Cryogenic Si detectors for Ultra Radiation Hardness in SLHC Environment Zheng Li (BNL)

26
Zheng Li on behalf of CER N RD39 Collaboration, Sep tember 14, 2006 The Sixth International “Hiroshima” Symposium on the Development and Application of Semiconductor Tracking Detectors Cryogenic Si detectors for Ultra Radiation Hardness in SLHC Environment Zheng Li (BNL) On behalf of CERN RD39 Collaboration

description

The Sixth International “Hiroshima” Symposium on the Development and Application of Semiconductor Tracking Detectors. Cryogenic Si detectors for Ultra Radiation Hardness in SLHC Environment Zheng Li (BNL) On behalf of CERN RD39 Collaboration. - PowerPoint PPT Presentation

Transcript of Cryogenic Si detectors for Ultra Radiation Hardness in SLHC Environment Zheng Li (BNL)

Page 1: Cryogenic Si detectors  for Ultra  Radiation Hardness in SLHC Environment Zheng Li (BNL)

Zheng Li on behalf of CERN RD39 Collaboration, September 14, 2006

The Sixth International “Hiroshima” Symposium on the Development and

Application of Semiconductor Tracking Detectors

Cryogenic Si detectors for Ultra

Radiation Hardness in SLHC Environment

Zheng Li (BNL)

On behalf of CERN RD39 Collaboration

Page 2: Cryogenic Si detectors  for Ultra  Radiation Hardness in SLHC Environment Zheng Li (BNL)

Zheng Li on behalf of CERN RD39 Collaboration, September 14, 2006

CERN RD39 Collaboration: Cryogenic Tracking Detectors

Outline

o Trapping effect on Charge Collection Efficiency (CCE) in SLHC

LHe temperature TCT setup

Operation of current-injected-detectors (CID)

CCE measurements on CID

Summary

Page 3: Cryogenic Si detectors  for Ultra  Radiation Hardness in SLHC Environment Zheng Li (BNL)

Zheng Li on behalf of CERN RD39 Collaboration, September 14, 2006

Trapping effect on CCE in S-LHC

CCEGF is a geometrical factor

fdeff V

V

d

w

eN

Vw and

2 0

CCEt is related with trapping

For fluence less than 1015 n/cm2, the trapping term CCEt is insignificantFor fluence 1016 n/cm2, the trapping term CCEt is a limiting factor of detector operation !

Depletion term

Trapping term

CERN RD39 Collaboration: Cryogenic Tracking Detectors

tdrttGF e

d

wCCECCECCE /

Page 4: Cryogenic Si detectors  for Ultra  Radiation Hardness in SLHC Environment Zheng Li (BNL)

Zheng Li on behalf of CERN RD39 Collaboration, September 14, 2006

CEE Vs. V/Vfd & Trapping

CCE=Zta*(1-Eta)

0.00

0.100.20

0.300.40

0.500.60

0.700.80

0.90

Z-ta (V/Vfd)

0.000.10

0.200.30

0.400.50

0.600.70

0.800.90

1.00 E-ta (Tr

apping)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

CC

E

c/modeling-98/cce-VfdV-trapping.tc

ImproveNeff Reduce

trapping

Combined effect (RD39)

To get better CCE:

>1015 n/cm2

)

1(

/ tdrt

e

1/2

Page 5: Cryogenic Si detectors  for Ultra  Radiation Hardness in SLHC Environment Zheng Li (BNL)

Zheng Li on behalf of CERN RD39 Collaboration, September 14, 2006

TRAPPING

tth Nvt 1

The thermal velocity vth 107cm/s

1016cm-2 irradiation produces NT3-5*1016 cm-3 with 10-14cm2

Even in highest E-field (Saturation velocity, 107 cm/s), carrier drifts only 20-30 m before it gets trapped regardless whether the detector is fully depleted or not !

In S-LHC conditions, about 90% of the volume of d=300m detector is dead space !

CERN RD39 Collaboration: Cryogenic Tracking Detectors

On average (e and h) it gives a t 0.2 ns!

Page 6: Cryogenic Si detectors  for Ultra  Radiation Hardness in SLHC Environment Zheng Li (BNL)

Zheng Li on behalf of CERN RD39 Collaboration, September 14, 2006

• Trapping time: t

• 1/ t = n

• e = 7.5010-7 cm2/s

• h = 3.75 10-7 cm2/s

• for 1016 neq/cm2:

te = 0.13 ns

th = 0.26 ns

t = 0.20 ns as average

Trapping distance (or effective charge collection distance) is:

deff ≤ t Vs = 20 μm << d, the detector thickness or depletion depth

The main limiting factor is trapping for SLHC!

CERN RD39 Collaboration: Cryogenic Tracking Detectors

H.W. Kraner et al., Nuclear Instruments and Methods in Physics Research A326 (1993) 350-356

Page 7: Cryogenic Si detectors  for Ultra  Radiation Hardness in SLHC Environment Zheng Li (BNL)

Zheng Li on behalf of CERN RD39 Collaboration, September 14, 2006

SiO2

Al

Effective CCE thickness d : thickness (200- 300 μm)

w: depletion depth ( ≤ d)

t: trapping distance (20-50 µm)

d

W substrate

p-type

AlAlAl

p+

n+ n+ n+

t

Thickness d

Q(t) = Q(w) t/w

Q(w) = W/d Q0

Q(t) = Q0 t/d

Thickness t (fully depleted, t = w)

Q(t) = Q(w) t/w = Q(w)

Q(w) = w/d Q0 = t/d Q0

Q(t) = Q0 t/dThe same!

Effective thickness = t

e

Page 8: Cryogenic Si detectors  for Ultra  Radiation Hardness in SLHC Environment Zheng Li (BNL)

Zheng Li on behalf of CERN RD39 Collaboration, September 14, 2006

Solution CCE improvement due to Technology/

implementation difficulties

Replacement every 1-2 years New detectors Hard to access the inner region

3D Si detectors Small Vfd

Small drift distance t

Complicated processing technology

Column spacing t should be < 40 m

Possible surface damage problem to ionizing radiation

Cryogenic Si detectors Fixed electric field (small bias)

Freezing traps (low trapping)

Low leakage current

Difficult to implement cryogenic system

Elevated temp annealing

(DRIVE)

(MCZ Si only, 400 ºC)

Annealing out of defect levels related to:

Leakage current, space charges

And trapping

Difficult to implement annealing in a full detector system

Possible Si detector solutions for SLHC’s most inner region

Page 9: Cryogenic Si detectors  for Ultra  Radiation Hardness in SLHC Environment Zheng Li (BNL)

Zheng Li on behalf of CERN RD39 Collaboration, September 14, 2006

DETRAPPING

The detrapping time-constant depends exponentially on T

kTECth

td eNv /

1

If a trap is filled (electrically non-

active) the detrapping time-constant is crucial

For A-center (O-V at Ec-0.18 eV with 10-15 cm2 )

CERN RD39 Collaboration: Cryogenic Tracking Detectors

T(K) 300 150 100 77 60 55 50 48 47 46

d 3.7 ns 3.9 s 4 ms 2 s 1.22 hrs

1.2 days

53 days

302 days

2.1 years

5.47

years

Hole trap

Electron trap

T> 77K

Hole trap

T< 77K

filled

filled

Electron trap

EC

EV

EC

EV

Fill Freeze

Page 10: Cryogenic Si detectors  for Ultra  Radiation Hardness in SLHC Environment Zheng Li (BNL)

Zheng Li on behalf of CERN RD39 Collaboration, September 14, 2006

• A fast TCT setup at CERN with sub-LN2 temp for CCE measuements

• All components of the setup have been made• The electical part (TCT with ps laser) and the He

cryostat are now operational• The final calibration and actual CCE measurements at

sub-LN2 temperatures are now underway

CERN RD39 Collaboration: Cryogenic Tracking Detectors

LHe Temp TCT Setup

First TCT signal of a Si detector He cryostat, to 40 K in 2 hours

He cryostat

Signal recording

Sample chamber

295 K

160 K

250 K

Page 11: Cryogenic Si detectors  for Ultra  Radiation Hardness in SLHC Environment Zheng Li (BNL)

Zheng Li on behalf of CERN RD39 Collaboration, September 14, 2006

CERN RD39 Collaboration: Cryogenic Tracking Detectors

Current injected detector (principle of operation)

P+ P+

+Jp

Jp = epμE

divJ=0

divE=ptr

E(x=0) = 0 (SCLC: Space Charge Limited Current mode)

The key advantage: The shape of E(x) is not affected by fluence

x

d

x

d

VxE

2

3)(

d

VEm

2

3

E(x)

Em

V. Eremin, RD39, CERN, November 11, 2005

Page 12: Cryogenic Si detectors  for Ultra  Radiation Hardness in SLHC Environment Zheng Li (BNL)

Zheng Li on behalf of CERN RD39 Collaboration, September 14, 2006

E(x) E(x)E(x)

x x x

“Diode” mode

p>ptr

E(x) ~ E(0) + ax

Deep Level saturation p >> ptr E(x) = ax

SCLC mode

Ndl>ptr

E(x) ~ SQR(x) J ~ V2

Evolution of E(x) in CID with the injected current

Page 13: Cryogenic Si detectors  for Ultra  Radiation Hardness in SLHC Environment Zheng Li (BNL)

Zheng Li on behalf of CERN RD39 Collaboration, September 14, 2006

log J

log V

Ohmic, J ~ V

SCLC, J ~ V2

DL saturation

“Diode”

I-V characteristic of CID

Proof of CID concept: – observation of SCLC and DL saturation behavior

Problem: - optimal range of V for CID operation

Page 14: Cryogenic Si detectors  for Ultra  Radiation Hardness in SLHC Environment Zheng Li (BNL)

Zheng Li on behalf of CERN RD39 Collaboration, September 14, 2006

CID I-V simulation

Sample parameters Physical constants Calculated valuesd [cm] 0.035 eps0[F/m] 8.85E-14 mu [cm2/V*s]

Uc[V] 0 eps 11.7 VsN0[cm-3] 0.00E+00 q[C] 1.60E-19 Vth*Nc 4.13E+26Operation parameters k[J/K] 1.38E-23 Vth*Nv 1.25E+26

Ub [V] 30 oe [cm 2̂/Vs] 2.08E+03 Nc[cm-3] 2.1741E+19Temperature 250 vse [cm/s] 1.12E+07 Nv[cm-3] 8.6963E+18

dX [cm] 1.00E-04 be[T] 7.82E-01 ni[T],cm-3 7.23E+07

injected current oh [cm 2̂/Vs] 8.17E+02

Egen, eV 0 vsh [cm/s] 8.14E+06 IntN(d) 0.00E+00

Sig(e), cm2 0.00E+00 bh[T] 9.87E-01 Vth(e),cm/s 1.90E+07

Sig(h), cm2 0.00E+00 Eg (eV0 1.12 Vth(h),cm/s 1.44E+07

M, cm-3 0.00E+00 Parameter Ef, eV 0.56Jn [A/cm2] 0.00E+00 Calculated Ef, eV 0.01 DL #

Jp [A/cm2] 1.00E+00 D/A, 0/1 0 1 0 1electrons holes electrons holes electrons holes electrons holes

Et=Edl-Ev 1.117 0.6 0.48 0.64 0.55 0.57

E(x) calculation sig/e[cm2] 1.00E-15 1.00E-17 1.00E-15 5.00E-15

Iterations 2 Imin, A/cm2 1.00E-12 sig/h[cm2] 1.00E-15 1.00E-15 1.00E-15 5.00E-15

Kdesipaiton 0.8 points 50 Ndl[cm-3] 0.00E+00 0.00E+00 2.80E+12 0.00E+00

Imax, A/cm2 1.00E+00 Sig*Vth 1.90E-08 1.44E-08 1.90E-10 1.44E-08 1.90E-08 1.44E-08 9.49E-08 7.19E-08

detrap.prob. 3.59E+11 3.97E-12 1.39E-01 1.03E-01 5.31E-02 2.69E+01 6.82E+00 5.23E+00

Row X E0(x) E1(x) n(x) p(x) Ff(x) Neff(x) Ff(x) Neff(x) Ff(x) Neff(x) Ff(x) Neff(x)

# cm V/cm v/cm cm-3 cm-3

I-V calculationMACRO

shallow donors deep acceptor deepdonor shallow acceptors

0.0E+0

5.0E+3

1.0E+4

1.5E+4

2.0E+4

2.5E+4

3.0E+4

0 0.01 0.02 0.03 0.04 0.05

E(x)

0.0E+005.0E+121.0E+131.5E+132.0E+132.5E+133.0E+13

0.00 0.02 0.04 0.06

Neff

1.E+001.E+021.E+041.E+061.E+081.E+101.E+121.E+14

0.00 0.02 0.04 0.06

n(x)p(x)

start

CID I-V simulation software

Page 15: Cryogenic Si detectors  for Ultra  Radiation Hardness in SLHC Environment Zheng Li (BNL)

Zheng Li on behalf of CERN RD39 Collaboration, September 14, 2006

CERN RD39 Collaboration: Cryogenic Tracking Detectors

I-V characteristics of CID

A12, Cz(PTI), P+- N - N+, Fn=1015cm-2

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1 10 100 1000

Bias, V

Cu

rren

t, A

/cm

2

180k

200k

220k

250k

Fit 180K

Fit 200K

Fit 220K

Fit 250K

Page 16: Cryogenic Si detectors  for Ultra  Radiation Hardness in SLHC Environment Zheng Li (BNL)

Zheng Li on behalf of CERN RD39 Collaboration, September 14, 2006

I-V characteristics of CID

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1 10 100 1000 10000

Voltage (V)

Cu

rre

nt

de

nc

ity

(A

/cm

2)

5e14 cm-2

1e15 cm-2

3e15 cm-2

Fit

Fit

Fit

Fit, 1e16 cm-2

CERN RD39 Collaboration: Cryogenic Tracking Detectors

220 K

Page 17: Cryogenic Si detectors  for Ultra  Radiation Hardness in SLHC Environment Zheng Li (BNL)

Zheng Li on behalf of CERN RD39 Collaboration, September 14, 2006

SLHC fluencec

-65 C

Page 18: Cryogenic Si detectors  for Ultra  Radiation Hardness in SLHC Environment Zheng Li (BNL)

Zheng Li on behalf of CERN RD39 Collaboration, September 14, 2006

CERN RD39 Collaboration: Cryogenic Tracking DetectorsMain advantages CID over standard PN detectors

1. The detectors are always fully depleted

2. The electric field profile does not change with fluence

3. Much lower bias voltage is needed

4. The higher the radiation fluence, the lower the operation current at given bias and temperature

5. The operation bias range increases with fluence

6. No breakdown problem due to self-adjusted electric field by space charge limited current feedback effect

7. Simple detector processing technology (single-sided planar technology)8. Injection can also be used to deactivate trapping centers --- CCE

Page 19: Cryogenic Si detectors  for Ultra  Radiation Hardness in SLHC Environment Zheng Li (BNL)

Zheng Li on behalf of CERN RD39 Collaboration, September 14, 2006

CCE to 90Sr source at various temperatures for CID

CID Mode

Forward bias (250 V)

Page 20: Cryogenic Si detectors  for Ultra  Radiation Hardness in SLHC Environment Zheng Li (BNL)

Zheng Li on behalf of CERN RD39 Collaboration, September 14, 2006

Φn = 11015 cm-2, T = 180 K, MIPs (1050 nm laser)

CID mode

Standard mode

Page 21: Cryogenic Si detectors  for Ultra  Radiation Hardness in SLHC Environment Zheng Li (BNL)

Zheng Li on behalf of CERN RD39 Collaboration, September 14, 2006

0.00E+00

5.00E-13

1.00E-12

1.50E-12

2.00E-12

2.50E-12

0 50 100 150 200 250 300 350

Forward voltage [V]

Co

llect

ed C

har

ge

[arb

.]

0.0E+00

5.0E-03

1.0E-02

1.5E-02

2.0E-02

2.5E-02

3.0E-02

3.5E-02

4.0E-02

4.5E-02

0 1E-09 2E-09 3E-09 4E-09 5E-09 6E-09 7E-09 8E-09

Time [s]

TC

T s

ign

al [

arb

]

-300 V

-250V

-200V

-150V

Measurements from He cryostat, at 60K

CID mode

P-type MCZ, red laser1x1015/cm2

Page 22: Cryogenic Si detectors  for Ultra  Radiation Hardness in SLHC Environment Zheng Li (BNL)

Zheng Li on behalf of CERN RD39 Collaboration, September 14, 2006

Charge Injected Diode

high p : continuous (DC) illumination of n+ side by red laser:

nn++

changing Neff (DC)

probing pulse (holes)

probing pulse (elec.)

0evS

Ip

h

Increase of leakage current due to illumination

drift time of holes through the detector

Neff controlled by:

•illumination intensity ( p )•operation voltage ( p )•temperature (trapping -detrapping process)

pp++

Page 23: Cryogenic Si detectors  for Ultra  Radiation Hardness in SLHC Environment Zheng Li (BNL)

Zheng Li on behalf of CERN RD39 Collaboration, September 14, 2006

Charge Injected Diode

A significant reduction of VFD in case of continuous hole injection!

electron current pulseelectron current pulse hole current pulsehole current pulse

eqeq=5x10=5x101313 cm cm-3 -3 (after ~10 days at 20(after ~10 days at 20ooC)C)

Page 24: Cryogenic Si detectors  for Ultra  Radiation Hardness in SLHC Environment Zheng Li (BNL)

Zheng Li on behalf of CERN RD39 Collaboration, September 14, 2006

CCE Measurements on CID CERN RD39 Collaboration: Cryogenic Tracking Detectors

DC injection with a red laser (electrons or holes)

Or current injection (forward bias)

OK for T<173K

OK for T<173K

OK for T<173KOK for T<173K

0.25 cm2

OK for T<173K

OK for T<173K

OK for T<173KOK for T<173K

0.25 cm2

0.25 cm2

SLHC fluencec

Page 25: Cryogenic Si detectors  for Ultra  Radiation Hardness in SLHC Environment Zheng Li (BNL)

Zheng Li on behalf of CERN RD39 Collaboration, September 14, 2006

CCE to 90Sr source at various temperatures for CID

CCE to 90Sr source at various temperatures for CI D

Best for forward injection

0.25 cm2CCE to 90Sr source at various temperatures for CI D

Best for forward injection

0.25 cm2

0.25 cm2

Close to 0 at RT!

SLHC fluencec

Page 26: Cryogenic Si detectors  for Ultra  Radiation Hardness in SLHC Environment Zheng Li (BNL)

Zheng Li on behalf of CERN RD39 Collaboration, September 14, 2006

CERN RD39 Collaboration: Cryogenic Tracking Detectors

Summary

o To increase CCE for SLHC, cryogenic operation of Si detectors at cryogenic temps may be necessary

Trapping can be frozen at such low temps

CID can stablize the detector electric field and increase the detector CCE

CCE measurements on CID at crogenic temperatures with laser and forward current injection have shown significant increase in CCE