Marcelo Borges (ON-RJ) ! Armando Domiciano (Obs. Nice)

04/Dec/2014

Circumstellar Polarimetry

IAUS 3053

Other collaborators:– Karen & Jon Bjorkman, U. Toledo

John Wisniewski, U. Washington ! Magellanic Cloud ISM, circumstellar disks

– Jean-Philippe Bernard & CESR teamFrederick Poidevin

! ISM/PILOT, PLANCK

– Aiara Gomes (MPIA, Heidelberg)Caroline Bot, U. Strasbourg

! SMC

– Pris Frisch, U. Chicago B-G Andersson, SOFIA/USRA V. Piirola, M. Juvela Finland

! Local ISM

04/Dec/2014

Circumstellar Polarimetry

IAUS 3054

Summary• Introduction • Measuring Polarization • Observations & modeling

– Be Stars ✴ Disks ✴ Short- & medium-term variability ✴ Long-term variability

– WR Stars ✴ Binaries ✴ Single stars: blobs

– B[e] supergiants in the Magellanic Clouds – Polars – Herbig Ae/Be stars

• SOUTH POL • Conclusions

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

Introduction• Dust Interstellar Polarization Arises from – Dust grainsaligned by

– ISM’s Magnetic Field

• ISM Polarization provides info on – Dust properties

! size, composition – Bsky

! B component projected on the sky

– It has to be taken into account5

adapted from Ponthieu, Lagache; www.planck.fr

B field

04/Dec/2014

Circumstellar Polarimetry

IAUS 3056

Introduction• Polarization can also arise from

dust scattering

UY Aur (T Tauri) Potter et al. 00

– Polarimetry at 1.2µm

04/Dec/2014

Circumstellar Polarimetry

IAUS 3057

Introduction• Polarization from dust

scattering

UY Aur (T Tauri) Potter et al. 00

– Dust model

04/Dec/2014

Circumstellar Polarimetry

IAUS 3058

Introduction• Polarization from Rayleigh or e- scattering

www.giangrandi.ch/optics/polarizer/polarizer.shtml

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

Introduction - e- scattering– The scattered intensity is

! per e- per unit incident flux

9

d�/d⌦ =

1

2

r2o

(1 + cos

2 ✓) =3

16⇡�e

(1 + cos

2 ✓)

www.giangrandi.ch/optics/polarizer/polarizer.shtml

θ

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

Introduction - e- scattering– The scattered intensity is, in reality, wavelength dependent

– for a bound e-

10

www.giangrandi.ch/optics/polarizer/polarizer.shtml

Incoming Poynting flux ⟨S ⟩ (erg/s/cm2) is:

⟨S ⟩ =c

2π/ω!

0

E20 cos

2 ωtdt

2π/ω=

c

8πE20. (4.67)

We can define the cross-section as the ratio of the scattered energy per unit time dW/dt (erg/s)to the incoming Poynting flux (erg/s/cm2).

σscat(ω) =⟨dW/dt⟩⟨S ⟩

=8πe4

3m2ec4

ω4

(ω2 − ω20)2 + ω2γ2

=

=8πr2

e

3

ω4

(ω2 − ω20)2 + ω2γ2

= σTω4

(ω2 − ω20)2 + ω2γ2

. (4.68)

The cross-section σ(ω)

..

radio−IR−optical X−ray

ω

classical radiationnot valid

σ (ω )= 6π ( )ω

γ

Lorentz profile

σ(ω)

σ ( )

ωω

0

c

0

T

red blue

0

peak

peak

2

σ

σ T

ωω

max= = 10 Hz 23c

re

ω ω0

<<

almost static E−field

ω ω0>>

ep

incoming radiation oscillatesvery fast. Can neglect the slowelectron motion around the nucleous (if the e is bound)=> scattering on "free" electronsm x = F

ext

..

e

E

mx= −m x+eE cos( t)

x=eE cos( t)/m

"static" displacementmedium is polarized

ω ω

ω ω

2

0

20

0

4

10 Hz 23

the last term is slowly varying

2

0

0

Thomson scattering Rayleigh scattering

yellow Sunred sunset blue sky

Resonance scatteringof line radiation (absorption and

emission)

Typicaltens of eV (UV) for line transitions

55

Poutanen

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

Introduction - e- scattering– Polarization of the e- scattered light

11

www.giangrandi.ch/optics/polarizer/polarizer.shtml

p(✓) =(1� cos

2 ✓)

(1 + cos

2 ✓)

θ

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

Introduction - dust scattering– x = size/wavelength

= 2π a / λ for spherical particles

– For small particles, x << 1 (Rayleigh domain):

– For arbitrary sizes, Mie’s theory provides:

12

m = complex index of refraction

http://www.ita.uni-heidelberg.de/~dullemond/

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

Introduction - dust scattering– Índices of refraction

13

http://www.astro.uni-jena.de/Laboratory/Database/databases.html

04/Dec/2014

Circumstellar Polarimetry

IAUS 30514

Introduction– Intensities in electron/Rayleigh & Mie scatterings

giangrandi.ch/optics/polarizer/polarizer.shtml

04/Dec/2014

Circumstellar Polarimetry

IAUS 30515

Introduction• Polarization by e- scattering in Stellar Envelopes

– Direct, unpolarized stellar flux: In

– Polarized, scattered light in the envelope: Ip

– Resulting polarization fraction, p:

Be star disk

McDavid 2001

04/Dec/2014

Circumstellar Polarimetry

IAUS 30516

IntroductionPolarization from an Exoplanet occultation

SpaceRef

Text

Polarization as a function of time & inclination

Carciofi & Magalhães 2005

84°

87°90°

04/Dec/2014

Circumstellar Polarimetry

IAUS 30517

Summary• Introduction • Measuring Polarization • Observations & modeling

– Be Stars ✴ Disks ✴ Short- & medium-term variability ✴ Long-term variability

– WR Stars ✴ Binaries ✴ Single stars: blobs

– B[e] supergiants in the Magellanic Clouds – Polars – Herbig Ae/Be stars

• SOUTH POL • Conclusions

04/Dec/2014

Circumstellar Polarimetry

IAUS 30518

Measuring Polarization• Optical/NIR Technique

– IAGPOL – Magalhães et al. 1996

– Rotatable waveplate+calcite prism+detector (CCD or NIR array)

• Counts @ waveplate angles ψi:

zi =

⇒ Q = z1 - z3 + z5 - z7 U = z2 - z4 + z6 - z8

κ Crucis

Magalhães et al. 2005

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

Measuring Polarization

8x 5min images Vector map

Magalhaes et al. 2005

• Polarimeter – Rotating waveplate

+Calcite prism ! Savart plate

– Very accurate ! σP=0.002% (or better) possible

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

Measuring Polarization• Observational uncertainties

– Hiltner 1951, ApJ 114, 241: ! p.e. = 0.0022 mag ⇔ σ = 0.15% (!) (photoelectric)

– Tinbergen 1982, A&A 105, 53: ! σ = .007% (photoelectric, combining data)

– Carciofi, Magalhães 2007, ApJ 671, L49: ! σ = 0.002% (CCD imaging, single obs)(σθ = 28.6 σ/P deg)

• High accuracy now possible opens up interesting possibilities!

20

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

Measuring Polarization• For your star, you get:

Magalhães & Nordsieck 2000 ! Magalhães & Nordsieck 2000

21

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

Measuring Polarization• VLT/SPHERE

! Spectro-Polarimetric High-Contrast Exoplanet REsearch

– Game changer for: ! study of circumstellar envelopes & extended atmospheres

! E.g., AGB stars - we know they’re non-spherically symmetrical – Landstreet & Angel 1977; Coyne & Magalhaes 1977, 1979;

McLean & Clarke 1977; McLean 1979; Harrington 1969

22

http://www.eso.org/public/news/eso1417/

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

AGB environment - Alpha Ori

WUPPE Astro-2 result Nordsieck et al. 94

Nordsieck et al. 1994; Magalhaes & Nordsieck 2000

23

04/Dec/2014

Circumstellar Polarimetry

IAUS 305IC Polarimetria

AGB environment - Alpha OriθWUPPE = (159±8)o

θHST = 235o

⇒ θWUPPE ≈ θHST - 90o! Magalhães & Nordsieck 00

24

Gilliland & Dupree 96

17/03/05

04/Dec/2014

Circumstellar Polarimetry

IAUS 30525

Summary• Introduction • Measuring Polarization • Observations & modeling

– Be Stars ✴ Disks ✴ Short- & medium-term variability ✴ Long-term variability

– WR Stars ✴ Binaries ✴ Single stars: blobs

– B[e] supergiants in the Magellanic Clouds – Polars – Herbig Ae/Be stars

• SOUTH POL • Conclusions

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

Be stars - Disks– We can estimate the continuum polarization

– Capps et al (1973), McLean (1979), Cassineli et al (1987)

– It can be approximated by ( )with = Stellar flux w/o the disk = Disk emission = = fraction of scattered flux = polarized flux = polarization @

26

P� =fpfsS�

S�(e�⌧ + fs) +D�

D�

S�

fsfp =

3

16⇡⌧

Z 2⇡

0p(✓)(1 + cos

2 ✓)d✓ =

3

16

www.asu.cas.cz

p(✓) =(1� cos

2 ✓)

(1 + cos

2 ✓)

P� =3⌧

16(1 +D�/S�)� 7⌧ ⌧ = ne

�e

(Ro

�Ri

)(optically thin disk)

fp =

3

16⇡⌧

Z 2⇡

0(1 + cos

2 ✓)d✓ =

9

16

fs /3

16⇡(1� e�⌧

)(1 + cos

2 ✓)

V j�

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

Be stars - Disks– Schematic behaviour of σbf:

! for all bound states with energy < hν

27

Seaquist

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

Be stars - Disks• Model polarization

! normalized to 1 @ 450 nm Mc Lean (1978)

28

www.asu.cas.cz

P� =3⌧

16(1 +D�/S�)� 7⌧

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

Be stars - Disks• Model polarization

! normalized to 1 @ 450 nm Mc Lean (1978) www.asu.cas.cz

P� =3⌧

16(1 +D�/S�)� 7⌧

We know that:

so f-f is important in the NIR!

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

Be stars - Disks– With some actual disk parameters:

! ne = 5 ⨉ 1011 cm-3

! τ = ne σe (Ro-Ri) ≤ 1(Ro-Ri) ≲ 5 R*

→ Polarization is produced within a few stellar radii

30

04/Dec/2014

Circumstellar Polarimetry

IAUS 30531

Be stars - Disks• Example:

WUPPE UV spectropolarimetry of the Be star ζ Tau

– Absorption by FeII/III in the envelope

– Decrease in P across optical Fe lines

Bjorkman et al. 91

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

Be stars - Disks– Monte Carlo disk models for arbitrary τ

– Wood et al 1997; Carciofi 2012

! %P levels higher %P Balmer jump higher

! Still geometrically thin disks

! Optical %P produced within a few (≲ 5) stellar radii

! For comparison:Hα is produced mostly from 5 - 20 R*

32

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

Be stars - Disks• Disk Variability:

! Achernar (α Eri)

– Short term P variability ! ~hour ! Frequency ~ rotation

– 0.57 vs 0.49 cycles/day

– Short & long term var.in PA

33

Carciofi et al. (2007)

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

Be star - variability• Disk Variability:

! Achernar (α Eri)

– Blob is formed &dissipates into a ring

– Ring model ! R* < r < Rr ! nr = ndisk x γ ! Time scale:

weeks

Carciofi et al. (2007)

Results: - 1.1 < Rr < 1.3 R* - 0 < γ < 3

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

Be star - variability• Disk Variability:

! Achernar (α Eri)

– Blob model ! radii: 0.1R* < Rblob < 0.3 R* ! density: 1.5 n0 < nblob < 4.5 n0

– Results: ! blobs can account for

short time scale variations(~0.05%, ~6° )

Carciofi et al. (2007)

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

Be star - variability• V/R variability

– Model using ! polarization ! photometry ! spectroscopy ! interferometryfor ζ Tau

36

Carciofi et al. 2009

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

Be star - Long term variability• Monitoring of 60 Cyg

– 1992 to 2004 – spectropolarimetry &

spectroscopy ! Pine Bluff & Ritter Obs.

– For 60 Cyg: ! Be-phase to normal B:

~1,000 days(viscos.par. α ~0.14)

! Time lag between P and Hα max & min

– disk clearing from inside-out

37

Wisniewski et al. 2010

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

Be star - Long term variability• 60 Cyg

– Well defined disk plane:PA=107.7° ± 0.4°⇒ θdisk = 17.7° on the sky

– Allows determination of Intestellar Polarization (= ISPol)

38

Wisniewski et al. 2010

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

WR stars in binaries• V444 Cyg

– O + WR binary

39

spacefellowship.com/news/art14845

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

WR stars in binaries• V444 Cyg

– O + WR binary

– Monte Carlo model

– From fits to Flux, Polarization vs. phase: ! RWR =4 R☉ , RO = 10R☉ ! a = 40 R☉ ! LWR/LO = 0.18 ! ne(RWR) = 1.02x1012 cm-3 ! dM/dt = 0.9x10-5 M☉ yr-1

40

Rodrigues & Magalhães (1995)

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

WR stars - variability• Isolated WRs present random variability in

– Flux (up to ~10%) ! Marchenko et al. (1998)

– Polarization (up to 0.5%) ! Moffat & Robert (1992)

– Spectral line profiles ! moving bumps; Robert (1994) ! discrete absorption components (DACs; Prinja & Smith 1992)

• Characteristics – Often correlated

! Robert (1994) – Same time scales

! hours to days – Sizes of ~1 R*

! Lepine & Moffat (1999)41

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

WR stars - variability• Blobs in WR winds

– Monte Carlo model ! Rodrigues & Magalhães (2000)

– Regions of enhanced density – Multiple scattering – Finite source size

• Other work – Oudmaijer & Harris (2008)

42

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

WR stars - variability• Blobs in WR winds

– Monte Carlo model ! Rodrigues & Magalhães (2000)

– Regions of enhanced density – Multiple scattering – Finite source size

• Dependence of ΔI & ΔP on – blob distance (in stellar radii)

43

Rodrigues & Magalhães 2000

dbl = 3.0

dbl = 5.0

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

WR stars - variability• Blobs in WR winds

– Monte Carlo model ! Rodrigues & Magalhães (2000)

– Regions of enhanced density – Multiple scattering – Finite source size

• Dependence of ΔI & ΔP on – blob size (in stellar radii)

44

Rodrigues & Magalhães 2000

Rbl = 1.0

Rbl = 0.5

Rbl = 0.25

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

WR stars - variability• Blobs in WR winds

– Monte Carlo model ! Rodrigues & Magalhães (2000)

– Regions of enhanced density – Multiple scattering – Finite source size

• Dependence of ΔI & ΔP on – blob number

! τbl=5.0, Rbl=0.5, dbl=3.0

45

Rodrigues & Magalhães 2000

04/Dec/2014

Circumstellar Polarimetry

IAUS 30546

B[e] SGs in the Magellanic Clouds

• Hot, Luminous Stars

• Relationship with WRs e LBVs?

Lamers et al. 1998

04/Dec/2014

Circumstellar Polarimetry

IAUS 30547

B[e] SGs in the Magellanic Clouds• Spectroscopic evidence:

– two–component wind model ! Zickgraf et al 85, 86, 89, 96

hot, fast wind

cool, slow windZickgraf et al. 85

04/Dec/2014

Circumstellar Polarimetry

IAUS 30548

B[e] SGs in the Magellanic Clouds• Are they polarized?

Yes!

⇒ non–spherically symmetric envelopes! (Magalhães 92)

• Polarigenic mechanism? – Thompson scattering

Melgarejo et al. 2001

R 82

04/Dec/2014

Circumstellar Polarimetry

IAUS 30549

B[e] SGs in the Magellanic Clouds

• R82 : Continuum – P(λ) non-‘white’

• Polarizing mechanism – e– scattering + H–absorption? – Dust?

• Quantifying the role of the dust: – Models w/ e– + dust: HDUST ! Carciofi & Bjorkman (2006)

Magalhães et al. 2012; Seriacopi 2014

04/Dec/2014

Circumstellar Polarimetry

IAUS 30550

B[e] SGs in the Magellanic Clouds

• R82 : detail around Hβ

– P Cyg profile appears in the polarized (i.e., scattered) flux

– Line produced byscattering in an expanding disk

Magalhães et al. 2012; Seriacopi 2014

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

Model ResultsResults Seriacopi (2014)

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

Model Best Fit Parameters– Using HDUST

! (Carciofi & Bjorkman 2006)

52

Seriacopi (2014)

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

Polars - going for the small...• Polarimetry of magnetic binaries

– (AM Her systems)

53

Red Dwarf

White Dwarf

acretion column(s), with B~107-8G field along it

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

Polars - going for the small...• CYCLOPS - Cyclotron Emission of Polars

! Costa & Rodrigues (2009)

– Cyclotron radiation ! emission & absorption

– Bremstrahlung ! absorption in X-rays (mostly)

54

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

Polars - going for the small...• Cyclops - Cyclotron Emission of Polars

! Costa & Rodrigues (2009) – Cyclotron radiation

! emission & absorption – Bremstrahlung

! absorption in X-rays (mostly)

55

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

Polars - going for the small...• Cyclops - Cyclotron Emission of Polars

! Rodrigues et al. (2011)

56

CP Tuc

Emitting region: small fraction of the Earth’s surface!

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

Orientation of Stellar Envelopes• Polarimetry of Herbig Ae/Be objects

! Pre-MS, intermediate mass stars

! Comparison ofEnvelope Orientation vs. ISM B-field

! Statistics of Δθ = Intrinsic PA - ISM Pol PA can be done.

57

McDavid 2001

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

Impact - Stellar Astrophysics• Polarimetry of Herbig Ae/Be objects

! Statistics of Δθ = Intrinsic PA - ISM Pol PA

58

– 9 –

Fig. 1.— Cumulative frequency distribution of the di⇥erence between the intrinsic and

interstellar polarization angle, ��, for our HAeBe sample.

Rodrigues et al. 2009

Text

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

Impact - Stellar Astrophysics• Polarimetry of Herbig Ae/Be objects

! Statistics of Δθ = Intrinsic PA - ISM Pol PA

– For the more highlypolarized stars:Δθ → parallel to ambient B-Field

59

– 9 –

Fig. 1.— Cumulative frequency distribution of the di⇥erence between the intrinsic and

interstellar polarization angle, ��, for our HAeBe sample.

Rodrigues et al. 2009

{

Envelopes have memory of ISM B-field !

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

Orientation of Stellar Envelopes• Polarimetry of Herbig Ae/Be objects

! Example: PDS 144

60

Pereyra et al. 2012

Red arrows: H-band polarization

PDS144 N: Keck AO, (Perrin et al. 2006)

Black arrows: detected jets (Grady et al. 2009)

NIR

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

Orientation of Stellar Envelopes• Polarimetry of Herbig Ae/Be objects

! Example: PDS 144

61

Pereyra et al. 2012

Red arrows: H-band polarization

PDS144 N: Keck AO, (Perrin et al. 2006)

Black arrows: detected jets (Grady et al. 2009)

NIR

Polarization is indeed ⊥ to disk

PDS 144 N

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

Impact - Stellar Astrophysics• Origin of Earth’s Magnetic

Field? – Dynamo from Earth’s rotation

– Earth’s rotation derived from Protosolar Nebula

– Nebula probably had memory of ISM B field Connection betweenEarth’s Magnetic Field &Interstellar Field !

62

Glatzmaier & Olson 2005

04/Dec/2014

Circumstellar Polarimetry

IAUS 30563

Summary• Introduction • Measuring Polarization • Observations & modeling

– Be Stars ✴ Disks ✴ Short- & medium-term variability ✴ Long-term variability

– WR Stars ✴ Binaries ✴ Single stars: blobs

– B[e] supergiants in the Magellanic Clouds – Polars – Herbig Ae/Be stars

• SOUTH POL • Conclusions

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

SOUTH POL Survey• SOUTH POL:

– Optical survey of the polarized Southern sky ! FAPESP, PI: A. M. Magalhães

• Goal: – Polarimetric accuracy of 0.1% at V~15-16

• Survey’s first epoch: – Sky South of Dec -15° – Complete in ~ 2 years

• It will gradually progress towards North

64

04/Dec/2014

Circumstellar Polarimetry

IAUS 30565

Co-I’s - SOUTH POL– Cláudia M. de Oliveira (PI, TR-80)

– Dra. Elisabete M. G. Dal Pino (IAG-USP)

– Roberto Costa (IAG-USP)

– Marcos Diaz (IAG-USP)

– Alex Carciofi (IAG-USP)

– Claudia V. Rodrigues (INPE/DAS)

– Antonio Pereyra (IG, Peru)

• Project – Eng. Lucas Marrara (São Carlos, SP)

– Eng. Carlos Eduardo Firmino (Solunia, Araraquara, SP)

– Keith Taylor

Funding:

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

SOUTH POL - How?...• 80cm Robotic Telescope

! FAPESP, PI: C. M. de Oliveira w/ A. Kanaan, W. Schönel, R. Calado & T. Ribeiro

– Currently being installed ! CTIO, Chile

– CCD: ! EEV, 9k x 9k, 92mm ! 2.0 sq degrees (!) 66

J-PAS T80 South

Doc.: Issue: Date: Page:

D2510/Tech Prop 2 04-02-2012 9

This document is the property of AMOS. It can be neither disclosed nor duplicated without prior authorization.

The image quality of the telescope is further detailed in Figure 4, Figure 5 and Figure 6. Figure 4 shows the uniformity of the polychromatic image quality in the FOV of 0.85° in radius. The monochromatic encircled energy is reproduced at center mid and edge FOV in Figure 5. The image quality is sensitive to the manufacturing quality of the optics, to element alignments and to environmental contributors. Given the individual tolerances on all the contributors (T°, gravity and wind), the image quality is evaluated through a Monte-Carlo analysis. All the parameters defining the nominal optical design are arbitrarily modified such that they remain within the defined tolerance limits and the encircled energy is calculated on these modified configurations. The result is shown in Figure 6. 80% of the random modified configurations are such that EE80 radius is smaller than 7µm.

Figure 5: Monochromatic diffractive encircled energy

Figure 6:Polychromatic encircled energy in 100 random configurations incorporating tolerances of the optical parameters

Table 1: Summary of the performance of the T80 design

Performances of design Aperture 0.840 m diameter

Plate scale 55.56 arcsec/mm Focal length 3712 mm

Field of view 110 mm (1.7°) with optimized image quality 155 nm (2.4°) with limited performances

Image Quality 50% EE = 5 µm / 0.28 arcsec (diameter) 80% EE = 13 µm / 0.72 arcsec (diameter)

Distortion 0.6%

4.4 M1 MIRROR

The primary M1 mirror will be manufactured from ZERODUR and will be F/1.5. The blank will be procured from SCHOTT and the mirror will be produced in AMOS workshop. The manufacturing sequence includes a first step of spherical lapping and polishing for controlling the mirror radius of curvature.

26/May/14

SOUTH POL

ASTROPOL 2014

How?...• T80S Robotic Telescope

! FAPESP, PI: C. M. de Oliveira ! Being installed @ CTIO

67

Cassegrain Module

Electronics/Control Module

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

How?...• Polarimeter optics & mechanics

68

I

I---_---L-

==[,* t-l_lraT

55.96to: 1 |{ lt

3,50*or ,rJ/

1 0r- Str nnt-"""I

3,50

lillfiil-+lL--io r l l-*-*_|'<_

N i lTES:I OIMFNSiONS2 MATERIAL:3 ALL OF THE

TO l ' l ITHIN4 PRt]TEtT IVE

EXIEPT AT

1N MILLiMETERSSIHL]EREN GRADE tALt ITE.3 sMM THIIKNESSES ARE MAITHEO

O 03 ( BEST EFFI]RT )BEVELS ALL AROUND O 4 MAX,

SH WHERE THERE ARE N[ BEVELS

*f =t ob'i

t-

fi lm(hVYvi

bp KARL LAMBRECHT CoRPORATIONll l - 4204 N Lrnco ln Avenue, Ch icogo, I I l i no is 60618 USA- 7n-472-5442 Fax.773-472-2724 Website : www.klccgo.com

l.s

.E

rf

LJ

ARRAY IS ASSEMBLTD BY tUST[]MERTHE AXES [F THE TRYSTALS ARE IRIENTED I IO MM IALtITF SAVART PLATE ARRAYI U T K L U U L t r I N t r J A V A K I T L A I t r A I \ K A I FI IE NAIE:

I I OSVT4DrG' fiur' l*: K r2g4- I r Rgv

tUSTIMER: INSTITUTE Of ASTRONOMY * BRAZILscALE: | /? | DArE: I l / 17 /261APART NO.

116 mm x 116 mm mosaics

Savart calcite prismCalibration polarizers

Ni lTTS:I . OIM[NsI2, MATFRIA3. THT RTT

P[RFNF?MNil B[V[.

r--**|52,40 --*lrrlT--[-r]

,__L_i_lI]NS IN MiLL IMT"i" IRSLS: tRYSTAt- GUARIZ ond MAL*FLUIRInEARIAII I ]N WILL BE MATTHTN [- [R BTSTANTF A! A I I l ' , J1 .FTFN ARBAY ( RI . , \T FFFNPT ) &,ffi!;;LAMBRECHT CORPORATI ON

rco ln Avenue , f b i cogo . I l l r no i s t j 0618 I JSAF ax : 773-472-2724 Website : www.klcccc, com

t"5 ALLII {TI ] BEI! . IEEN SEIMFNTS,S ASSFMBI{:U BY tUSTIMER

tUSIIMIR: INSI ]TUTE c i { ASTRi lNIMY * BRAZIL

I52 MM OUARTZ-MAI FLUIR]NEAIHRIMATIt |dAVE T]LATF ARRAY

FILE NI IE:I 52i{PA4

Dfc 'NUrBf , I r : K11 i0 -1z Rgv

sc t l r : l 12 l I rATr : l l / 17 /7A lAPART NO.

5 , ARRAY I

Achromatic Half-wave plate116.0

58.0

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

SOUTH POL• Polarimeter status

– Optical components ! delivered to CTIO✓

– Mechanics & Electronics ! delivered to CTIO ✓

– Reduction pipeline ! Edgar Ramirez (IAG) &

James Davidson Jr. (UT) ! done ✓

69

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

SOUTH POL• Robotic Telescope site

70S. Heathcote, CTIO

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

SOUTH POL• Robotic Telescope site

71

S. Heathcote, CTIO

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

SOUTH POL• Robotic Telescope site

72

Gale Brehmer, CTIO

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

SOUTH POL

73

T80-S @ CTIO October 2014

Courtesy: C. M. de Oliveira, IAG-USP

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

How?...• High Galactic Latitude

Clouds – From

models of stellar population synthesisof the Galaxy:

! V ≲ 15: covers 3 kpctowards b=90°

– In other words, ! Galactic dust layer will be

well sampled!

74

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

SOUTH POL - How?...• Combination of

– Southern 80cm Robotic Telescope in Chile ! funded by FAPESP

– Large field Imaging Polarimeter ! 2.0 sq.deg.

75

IAGPOL footprint

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

SOUTH POL - How?...• Combination of

– Southern 80cm Robotic Telescope in Chile ! funded by FAPESP

– Large field Imaging Polarimeter ! 2.0 sq.deg.

76

SOUTH POL footprint

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

SOUTH POL - Overall impact • Origin of CMB Polarization

– Thomson scattering ! Sound waves produce anisotropy → net polarization

77Dowell et al. 2014; BICEP2 Collaboration

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

SOUTH POL - Overall impact

78Dowell et al. 2014; BICEP2 Collaboration

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

SOUTH POL - Overall impact

79Dowell et al. 2014; BICEP2 Collaboration

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

SOUTH POL - Overall impact • Galactic Dust Emission Polarization in the sub-mm

• Contribution by Galactic Dust to BICEP2?80

Bernard et al., Planck Collaboration (2014), arXiv

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

SOUTH POL• SOUTH POL:

– Optical survey of the polarized Southern sky

• Goal: – Polarimetric accuracy of 0.1% at V=15-16

• First epoch: – Sky South of Dec -15° – Completed in ~ 2 years

• Observations should help settle the foreground dust contribution 81

BICEP2 field

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

SOUTH POL• SOUTH POL

– unprecedented undertaking in the optical – accuracy of 0.1% down to V=15-16 – will cover -15° < dec < 90° in first 2 yrs

– will impact several areas ! Cosmology ! Extragalactic Astronomy (AGN) ! Stellar Astrophysics (GRBs, SNe, Star Formation, Circumstellar

environments) ! Galactic ISM ! Solar System (asteroids)

– Sinergy with Planck, ALMA, GAIA ! e.g., Galactic 3D magnetic field structure

82

04/Dec/2014

Circumstellar Polarimetry

IAUS 305

Conclusions• Circumstellar polarimetry: important tool for studying

– asymetries around stars ! young and evolved ! often unresolved

– time evolution of mass loss

• Future avenues: – more high cadence observations – model treating line formation & scattering fully – study disk alignment with local B-field – study winds with eclipse spectropolarimetry – aligned grains in disks from mid-IR/sub-mm polarimetry

83