Cruzbike cuervo&vendetta project 2011 internet

72
1 a virtual human engineering project cruzbike cuervo & vendetta cruzbike inc. & virtual human engineering gmbh. 2011 01.02. - 01.06 2011 10.08. - 11.10 vhe usecase

description

Cruzbike cuervo&vendetta project 2011

Transcript of Cruzbike cuervo&vendetta project 2011 internet

Page 1: Cruzbike cuervo&vendetta project 2011 internet

virtual human engineering 1

a virtual human engineering project

cruzbike cuervo & vendetta

cruzbike inc. &virtual human engineering gmbh.

2011 01.02. - 01.062011 10.08. - 11.10

vhe usecase

Page 2: Cruzbike cuervo&vendetta project 2011 internet

2 virtual human engineering

Page 3: Cruzbike cuervo&vendetta project 2011 internet

virtual human engineering 3

Copyrights:

John Tolhurst FIMC CMC MBA BSc BA

Design Director, Cruzbike Inc.

Cruzbike, Inc., P.O. Box 2749, Lumberton, North Carolina 28359 USA

www.cruzbike.com / ph: 888-225-CRUZ (2789) / fax: 800-482-0525

&

László ÖrdöghDipl.Des, Dipl Inf (UNI) CEO and owner

Virtual Human Engineering GmbH.Scharrstraße 7.

70563 Stuttgart Germany

2011 01 08

Page 4: Cruzbike cuervo&vendetta project 2011 internet

4 virtual human engineering

Background

Cruzbike Inc is the world’s only commercial sup-plier of pivoting boom, or moving bottom bracket front wheel drive bicycles and sells to a niche segment of 50 year old ‘outside-the-box’ think-ers and bicycle tinkerers.

It is common knowledge that the ergonomics of a regular bicycle are severely compromised and there is a growing scientific body of knowledge now explicitly identifying the many health issues.

On the face of it, simply changing to a recumbent bicycle solves the ergonomic issues. However a proper understanding of how the body engages the bicycle frame to create power and produce work shows that recumbent bicycles isolate the upper body, back, shoulders and arms from the exercise activity. Recumbent bicycles there-fore fail to capture the intensity and dynamics that the sport of cycling is famous for. Watch-ing a world-class athlete climbing the Pyrenees brings home the fact that use of the back shoul-ders and arms is an integral part of the sport.

Cruzbike recumbent bicycles are different, be-cause as with a standard bike, the whole body is engaged in the cycling activity. For this reason we are the world’s only supplier of bicycles that are ergonomically safe and which still capture the cyclist’s athleticism.

In 2007 we designed a model to be ridden with road bikes. This new model (Silvio) took several world records .

This year we are releasing a new model (Ven-detta) designed to maximise speed and already with a prototype we have reset one of our re-cords by a margin of 7.5%. We believe this demonstrates the advantages of adopting safe ergonomics in a structure that also captures the complete muscular development of the every-day cyclist.

New Design Question

A new ergonomic analysis concerns a new prod-uct, Cruzbike Cuervo.

We aim to integrate what we have learnt through developing and testing these bicycles over the past five years into the design of a low cost bicycle that is suited to a wide range of body sizes. The design is to be whittled down to the essential elements – dramatically reducing the parts count for the frameset while keeping full adjustability.

By simplifying the design and lowering the cost, we aim to dramatically lower the age of our tar-get segment. We aim to make the product avail-able through youth oriented sport stores. The key design objective here is to:

Specify the geometry of the frame (tube lengths and joint angles) such that one frame will ac-commodate the widest range of rider sizes pos-sible, from the 5th percentile of Japanese wom-an, to the 95th percentile of US male.

The following is a perspective rendering of the bicycle frame in medium fitment:

cruzbike vendetta

cruzbike silvio

cruzbike cuervo initial modell (solid works)

Page 5: Cruzbike cuervo&vendetta project 2011 internet

virtual human engineering 5 With any of our bikes, it is important to ensure the grips are positioned somewhat to either side the steering axis, to provide sufficient leverage over the front steering and drive-structure of the bicycle so it can be managed effectively. Also, it is important to ensure the arms are somewhat perpendicular to the trunk, so they can stabilise body when the rider is seeking higher perfor-mance.

Frame Adjustments

In all cruzbike front wheel drive designs the crank rotates around the front wheel to provide leg adjustment. The amount of adjustment is set by a telescoping tube (US Patent 7753388) con-necting bottom bracket to handlebar.

The ability to pack into an OS1 sized box for economic shipping from warehouse to end cus-tomer is very important.

In this design, the handlebar is welded directly to the slider. There is no clamp and no stem. When the telescoping tube adjusts, the handle bar angle also changes.

Adjustments to the bicycle are performed by the following (in order of convenience):

• The handlebar is connected to the crank by a slider (yellow) which houses a telescoping boom (green). This telescoping tube is the principle means of fitting riders of varying leg lengths.

• The red slider can be positioned within the

slider clamp that connects it to the top of the fork steering tube, thereby changing the reach distance for the arms.

• The seat back can be adjusted for tilt by a seat post (not shown) from low (almost touching the rear tire) to high. An angle of 47 degrees from the horizontal is typical.

• A curved downtube supports the seat pan, which can be re-positioned further up or down the curve.

• The slider clamp can be adjusted vertically up or down the fork steering tube

Page 6: Cruzbike cuervo&vendetta project 2011 internet

6 virtual human engineering

Design Data

1. Crank length 170 mm

2. Pedal offset is the distance between the sole of the foot and the pedal axis, and is 15mm

3. Sufficient Knee Clearance: 40mm clearance be-tween knee and handlebar is sufficient

4. X-Seam is calculated as per the following :

5. Seat Back to Crank Center is :x-seam - crank length + pedal offset

6. Comfortable Arm Reach means that the dis-tance from shoulder to handlebar is correct. The correct distance is when the wrist of the straight arm reaches the middle of the handlebar grip.

7. Grip Angle is the angle of the grip measured from the longitudinal axis of the forearm. This angle should be near 60 degrees.

8. Slider Clamp is the connection point under-neath the Slider to the fork neck.

9. Grip Offset is the distance from the middle of

Page 7: Cruzbike cuervo&vendetta project 2011 internet

virtual human engineering 7

the grip to the transverse section of the handle-bar, as measured on the sagittal plane.

10. Handlebar Offset is the distance from the handlebar to the fork neck, measure from trans-verse section of the handlebar at right angles to an extension of the fork neck.

Indicative Fitting Procedure

There are four seat positions as follows: 1. Position Seat as follows:P1 Shortest riderP2 …P3 …P4 Tallest rider

2. Let the seat back be an angle of 47 degrees from the horizontal.

3. Rotate Chainstay to provide correct x-seam.

4. Adjust slider to give Sufficient Knee Clear-ance under the handlebar, rotate the slider and boom around the crank to create a gap between the slider and the top of the fork neck of 20mm. Note the Handlebar Offset.

5. Lift handlebars by extending slider further if needed to give Comfortable Arm Reach.

6. What is the ideal placement of the Slider Clamp?

7. What is the Grip Angle? Is there a fixed place-ment of the Handlebar on the end of the Slider and a fixed handlebar design that gives a grip angle of 120 degrees +/- 10 degrees?

8. To ensure Sufficient Knee Clearance for all riders, what is the minimum Grip Offset?

9. What is the total adjustment range of slider and boom that is needed?

Page 8: Cruzbike cuervo&vendetta project 2011 internet

8 virtual human engineering

Working environment:

CAD: Solid WorksImport format: .3DSErgonomics symulation: CharAT Ergonomics V6.1Visualisation system: 3DS MAX 2010Export format: DWGCommunication via e-mail and SugarSyncTimezone information: Sharp World ClockProject time: 2011 01 02 - 2011 01 06

Page 9: Cruzbike cuervo&vendetta project 2011 internet

virtual human engineering 9

Page 10: Cruzbike cuervo&vendetta project 2011 internet

10 virtual human engineering

#!CATBODY 2# JAPAN database# feminin Adult PC 5 47 kg# unit: mm

# MNr P05

0 1516.0 Stature--------------------- Koerperhoehe---------------- 1 1401.0 Eye height------------------ Augenhoehe------------------ 2 1382.0 Tragion height-------------- Tragionhoehe---------------- 3 0.0 Mouth height---------------- Mundhoehe------------------- 4 1269.0 Height of cervical vertebra7 Halswirbelhoehe------------- 5 0.0 Initial neck height--------- Halsansatzhoehe------------- 6 1214.1 Sternal height-------------- Sternalhoehe---------------- 7 0.0 Shoulder height lateral----- Schulterhoehe lateral------- 8 1203.0 Shoulder height acromial---- Schulterhoehe akromial------ 9 1105.1 Subaxillary height---------- Unterachselhoehe------------ 10 1070.0 Mamillary height------------ Brustwarzenhoehe------------ 11 898.2 Waist height---------------- Taillenhoehe---------------- 12 883.0 Iliocristal height---------- Darmbeinkammhoehe----------- 13 789.0 Iliospinal height----------- Darmbeinstachelhoehe-------- 14 757.0 Trochanter height ---------- Trochanterhoehe------------- 15 377.2 Shoulder breadth, bideltoid- Schulterbreite >Oberarme<--- 16 335.0 Shoulder breadth, biacromi-- Schulterbreite >Akromien<--- 17 0.0 Shoulder breadth, unilateral Einseitige Schulterbreite--- 18 0.0 Shoulder breadth, lifted arm Schulterbreite bei erh-Armen 19 230.0 Thorax breadth-------------- Brustkorbbreite------------- 20 212.0 Waist breadth--------------- Taillenbreite--------------- 21 237.5 Pelvis breadth-------------- Beckenbreite---------------- 22 306.0 Hip breadth----------------- Hueftbreite----------------- 23 0.0 Body depth------------------ Koerpertiefe---------------- 24 187.0 Depth back - chest---------- Brusttangente--------------- 25 147.1 Depth dorsal vertebra-ster-- Brustkorbtiefe-------------- 26 145.1 Depth of waist-------------- Taillentiefe---------------- 27 173.0 Biggest de-torso below che-- Gr- Rumpftiefe u-Brustkorb-- 28 178.0 Biggest depth of buttock---- Gesaesstangente------------- 29 919.1 Shoulder girth-------------- Schulterumfang-------------- 30 1396.2 Torso girth, vertical------- Rumpfumfang vertikal-------- 31 760.1 Chest girth----------------- Brustkorbumfang------------- 32 758.1 Anthropological chest girth- Anthropologischer Brustumfan 33 657.3 Thorax girth---------------- Thoraxumfang---------------- 34 581.1 Waist girth----------------- Taillenumfang--------------- 35 840.2 Seat girth------------------ Gesaessumfang--------------- 36 824.1 Height sitting plane- vertex Koerpersitzhoehe ----------- 37 710.0 Height sitting plane- eye--- Augenhoehe von Sitzflaeche-- 38 0.0 Height sitting plane- mouth- Mundhoehe von Sitzflaeche--- 39 586.0 Height sitting plane-cervi-- Cervicalhoehe--------------- 40 519.0 Sitt-shoulder height, acromi Schulterhoehe akromial------ 41 380.0 Height of lower scapula/sitt Untere Schulterblatthoehe---

Testpopulation: JAPAN FEMININ 5%

Page 11: Cruzbike cuervo&vendetta project 2011 internet

virtual human engineering 11

42 204.0 Height of pelvis/sitting---- Beckenhoehe----------------- 43 58.0 Height seat-trochanter------ Trochanterhoehe------------- 44 330.1 Biggest hip breadth sitting- Koerpersitzbreite----------- 45 185.0 Sagittal diamet-abdomen/sitt Sagittaler Abdomendurchmesse 46 1464.0 Span of arms---------------- Spannweite der Arme -------- 47 0.0 Span of grip axes----------- Griffachsenspannweite------- 48 760.1 Elbow span------------------ Ellenbogenspannweite-------- 49 695.1 Forward reach, (fingertips)- Reichweite vorn(Fingerspitz) 50 606.0 Forward reach, (grip axis)-- Reichweite vorn(Griffachse)- 51 1847.1 Vertical reach, (fingertips) Reichweite oben(Fingerspitz) 52 0.0 Vertical reach, (grip axis)- Reichweite oben(Griffachse)- 53 1923.1 Max-vertical reach(fingertp) Max Reichweite oben (Fspitz) 54 0.0 Maximal vertical grip reach- Max Reichweite oben (Griff-) 55 561.3 Middle fingertip height----- Fingerspitzenhoehe---------- 56 644.1 Height of grip axes--------- Griffachsenhoehe------------ 57 721.0 Wrist height---------------- Handgelenkshoehe------------ 58 908.1 Elbow height---------------- Ellenbogenhoehe------------- 59 265.0 Upper arm length------------ Oberarmlaenge--------------- 60 624.0 Projected arm length-------- Projektivische ganze Armlaen 61 0.0 Functional arm length------- Funktionelle Armlaenge------ 62 485.1 Arm length without hand----- Armlaenge ohne Hand--------- 63 387.0 Length elbow - fingertips--- Ellenbogen > Fingerspitzen-- 64 283.0 Length elbow - grip axes---- Ellenbogen > Griffachse----- 65 0.0 Length bend of elbow-fingert Ellenbeuge > Fingerspitzen-- 66 87.0 Diameter of initial uppera-- Armansatzbreite------------- 67 0.0 Forearm thickness----------- Unterarmdicke--------------- 68 226.0 Forearm length without han-- Unterarmlaenge ohne Hand---- 69 49.5 Breadth of elbow------------ Ellenbogenbreite------------ 70 326.0 Widest breadth for both elbo Breite ueber Ellenbogen----- 71 140.0 Wrist girth----------------- Handgelenkumfang------------ 72 141.1 Smallest forearm girth------ Kleinster Unterarmumfang---- 73 212.0 Biggest forearm girth------- Groesster Unterarmumfang---- 74 223.1 Biggest upper arm girth----- Groesster Oberarmumfang----- 75 1168.0 Vertic-fingertip reach/sitt- Reichweite nach oben-------- 76 0.0 Vertical grip reach, sitting Reichweite nach oben (Griff) 77 206.1 Elbow height, sitting------- Ellenbogenhoehe------------- 78 171.0 Hand girth without thumb---- Handumfang ohne Daumen------ 79 0.0 Grip girth------------------ Griffumfang----------------- 80 225.0 Fist girth------------------ Faustumfang----------------- 81 0.0 Little finger girth--------- Kleinfingerumfang----------- 82 0.0 Ring finger girth ---------- Ringfingerumfang------------ 83 0.0 Middle finger girth--------- Mittelfingerumfang---------- 84 0.0 Forefinger girth------------ Zeigefingerumfang----------- 85 0.0 Thumb girth----------------- Daumenumfang---------------- 86 0.0 Breadth little finger prox-- Kleinfingerbreite handnah--- 87 0.0 Breadth little finger dist-- Kleinfingerbreite handfern-- 88 0.0 Breadth ring finger proxim-- Ringfingerbreite handnah--- 89 0.0 Breadth ring finger distal-- Ringfingerbreite handfern-- 90 0.0 Breadth middle finger prox-- Mittelfingerbreite handnah-- 91 0.0 Breadth middle finger dist-- Mittelfingerbreite handfer-- 92 14.5 Breadth forefinger proxima-- Zeigefingerbreite handnah--- 93 12.0 Breadth forefinger distal--- Zeigefingerbreite handfern-- 94 0.0 Breadth of thumb distal----- Daumenbreite koerperfern----

Page 12: Cruzbike cuervo&vendetta project 2011 internet

12 virtual human engineering

95 0.0 Length little finger-------- Kleinfingerlaenge----------- 96 0.0 Length ring finger---------- Ringfingerlaenge------------ 97 67.0 Length middle finger-------- Mittelfingerlaenge---------- 98 0.0 Midd-fing-prox-phalanx lengt Mittelfingergrundgliedlaenge 99 0.0 Midd-fing-middle phal-length Mittelfingermittelgliedlaeng 100 0.0 Midd-fing-distal phal-length Mittelfingerendgliedlaenge-- 101 60.5 Length of forefinger-------- Zeigefingerlaenge----------- 102 53.0 Length of thumb------------- Daumenlaenge---------------- 103 94.0 Length of palm-------------- Handflaechenlaenge---------- 104 163.0 Length of hand-------------- Handlaenge------------------ 105 84.0 Breadth of hand with thumb-- Handbreite mit Daumen------- 106 68.0 Breadth of hand without th-- Handbreite ohne Daumen------ 107 22.0 Thickness of hand----------- Handdicke------------------- 108 0.0 Radius of fingertips-------- Fingerkuppenradius---------- 109 0.0 Grip dia-thumb/middle fg-tip Greifdurchmesser 1---------- 110 0.0 Grip dia-thumb/forefingertip Greifdurchmesser 2---------- 111 0.0 Gr-dia-foref-tip/dist-thumb Greifdurchmesser 3---------- 112 0.0 Gr-dia-foref-tip/prox-thumb Greifdurchmesser 4---------- 113 0.0 Circular reach-through dimen Kreisfoermige Durchgreifgroe 114 640.0 Projective leg (+foot) lengt Projektivische Beinlaenge--- 115 660.1 Crotchheight inside leg+fo-- Schritthoehe---------------- 116 0.0 Gluteal height-------------- Gesaessfaltenhoehe---------- 117 372.1 Knee joint height----------- Kniegelenkhoehe------------- 118 68.0 Medial ankle height--------- Fussknoechelhoehe medial---- 119 56.0 Lateral ankle height ------- Fussknoechelhoehe lateral--- 120 215.8 Length of foot-------------- Fusslaenge------------------ 121 121.0 Length of forefoot---------- Vorderfusslaenge------------ 122 84.5 Projective foot breadth ---- Fussbreite.----------------. 123 55.5 Breadth of heel------------- Fersenbreite---------------- 124 217.0 Breadth of ball of the foot- Fussballenumfang------------ 125 472.2 Girth of shank-------------- Oberschenkelumfang---------- 126 319.0 Girth of knee--------------- Knieumfang------------------ 127 307.1 Girth of calf--------------- Wadenumfang----------------. 128 187.1 Girth of ankle-------------- Fesselumfang---------------- 129 446.2 Height knee-sole of the foot Kniehoehe > Fussohle-------- 130 362.1 Height of sitting plane----- Sitzflaechenhoehe ---------- 131 384.1 Length buttock to calf/sitti Koerpersitztiefe bis Wade-- 132 511.0 Length buttock to knee/sitti Sitztiefe einschliessl.Knie- 133 0.0 Max-sitt-depth/buttock-tipto Sitztiefe > Fusszehen------- 134 879.0 Length buttock-sole, sitting Gesaess (Ruecken)-Beinlaenge 135 125.0 Height of shank------------- Oberschenkelhoehe----------- 136 82.1 Breadth of single knee------ Kniebreite eines Knies------ 137 181.1 Breadth oth knees closed/sit Kniebreite beider(geschloss) 138 218.0 Height of head-------------- Kopfhoehe------------------- 139 0.0 Height of face (chin-front-- Gesichtshoehe(Kinn-Stirnmi-- 140 113.0 Eye-vertex height----------- Augen-Scheitel-Hoehe-------- 141 122.0 Ear height, tragion-vertex-- Ohr-Scheitel-Hoehe---------- 142 156.0 Nose-vertex height---------- Nasen-Scheitel-Hoehe-------- 143 179.0 Mouth-vertex height--------- Mund-Scheitel-Hoehe--------- 144 107.0 Distance root of nose - chin Abstand Nasenwurzel - Kinn-- 145 43.0 Nose height, subnasal-nasion Nasenhoehe------------------ 146 53.0 Auricular height------------ Ohrmuschellaenge------------ 147 115.0 Breadth initial neck-------- Halsansatzbreite------------

Page 13: Cruzbike cuervo&vendetta project 2011 internet

virtual human engineering 13

148 99.2 Breadth of lower jaw angle-- Unterkieferwinkelbreite----- 149 30.0 Breadth of nose, lateral---- Nasenbreite----------------- 150 26.0 Auricular breadth- --------- Ohrmuschelbreite------------ 151 133.0 Horizontal ear-head distance Ohrmuschelabstand----------- 152 132.1 Zygomatic face breadth------ Jochbogenbreite------------- 153 30.0 Breadth of root of the nose- Nasenwurzelbreite----------- 154 55.0 Interpupillary breadth------ Pupillenabstand------------- 155 84.1 Breadth of upper face------- Obergesichtsbreite---------- 156 103.0 Smallest forehead breadth--- Kleinste Stirnbreite-------- 157 145.0 Breadth of head------------- Kopfbreite------------------ 158 166.2 Breadth of head with ears--- Kopfbreite mit Ohren-------- 159 168.0 Head length/glabel-opistho-- Kopftiefe------------------- 160 182.0 Length nosetip-opisthocranio Kopftiefe ab Nasenspitze---- 161 153.0 Length ectocanthus-opisthocr Kopftiefe ab Augenwinkel---- 162 75.2 Length tragion-opisthocranio Kopftiefe ab Tragion-------- 163 526.0 Horizontal head girth ------ Kopfumfang------------------ 164 291.0 Sagittal head curve--------- Sagittaler Kopfbogen-------- 165 341.0 Transversal head curve,tragi Transversaler Kopfbogen----- 166 289.0 Lower head curve,ear-chin-ea Ohr-Kinn-Ohr-Bogen---------- 167 287.0 Girth of neck--------------- Halsumfang------------------ 168 361.1 Initial neck girth---------- Halsansatzumfang------------ 169 0.0 Bodyweight------------------ Körpergewicht---------------

Page 14: Cruzbike cuervo&vendetta project 2011 internet

14 virtual human engineering

#!CATBODY 2# BODYSPACE database usa_adult# masculin 25 years old PC 95 100 kg# unit: mm

# MNr P95

0 1872.2 Stature--------------------- Koerperhoehe---------------- 1 1725.5 Eye height------------------ Augenhoehe------------------ 2 1748.0 Tragion height-------------- Tragionhoehe---------------- 3 1675.8 Mouth height---------------- Mundhoehe------------------- 4 1616.3 Height of cervical vertebra7 Halswirbelhoehe------------- 5 1574.9 Initial neck height--------- Halsansatzhoehe------------- 6 1533.6 Sternal height-------------- Sternalhoehe---------------- 7 1568.8 Shoulder height lateral----- Schulterhoehe lateral------- 8 1550.6 Shoulder height acromial---- Schulterhoehe akromial------ 9 1389.6 Subaxillary height---------- Unterachselhoehe------------ 10 1368.2 Mamillary height------------ Brustwarzenhoehe------------ 11 1162.3 Waist height---------------- Taillenhoehe---------------- 12 1133.5 Iliocristal height---------- Darmbeinkammhoehe----------- 13 1084.6 Iliospinal height----------- Darmbeinstachelhoehe-------- 14 997.5 Trochanter height ---------- Trochanterhoehe------------- 15 516.2 Shoulder breadth, bideltoid- Schulterbreite >Oberarme<--- 16 434.6 Shoulder breadth, biacromi-- Schulterbreite >Akromien<--- 17 161.7 Shoulder breadth, unilateral Einseitige Schulterbreite--- 18 419.6 Shoulder breadth, lifted arm Schulterbreite bei erh-Armen 19 313.0 Thorax breadth-------------- Brustkorbbreite------------- 20 315.2 Waist breadth--------------- Taillenbreite--------------- 21 314.1 Pelvis breadth-------------- Beckenbreite---------------- 22 356.6 Hip breadth----------------- Hueftbreite----------------- 23 327.8 Body depth------------------ Koerpertiefe---------------- 24 295.3 Depth back - chest---------- Brusttangente--------------- 25 261.3 Depth dorsal vertebra-ster-- Brustkorbtiefe-------------- 26 271.5 Depth of waist-------------- Taillentiefe---------------- 27 325.6 Biggest de-torso below che-- Gr- Rumpftiefe u-Brustkorb-- 28 293.0 Biggest depth of buttock---- Gesaesstangente------------- 29 1373.3 Shoulder girth-------------- Schulterumfang-------------- 30 1707.7 Torso girth, vertical------- Rumpfumfang vertikal-------- 31 1186.5 Chest girth----------------- Brustkorbumfang------------- 32 1180.3 Anthropological chest girth- Anthropologischer Brustumfan 33 1161.4 Thorax girth---------------- Thoraxumfang---------------- 34 1079.3 Waist girth----------------- Taillenumfang--------------- 35 1119.7 Seat girth------------------ Gesaessumfang--------------- 36 974.4 Height sitting plane- vertex Koerpersitzhoehe ----------- 37 857.8 Height sitting plane- eye--- Augenhoehe von Sitzflaeche-- 38 772.4 Height sitting plane- mouth- Mundhoehe von Sitzflaeche--- 39 690.2 Height sitting plane-cervi-- Cervicalhoehe--------------- 40 652.8 Sitt-shoulder height, acromi Schulterhoehe akromial------ 41 498.1 Height of lower scapula/sitt Untere Schulterblatthoehe---

Testpopulation: BODYSPACE USA 95%

Page 15: Cruzbike cuervo&vendetta project 2011 internet

virtual human engineering 15

42 263.8 Height of pelvis/sitting---- Beckenhoehe----------------- 43 87.0 Height seat-trochanter------ Trochanterhoehe------------- 44 409.5 Biggest hip breadth sitting- Koerpersitzbreite----------- 45 263.2 Sagittal diamet-abdomen/sitt Sagittaler Abdomendurchmesse 46 1948.6 Span of arms---------------- Spannweite der Arme -------- 47 1667.3 Span of grip axes----------- Griffachsenspannweite------- 48 1034.2 Elbow span------------------ Ellenbogenspannweite-------- 49 933.8 Forward reach, (fingertips)- Reichweite vorn(Fingerspitz) 50 842.8 Forward reach, (grip axis)-- Reichweite vorn(Griffachse)- 51 2475.5 Vertical reach, (fingertips) Reichweite oben(Fingerspitz) 52 2212.0 Vertical reach, (grip axis)- Reichweite oben(Griffachse)- 53 2391.6 Max-vertical reach(fingertp) Max Reichweite oben (Fspitz) 54 2299.9 Maximal vertical grip reach- Max Reichweite oben (Griff-) 55 724.3 Middle fingertip height----- Fingerspitzenhoehe---------- 56 832.7 Height of grip axes--------- Griffachsenhoehe------------ 57 925.9 Wrist height---------------- Handgelenkshoehe------------ 58 1199.0 Elbow height---------------- Ellenbogenhoehe------------- 59 399.6 Upper arm length------------ Oberarmlaenge--------------- 60 849.4 Projected arm length-------- Projektivische ganze Armlaen 61 728.9 Functional arm length------- Funktionelle Armlaenge------ 62 664.7 Arm length without hand----- Armlaenge ohne Hand--------- 63 514.7 Length elbow - fingertips--- Ellenbogen > Fingerspitzen-- 64 391.2 Length elbow - grip axes---- Ellenbogen > Griffachse----- 65 457.9 Length bend of elbow-fingert Ellenbeuge > Fingerspitzen-- 66 129.5 Diameter of initial uppera-- Armansatzbreite------------- 67 55.2 Forearm thickness----------- Unterarmdicke--------------- 68 292.1 Forearm length without han-- Unterarmlaenge ohne Hand---- 69 75.4 Breadth of elbow------------ Ellenbogenbreite------------ 70 485.1 Widest breadth for both elbo Breite ueber Ellenbogen----- 71 181.5 Wrist girth----------------- Handgelenkumfang------------ 72 191.0 Smallest forearm girth------ Kleinster Unterarmumfang---- 73 292.9 Biggest forearm girth------- Groesster Unterarmumfang---- 74 335.4 Biggest upper arm girth----- Groesster Oberarmumfang----- 75 1384.6 Vertic-fingertip reach/sitt- Reichweite nach oben-------- 76 1284.7 Vertical grip reach, sitting Reichweite nach oben (Griff) 77 1192.4 Elbow height, sitting------- Ellenbogenhoehe------------- 78 242.2 Hand girth without thumb---- Handumfang ohne Daumen------ 79 153.1 Grip girth------------------ Griffumfang----------------- 80 331.4 Fist girth------------------ Faustumfang----------------- 81 65.1 Little finger girth--------- Kleinfingerumfang----------- 82 73.1 Ring finger girth ---------- Ringfingerumfang------------ 83 76.5 Middle finger girth--------- Mittelfingerumfang---------- 84 74.3 Forefinger girth------------ Zeigefingerumfang----------- 85 80.1 Thumb girth----------------- Daumenumfang---------------- 86 19.4 Breadth little finger prox-- Kleinfingerbreite handnah--- 87 18.2 Breadth little finger dist-- Kleinfingerbreite handfern-- 88 22.9 Breadth ring finger proxim-- Ringfingerbreite handnah--- 89 19.4 Breadth ring finger distal-- Ringfingerbreite handfern-- 90 24.0 Breadth middle finger prox-- Mittelfingerbreite handnah-- 91 20.4 Breadth middle finger dist-- Mittelfingerbreite handfer-- 92 24.0 Breadth forefinger proxima-- Zeigefingerbreite handnah--- 93 21.7 Breadth forefinger distal--- Zeigefingerbreite handfern-- 94 26.2 Breadth of thumb distal----- Daumenbreite koerperfern----

Page 16: Cruzbike cuervo&vendetta project 2011 internet

16 virtual human engineering

95 68.4 Length little finger-------- Kleinfingerlaenge----------- 96 84.8 Length ring finger---------- Ringfingerlaenge------------ 97 87.9 Length middle finger-------- Mittelfingerlaenge---------- 98 29.3 Midd-fing-prox-phalanx lengt Mittelfingergrundgliedlaenge 99 28.3 Midd-fing-middle phal-length Mittelfingermittelgliedlaeng 100 31.5 Midd-fing-distal phal-length Mittelfingerendgliedlaenge-- 101 81.4 Length of forefinger-------- Zeigefingerlaenge----------- 102 79.3 Length of thumb------------- Daumenlaenge---------------- 103 118.4 Length of palm-------------- Handflaechenlaenge---------- 104 207.5 Length of hand-------------- Handlaenge------------------ 105 122.2 Breadth of hand with thumb-- Handbreite mit Daumen------- 106 98.3 Breadth of hand without th-- Handbreite ohne Daumen------ 107 36.6 Thickness of hand----------- Handdicke------------------- 108 9.2 Radius of fingertips-------- Fingerkuppenradius---------- 109 50.3 Grip dia-thumb/middle fg-tip Greifdurchmesser 1---------- 110 51.4 Grip dia-thumb/forefingertip Greifdurchmesser 2---------- 111 37.6 Gr-dia-foref-tip/dist-thumb Greifdurchmesser 3---------- 112 25.1 Gr-dia-foref-tip/prox-thumb Greifdurchmesser 4---------- 113 92.6 Circular reach-through dimen Kreisfoermige Durchgreifgroe 114 896.8 Projective leg (+foot) lengt Projektivische Beinlaenge--- 115 864.9 Crotchheight inside leg+fo-- Schritthoehe---------------- 116 846.9 Gluteal height-------------- Gesaessfaltenhoehe---------- 117 535.2 Knee joint height----------- Kniegelenkhoehe------------- 118 84.2 Medial ankle height--------- Fussknoechelhoehe medial---- 119 77.6 Lateral ankle height ------- Fussknoechelhoehe lateral--- 120 288.1 Length of foot-------------- Fusslaenge------------------ 121 210.5 Length of forefoot---------- Vorderfusslaenge------------ 122 109.9 Projective foot breadth ---- Fussbreite.----------------. 123 72.9 Breadth of heel------------- Fersenbreite---------------- 124 267.7 Breadth of ball of the foot- Fussballenumfang------------ 125 649.6 Girth of shank-------------- Oberschenkelumfang---------- 126 435.4 Girth of knee--------------- Knieumfang------------------ 127 423.9 Girth of calf--------------- Wadenumfang----------------. 128 306.8 Girth of ankle-------------- Fesselumfang---------------- 129 602.8 Height knee-sole of the foot Kniehoehe > Fussohle-------- 130 492.9 Height of sitting plane----- Sitzflaechenhoehe ---------- 131 554.5 Length buttock to calf/sitti Koerpersitztiefe bis Wade-- 132 651.2 Length buttock to knee/sitti Sitztiefe einschliessl.Knie- 133 869.6 Max-sitt-depth/buttock-tipto Sitztiefe > Fusszehen------- 134 1119.0 Length buttock-sole, sitting Gesaess (Ruecken)-Beinlaenge 135 171.4 Height of shank------------- Oberschenkelhoehe----------- 136 100.8 Breadth of single knee------ Kniebreite eines Knies------ 137 229.3 Breadth oth knees closed/sit Kniebreite beider(geschloss) 138 244.2 Height of head-------------- Kopfhoehe------------------- 139 204.9 Height of face (chin-front-- Gesichtshoehe(Kinn-Stirnmi-- 140 124.3 Eye-vertex height----------- Augen-Scheitel-Hoehe-------- 141 146.0 Ear height, tragion-vertex-- Ohr-Scheitel-Hoehe---------- 142 158.1 Nose-vertex height---------- Nasen-Scheitel-Hoehe-------- 143 195.1 Mouth-vertex height--------- Mund-Scheitel-Hoehe--------- 144 135.2 Distance root of nose - chin Abstand Nasenwurzel - Kinn-- 145 61.0 Nose height, subnasal-nasion Nasenhoehe------------------ 146 65.4 Auricular height------------ Ohrmuschellaenge------------ 147 142.2 Breadth initial neck-------- Halsansatzbreite------------

Page 17: Cruzbike cuervo&vendetta project 2011 internet

virtual human engineering 17

148 116.2 Breadth of lower jaw angle-- Unterkieferwinkelbreite----- 149 35.9 Breadth of nose, lateral---- Nasenbreite----------------- 150 35.9 Auricular breadth- --------- Ohrmuschelbreite------------ 151 21.2 Horizontal ear-head distance Ohrmuschelabstand----------- 152 151.2 Zygomatic face breadth------ Jochbogenbreite------------- 153 33.8 Breadth of root of the nose- Nasenwurzelbreite----------- 154 65.6 Interpupillary breadth------ Pupillenabstand------------- 155 94.0 Breadth of upper face------- Obergesichtsbreite---------- 156 117.4 Smallest forehead breadth--- Kleinste Stirnbreite-------- 157 164.9 Breadth of head------------- Kopfbreite------------------ 158 196.7 Breadth of head with ears--- Kopfbreite mit Ohren-------- 159 208.2 Head length/glabel-opistho-- Kopftiefe------------------- 160 246.4 Length nosetip-opisthocranio Kopftiefe ab Nasenspitze---- 161 188.5 Length ectocanthus-opisthocr Kopftiefe ab Augenwinkel---- 162 110.0 Length tragion-opisthocranio Kopftiefe ab Tragion-------- 163 632.2 Horizontal head girth ------ Kopfumfang------------------ 164 376.1 Sagittal head curve--------- Sagittaler Kopfbogen-------- 165 396.7 Transversal head curve,tragi Transversaler Kopfbogen----- 166 345.5 Lower head curve,ear-chin-ea Ohr-Kinn-Ohr-Bogen---------- 167 419.2 Girth of neck--------------- Halsumfang------------------ 168 460.7 Initial neck girth---------- Halsansatzumfang------------

Page 18: Cruzbike cuervo&vendetta project 2011 internet

18 virtual human engineering

Workflow : Session 1 Iteration 1

---D = designerThis looks extremely interesting!This is 95% male ... so frame should be as in the following picture. But the frame in your model ap-pears to have the seat too far forward, and the handlebars should be pointing forwards a little as in the following picture.

As a reference, for a tall person, the seat join is behind the frame join. On your model, the seat join is in front of the frame join. Could you check which frame 3ds model you are using?

We must change the arm position.Arm Length is 851.81, therefore target arm dis-tance needs to be about 780 mm. Something like the following frame adjustment will be needed:

When riding, there can be considerable push/pull strain on the arm, the elbow bend at 90 degrees cannot cope with this repeated strain (90 cycles per minute, say), the arm will get tired and will not be able to stabilise the body to allow the core and trunk muscles to work fully.

The arm needs to be extended to subtend an angle at the elbow of 150 or more degrees. Sometimes

the rider seeks a fully straight arm position. The hands need to be near the knee at its highest position. There are photos here that show this: http://www.cruzbike.com/new-12-hour-dis-tance-record-pending-certfication

If the CUERVO frame cannot provide this yet, then we have made our first critical discovery! :)

The hand cannot grip the bar at right angles to the forearm or the hand will tire quickly. The bar to the forearm makes an angle of about 130 de-grees. (see inserted picture right) so the arms need to push the slider forward and up and needs to rotate the handlebar forwards also.

---HE = human engineerPlease, let me know what kind of documenta-tion is necessary for you to support your next workflow steps? Additional to design data do you use 1:1 printed document or 1:1 projection? I need this info for the setup of the render op-tions thank you.---DMy next steps are to redesign the frame in 2D autocad. If I can use the side elevation of each size human model and the frame, inside auto-cad, it would be very useful.

gripaxe

Page 19: Cruzbike cuervo&vendetta project 2011 internet

virtual human engineering 19 Can you create a side elevation in a vector for-mat, such as EPS or dxf?

Very good! You have fitted the frameset to the Japanese woman 5% almost exactly. My only note would be that the knee moves parallel to the sagital plane, because the shoe does not rotate on the pedal (usually). On this model, the knee would remain about 125 mm from the cen-treline.

The nose of the seat pan is intersecting the downtube slightly and can rotate up a little.With a large person the seatpan-seatback an-gle opens up and this allows the large person’s back to slide down the seat back a little, maybe 30mm.

I note the pressure points at throacal_1 on the large person.

The seat is covered with a cushion, which com-presses away to 5 or 6 mm at the top of the seat, reducing this effect. Large persons have not mentioned this pressure point to me, even on rides of 350 km in one day, such as done by this man. The bike is Silvio, which has 700c wheels, and the seat back is the same profile, only lifted up about 20 mm. Recline is 45 degrees.

Cruzbike Silvio

Page 20: Cruzbike cuervo&vendetta project 2011 internet

20 virtual human engineering

Session 1 Iteration 2

---HEHi John, yes indeed, if the seat back is adjusted to 43° from the vertical than we don’t need head sup-port. I am going to make a version with this seat angle for you and we will see what to the construc-tion parts happens.----DThank you, that would be great.----HEThe critical point is at the 40 mm safety distance betwen the handlebar and the femur.----DI ride with a gap of 15mm, but ... that is me, not everyone.

For Japanese female 5% lifting the handlebar (by lengthening the fork steering tube) brings the hands up rather high and into the riders vi-sion. So the fitting cannot be ideal for a smaller person.

----HEBtw... Sufficient Knee Clearance... The X-Seam/(2*Crank lenght) proportion has a hard consequence for the JF05: the femur-thorso angel is over 90°.

----DThat is absolutely correct, but ... shimano do not make quality road crank less than 165 mm, so that is what Japanese women use when they ride a road bike. I personally think it strange that crank lengths are nearly always 170 to 175.

Even 165 can be hard to find unless it is spe-cially ordered from Shimano. Other makes fit shorter cranks and on one of my models we are close to specifying 145 mm cranks as standard equipment. There is a case for 155mm cranks on the Cuervo model.

----HEOk but we’ll find together a good solution, not a compromise.

----DIt looks convincing to me!

----HEA question: is it a technical problem if the Chain-stay is shorter than the actual one?

----D

Page 21: Cruzbike cuervo&vendetta project 2011 internet

virtual human engineering 21

Mechanically, no... but the US male 95% might feel cramped. I made a long chainstay to give a large x-seam fitment.----HEWhat is the bottom limit?----DRear deraileur gear changing is good at a 430mm chainstay length. As it gets shorter than that, the chain angles get sharper onto the front chainring but we can still manage it.

---D

Ah! Now I see the seat angle 57° should be 43° from verticle (or 47° from horizontal). When that is done, no head support will be required.

For the femur touching the fork:1) we can narrow the shoulders of the fork blades

2) turning 12 degrees can occur only when riding very slowly, maneuvering, etc. This occurs for only a few seconds during even a long day’s ride.

The rider must change technique when turning 180 degrees in a driveway for ex-ample, by lifting the outside leg to the 12 o’clock crank position. 12 degrees is a lot of steering turn when riding.

Can you locate the centre of gravity of the rider? This determines when wheelspin oc-curs on an uphill grade.

Page 22: Cruzbike cuervo&vendetta project 2011 internet

22 virtual human engineering

Session 1 Iteration 3 -4

---HEI’m sending you the ASSEMBLY JAPAN F05 itera-tion 3-4 pictures. The seat back is now 43° from vertical. Please, check the Japan F05 database - distance No.132 Length buttock to knee/sitting : 511.0 mm .

I understand all your technical restrictions. In this case we have only one option for a practical solu-tion: to change the shape of the handlebar.

---D

Your handlebar suggestion is the way to go! It will be something like what we use on the Ven-detta:

On the Cuervo design, I shortened the reach distance. Looks like I should have lengthened it.

I will try to get revised handlebars into the mod-el. Longer horns will be striking - they’ll be simi-lar to our high-end bike, Vendetta (attached).

And I think we can weld the bars to the end of the slider, avoiding a clamp.

That looks great. I feel convinced that the Cu-ervo design can be made to accomodate the Japanese Female 5% size, and I know where

Page 23: Cruzbike cuervo&vendetta project 2011 internet

virtual human engineering 23

I have to develop the design details further to do this.

I am wondering how Mr US 95% will look - will the frame design hold up!?

Page 24: Cruzbike cuervo&vendetta project 2011 internet

24 virtual human engineering

Session 1 Iteration 5

---DI’m inspired by your superimposition of J F05 and US M95. Several things seem possible (in addition to the extra reach handlebar). We have to check whether

1) we could fix the slider clamp height? (fork neck length)2) we could fix the slider clamp to the slider? (fixed reach adjustment)3) it might be possible on 26” wheels.4) we might be able to introduce a nose bend (like Vendetta) and still have sufficient slider adjust-

ment, which would make it easier to fit a front derailleur.

1) & 2)Would you be able to average the positions be-tween JF05 and USM95 and let us see the out-come? I am organising a new 3ds frame model for you with extended reach bars (and a better modelled seat, so side views look more realistic)This would simplify production.

3) & 4)I will investigate these on autocad, once I have your 1) & 2) suggestion. These possibilities would lower costs and make the bicycle more compatible.

----HE

A new 3ds modell with detailed seat is neces-sary for an exact positioning. I would like to use a SRP definition (SRP = seat reference point). I need your help to be able to define an SRP, be-cause only you have a seat that will be used to the Cuervo model. I’m going to make a descrip-tion for you with a picture during the next days in order to explane how to measure the exact position of the SRP. If you are ready with the corrected 3ds model we can start the second session.

I would like to test the recent configuration for the european population (DIN33402 and EU-

Page 25: Cruzbike cuervo&vendetta project 2011 internet

virtual human engineering 25

ROPA-UHP) and I’m going to create a design/human engineering documentation (PDF) about the first session.I’ll send you the 2 DWG files with the iteration 5 J F05 and US M95 frame configuration.

Page 26: Cruzbike cuervo&vendetta project 2011 internet

26 virtual human engineering

Session 2 Iteration 6

---DNew model files are in the shared directory with new seat and handlebar.

The seatpan attaches with two bolts and sits on small rubber blocks front and rear that touch the frame.

The seatpan rotates around virtual axis 30 cm above the seat pan curve. The seat pan curve is an arc.

If the extreme tests (US_M95 and J_F05) are sat-

isfactory then I am confident that in between sizes will also be satisfactory.

---HE

I’ve received the 2 HBr2 3ds models. Thank you! I’m going to build the new cinematic modell for the second session with the new parts but I still need some additional data.

The first data is the thickness of the seat uphol-stery.The second is the trochanterion position of a real person on the seat. For this measurement I’ll prepare a short description with a picture and I’ll send it to you as soon as possible.

Page 27: Cruzbike cuervo&vendetta project 2011 internet

virtual human engineering 27

----D1) can we fix the slider clamp height ? (fork neck length)

---HE--- YES

---D2) can we fix the slider clamp to the slider? (fixed reach adjustment)

---HE--- YES

Page 28: Cruzbike cuervo&vendetta project 2011 internet

28 virtual human engineering

Design data

Page 29: Cruzbike cuervo&vendetta project 2011 internet

virtual human engineering 29

Page 30: Cruzbike cuervo&vendetta project 2011 internet

30 virtual human engineering

Dear László,

Thank you for this spectacular report. There was truely a lot of work done and the results are very impressive. I knew that within the geometry com-binations of the layout of Cuervo there would be a sweet spot - and with your help we have found it.

I suggest the report conclusions might include:

1) a frame design has been established to a simple geometry and low tube count to rival a diamond frame bike and with an adjustment range that ac-commodates US males to 95th percentile down to Japanese females at the 5th percentile. This is a very large fitment range.

2) I am very confident this frame design can be adapted to 26” wheels or 700c wheels and re-tain the same fitment range

3) The boom may allow a vendetta type curve, which would allow use of a front derailleur.

4) The tube simplicity lends itself to being built in other materials. This has far reaching implica-tions.

5) A single frame design capable of taking de-railleur or hub gearing is possible.

BestJohn

Page 31: Cruzbike cuervo&vendetta project 2011 internet

virtual human engineering 31 Very impressive work indeed. This design is astoundingly versatile. Lots of po-tential regardless of the approach we choose to take with it. Cheers,Doug BurtonCruzbike Technical Specialisthttp://www.cruzbike.com/forums/http://sports.groups.yahoo.com/group/Cruzbike/

Good work John and László, this is very excit-ing!

Maria ParkerCruzbike.com

hub gearing front derailleur.

Page 32: Cruzbike cuervo&vendetta project 2011 internet

32 virtual human engineering

#!CATBODY 2# GERMAN DIN-33402 2005 database# masculin 25 years old PC 50 # unit: mm

# MNr P50

0 1758.0 Stature--------------------- Koerperhoehe---------------- 1 1634.0 Eye height------------------ Augenhoehe------------------ 2 1641.4 Tragion height-------------- Tragionhoehe---------------- 3 1573.6 Mouth height---------------- Mundhoehe------------------- 4 1517.8 Height of cervical vertebra7 Halswirbelhoehe------------- 5 1479.0 Initial neck height--------- Halsansatzhoehe------------- 6 1440.1 Sternal height-------------- Sternalhoehe---------------- 7 1458.0 Shoulder height lateral----- Schulterhoehe lateral------- 8 1465.0 Shoulder height acromial---- Schulterhoehe akromial------ 9 1313.0 Subaxillary height---------- Unterachselhoehe------------ 10 1292.8 Mamillary height------------ Brustwarzenhoehe------------ 11 1098.2 Waist height---------------- Taillenhoehe---------------- 12 1082.0 Iliocristal height---------- Darmbeinkammhoehe----------- 13 1035.4 Iliospinal height----------- Darmbeinstachelhoehe-------- 14 918.9 Trochanter height ---------- Trochanterhoehe------------- 15 455.4 Shoulder breadth, bideltoid- Schulterbreite >Oberarme<--- 16 394.0 Shoulder breadth, biacromi-- Schulterbreite >Akromien<--- 17 143.4 Shoulder breadth, unilateral Einseitige Schulterbreite--- 18 380.3 Shoulder breadth, lifted arm Schulterbreite bei erh-Armen 19 283.8 Thorax breadth-------------- Brustkorbbreite------------- 20 301.7 Waist breadth--------------- Taillenbreite--------------- 21 304.8 Pelvis breadth-------------- Beckenbreite---------------- 22 346.0 Hip breadth----------------- Hueftbreite----------------- 23 263.0 Body depth------------------ Koerpertiefe---------------- 24 237.0 Depth back - chest---------- Brusttangente--------------- 25 207.0 Depth dorsal vertebra-ster-- Brustkorbtiefe-------------- 26 215.0 Depth of waist-------------- Taillentiefe---------------- 27 258.0 Biggest de-torso below che-- Gr- Rumpftiefe u-Brustkorb-- 28 232.0 Biggest depth of buttock---- Gesaesstangente------------- 29 1061.1 Shoulder girth-------------- Schulterumfang-------------- 30 1603.5 Torso girth, vertical------- Rumpfumfang vertikal-------- 31 916.7 Chest girth----------------- Brustkorbumfang------------- 32 911.9 Anthropological chest girth- Anthropologischer Brustumfan 33 897.2 Thorax girth---------------- Thoraxumfang---------------- 34 833.8 Waist girth----------------- Taillenumfang--------------- 35 996.8 Seat girth------------------ Gesaessumfang--------------- 36 921.0 Height sitting plane- vertex Koerpersitzhoehe ----------- 37 797.0 Height sitting plane- eye--- Augenhoehe von Sitzflaeche-- 38 737.4 Height sitting plane- mouth- Mundhoehe von Sitzflaeche--- 39 658.9 Height sitting plane-cervi-- Cervicalhoehe--------------- 40 628.0 Sitt-shoulder height, acromi Schulterhoehe akromial------ 41 479.2 Height of lower scapula/sitt Untere Schulterblatthoehe---

Additional Testpopulation: DIN 33402 2005 MASCULIN 50%

Page 33: Cruzbike cuervo&vendetta project 2011 internet

virtual human engineering 33

42 253.9 Height of pelvis/sitting---- Beckenhoehe----------------- 43 83.6 Height seat-trochanter------ Trochanterhoehe------------- 44 355.0 Biggest hip breadth sitting- Koerpersitzbreite----------- 45 247.2 Sagittal diamet-abdomen/sitt Sagittaler Abdomendurchmesse 46 1794.9 Span of arms---------------- Spannweite der Arme -------- 47 1535.8 Span of grip axes----------- Griffachsenspannweite------- 48 906.9 Elbow span------------------ Ellenbogenspannweite-------- 49 734.0 Forward reach, (fingertips)- Reichweite vorn(Fingerspitz) 50 653.2 Forward reach, (grip axis)-- Reichweite vorn(Griffachse)- 51 2083.0 Vertical reach, (fingertips) Reichweite oben(Fingerspitz) 52 2184.5 Vertical reach, (grip axis)- Reichweite oben(Griffachse)- 53 2361.9 Max-vertical reach(fingertp) Max Reichweite oben (Fspitz) 54 2271.2 Maximal vertical grip reach- Max Reichweite oben (Griff-) 55 671.7 Middle fingertip height----- Fingerspitzenhoehe---------- 56 786.0 Height of grip axes--------- Griffachsenhoehe------------ 57 874.0 Wrist height---------------- Handgelenkshoehe------------ 58 1106.0 Elbow height---------------- Ellenbogenhoehe------------- 59 341.3 Upper arm length------------ Oberarmlaenge--------------- 60 789.5 Projected arm length-------- Projektivische ganze Armlaen 61 677.4 Functional arm length------- Funktionelle Armlaenge------ 62 617.8 Arm length without hand----- Armlaenge ohne Hand--------- 63 484.2 Length elbow - fingertips--- Ellenbogen > Fingerspitzen-- 64 368.0 Length elbow - grip axes---- Ellenbogen > Griffachse----- 65 430.7 Length bend of elbow-fingert Ellenbeuge > Fingerspitzen-- 66 121.6 Diameter of initial uppera-- Armansatzbreite------------- 67 47.4 Forearm thickness----------- Unterarmdicke--------------- 68 271.4 Forearm length without han-- Unterarmlaenge ohne Hand---- 69 64.8 Breadth of elbow------------ Ellenbogenbreite------------ 70 417.0 Widest breadth for both elbo Breite ueber Ellenbogen----- 71 175.0 Wrist girth----------------- Handgelenkumfang------------ 72 184.2 Smallest forearm girth------ Kleinster Unterarmumfang---- 73 251.8 Biggest forearm girth------- Groesster Unterarmumfang---- 74 288.3 Biggest upper arm girth----- Groesster Oberarmumfang----- 75 1367.3 Vertic-fingertip reach/sitt- Reichweite nach oben-------- 76 1268.7 Vertical grip reach, sitting Reichweite nach oben (Griff) 77 249.1 Elbow height, sitting------- Ellenbogenhoehe------------- 78 211.3 Hand girth without thumb---- Handumfang ohne Daumen------ 79 133.5 Grip girth------------------ Griffumfang----------------- 80 289.0 Fist girth------------------ Faustumfang----------------- 81 57.0 Little finger girth--------- Kleinfingerumfang----------- 82 64.0 Ring finger girth ---------- Ringfingerumfang------------ 83 67.0 Middle finger girth--------- Mittelfingerumfang---------- 84 65.0 Forefinger girth------------ Zeigefingerumfang----------- 85 70.0 Thumb girth----------------- Daumenumfang---------------- 86 17.0 Breadth little finger prox-- Kleinfingerbreite handnah--- 87 16.0 Breadth little finger dist-- Kleinfingerbreite handfern-- 88 20.0 Breadth ring finger proxim-- Ringfingerbreite handnah--- 89 17.0 Breadth ring finger distal-- Ringfingerbreite handfern-- 90 21.0 Breadth middle finger prox-- Mittelfingerbreite handnah-- 91 18.0 Breadth middle finger dist-- Mittelfingerbreite handfer-- 92 21.0 Breadth forefinger proxima-- Zeigefingerbreite handnah--- 93 19.0 Breadth forefinger distal--- Zeigefingerbreite handfern-- 94 23.0 Breadth of thumb distal----- Daumenbreite koerperfern----

Page 34: Cruzbike cuervo&vendetta project 2011 internet

34 virtual human engineering 95 63.0 Length little finger-------- Kleinfingerlaenge----------- 96 78.0 Length ring finger---------- Ringfingerlaenge------------ 97 84.0 Length middle finger-------- Mittelfingerlaenge---------- 98 27.0 Midd-fing-prox-phalanx lengt Mittelfingergrundgliedlaenge 99 26.0 Midd-fing-middle phal-length Mittelfingermittelgliedlaeng 100 29.0 Midd-fing-distal phal-length Mittelfingerendgliedlaenge-- 101 75.0 Length of forefinger-------- Zeigefingerlaenge----------- 102 67.0 Length of thumb------------- Daumenlaenge---------------- 103 109.0 Length of palm-------------- Handflaechenlaenge---------- 104 187.0 Length of hand-------------- Handlaenge------------------ 105 106.0 Breadth of hand with thumb-- Handbreite mit Daumen------- 106 86.0 Breadth of hand without th-- Handbreite ohne Daumen------ 107 28.0 Thickness of hand----------- Handdicke------------------- 108 8.0 Radius of fingertips-------- Fingerkuppenradius---------- 109 43.1 Grip dia-thumb/middle fg-tip Greifdurchmesser 1---------- 110 44.1 Grip dia-thumb/forefingertip Greifdurchmesser 2---------- 111 32.3 Gr-dia-foref-tip/dist-thumb Greifdurchmesser 3---------- 112 21.5 Gr-dia-foref-tip/prox-thumb Greifdurchmesser 4---------- 113 79.3 Circular reach-through dimen Kreisfoermige Durchgreifgroe 114 857.4 Projective leg (+foot) lengt Projektivische Beinlaenge--- 115 827.0 Crotchheight inside leg+fo-- Schritthoehe---------------- 116 809.7 Gluteal height-------------- Gesaessfaltenhoehe---------- 117 486.6 Knee joint height----------- Kniegelenkhoehe------------- 118 75.7 Medial ankle height--------- Fussknoechelhoehe medial---- 119 69.8 Lateral ankle height ------- Fussknoechelhoehe lateral--- 120 262.0 Length of foot-------------- Fusslaenge------------------ 121 191.5 Length of forefoot---------- Vorderfusslaenge------------ 122 104.0 Projective foot breadth ---- Fussbreite.----------------. 123 67.0 Breadth of heel------------- Fersenbreite---------------- 124 253.3 Breadth of ball of the foot- Fussballenumfang------------ 125 559.1 Girth of shank-------------- Oberschenkelumfang---------- 126 374.7 Girth of knee--------------- Knieumfang------------------ 127 364.8 Girth of calf--------------- Wadenumfang----------------. 128 264.1 Girth of ankle-------------- Fesselumfang---------------- 129 548.0 Height knee-sole of the foot Kniehoehe > Fussohle-------- 130 453.0 Height of sitting plane----- Sitzflaechenhoehe ---------- 131 507.0 Length buttock to calf/sitti Koerpersitztiefe bis Wade-- 132 599.0 Length buttock to knee/sitti Sitztiefe einschliessl.Knie- 133 800.0 Max-sitt-depth/buttock-tipto Sitztiefe > Fusszehen------- 134 1039.0 Length buttock-sole, sitting Gesaess (Ruecken)-Beinlaenge 135 141.0 Height of shank------------- Oberschenkelhoehe----------- 136 94.7 Breadth of single knee------ Kniebreite eines Knies------ 137 215.3 Breadth oth knees closed/sit Kniebreite beider(geschloss) 138 229.0 Height of head-------------- Kopfhoehe------------------- 139 192.2 Height of face (chin-front-- Gesichtshoehe(Kinn-Stirnmi-- 140 116.5 Eye-vertex height----------- Augen-Scheitel-Hoehe-------- 141 137.0 Ear height, tragion-vertex-- Ohr-Scheitel-Hoehe---------- 142 148.2 Nose-vertex height---------- Nasen-Scheitel-Hoehe-------- 143 183.0 Mouth-vertex height--------- Mund-Scheitel-Hoehe--------- 144 126.8 Distance root of nose - chin Abstand Nasenwurzel - Kinn-- 145 57.3 Nose height, subnasal-nasion Nasenhoehe------------------ 146 61.3 Auricular height------------ Ohrmuschellaenge------------ 147 133.1 Breadth initial neck-------- Halsansatzbreite------------ 148 109.3 Breadth of lower jaw angle-- Unterkieferwinkelbreite----- 149 33.8 Breadth of nose, lateral---- Nasenbreite----------------- 150 33.8 Auricular breadth- --------- Ohrmuschelbreite------------

Page 35: Cruzbike cuervo&vendetta project 2011 internet

virtual human engineering 35 151 19.9 Horizontal ear-head distance Ohrmuschelabstand----------- 152 142.1 Zygomatic face breadth------ Jochbogenbreite------------- 153 31.8 Breadth of root of the nose- Nasenwurzelbreite----------- 154 63.0 Interpupillary breadth------ Pupillenabstand------------- 155 88.4 Breadth of upper face------- Obergesichtsbreite---------- 156 110.3 Smallest forehead breadth--- Kleinste Stirnbreite-------- 157 155.0 Breadth of head------------- Kopfbreite------------------ 158 184.8 Breadth of head with ears--- Kopfbreite mit Ohren-------- 159 193.0 Head length/glabel-opistho-- Kopftiefe------------------- 160 228.4 Length nosetip-opisthocranio Kopftiefe ab Nasenspitze---- 161 174.8 Length ectocanthus-opisthocr Kopftiefe ab Augenwinkel---- 162 102.1 Length tragion-opisthocranio Kopftiefe ab Tragion-------- 163 571.0 Horizontal head girth ------ Kopfumfang------------------ 164 345.0 Sagittal head curve--------- Sagittaler Kopfbogen-------- 165 360.0 Transversal head curve,tragi Transversaler Kopfbogen----- 166 312.1 Lower head curve,ear-chin-ea Ohr-Kinn-Ohr-Bogen---------- 167 393.7 Girth of neck--------------- Halsumfang------------------ 168 432.5 Initial neck girth---------- Halsansatzumfang------------ 169 0.0 Bodyweight------------------ Körpergewicht---------------

Page 36: Cruzbike cuervo&vendetta project 2011 internet

36 virtual human engineering

Design data

Fitting DIN 33402 2005 MASCULIN 50%

Page 37: Cruzbike cuervo&vendetta project 2011 internet

virtual human engineering 37

Page 38: Cruzbike cuervo&vendetta project 2011 internet

38 virtual human engineering

#!CATBODY 2# GERMAN DIN-33402 2005 database# feminin 25 years old PC50# unit: mm

# MNr P50

0 1646.0 Stature--------------------- Koerperhoehe---------------- 1 1516.0 Eye height------------------ Augenhoehe------------------ 2 1522.9 Tragion height-------------- Tragionhoehe---------------- 3 1461.9 Mouth height---------------- Mundhoehe------------------- 4 1404.9 Height of cervical vertebra7 Halswirbelhoehe------------- 5 1374.8 Initial neck height--------- Halsansatzhoehe------------- 6 1337.8 Sternal height-------------- Sternalhoehe---------------- 7 1347.8 Shoulder height lateral----- Schulterhoehe lateral------- 8 1348.0 Shoulder height acromial---- Schulterhoehe akromial------ 9 1203.5 Subaxillary height---------- Unterachselhoehe------------ 10 1176.4 Mamillary height------------ Brustwarzenhoehe------------ 11 1017.8 Waist height---------------- Taillenhoehe---------------- 12 980.6 Iliocristal height---------- Darmbeinkammhoehe----------- 13 947.5 Iliospinal height----------- Darmbeinstachelhoehe-------- 14 832.1 Trochanter height ---------- Trochanterhoehe------------- 15 406.9 Shoulder breadth, bideltoid- Schulterbreite >Oberarme<--- 16 356.0 Shoulder breadth, biacromi-- Schulterbreite >Akromien<--- 17 130.1 Shoulder breadth, unilateral Einseitige Schulterbreite--- 18 354.0 Shoulder breadth, lifted arm Schulterbreite bei erh-Armen 19 246.5 Thorax breadth-------------- Brustkorbbreite------------- 20 261.1 Waist breadth--------------- Taillenbreite--------------- 21 289.0 Pelvis breadth-------------- Beckenbreite---------------- 22 353.0 Hip breadth----------------- Hueftbreite----------------- 23 269.0 Body depth------------------ Koerpertiefe---------------- 24 220.6 Depth back - chest---------- Brusttangente--------------- 25 162.0 Depth dorsal vertebra-ster-- Brustkorbtiefe-------------- 26 162.0 Depth of waist-------------- Taillentiefe---------------- 27 215.9 Biggest de-torso below che-- Gr- Rumpftiefe u-Brustkorb-- 28 198.3 Biggest depth of buttock---- Gesaesstangente------------- 29 967.3 Shoulder girth-------------- Schulterumfang-------------- 30 1498.9 Torso girth, vertical------- Rumpfumfang vertikal-------- 31 870.4 Chest girth----------------- Brustkorbumfang------------- 32 818.6 Anthropological chest girth- Anthropologischer Brustumfan 33 743.3 Thorax girth---------------- Thoraxumfang---------------- 34 684.6 Waist girth----------------- Taillenumfang--------------- 35 980.6 Seat girth------------------ Gesaessumfang--------------- 36 866.0 Height sitting plane- vertex Koerpersitzhoehe ----------- 37 737.0 Height sitting plane- eye--- Augenhoehe von Sitzflaeche-- 38 687.5 Height sitting plane- mouth- Mundhoehe von Sitzflaeche--- 39 631.0 Height sitting plane-cervi-- Cervicalhoehe--------------- 40 596.0 Sitt-shoulder height, acromi Schulterhoehe akromial------ 41 463.7 Height of lower scapula/sitt Untere Schulterblatthoehe---

Additional Testpopulation: DIN 33402 2005 FEMININ 50%

Page 39: Cruzbike cuervo&vendetta project 2011 internet

virtual human engineering 39

42 237.6 Height of pelvis/sitting---- Beckenhoehe----------------- 43 76.1 Height seat-trochanter------ Trochanterhoehe------------- 44 384.0 Biggest hip breadth sitting- Koerpersitzbreite----------- 45 239.1 Sagittal diamet-abdomen/sitt Sagittaler Abdomendurchmesse 46 1647.0 Span of arms---------------- Spannweite der Arme -------- 47 1403.9 Span of grip axes----------- Griffachsenspannweite------- 48 838.5 Elbow span------------------ Ellenbogenspannweite-------- 49 689.0 Forward reach, (fingertips)- Reichweite vorn(Fingerspitz) 50 608.5 Forward reach, (grip axis)-- Reichweite vorn(Griffachse)- 51 1890.0 Vertical reach, (fingertips) Reichweite oben(Fingerspitz) 52 2018.2 Vertical reach, (grip axis)- Reichweite oben(Griffachse)- 53 2197.3 Max-vertical reach(fingertp) Max Reichweite oben (Fspitz) 54 2098.3 Maximal vertical grip reach- Max Reichweite oben (Griff-) 55 631.4 Middle fingertip height----- Fingerspitzenhoehe---------- 56 753.0 Height of grip axes--------- Griffachsenhoehe------------ 57 826.5 Wrist height---------------- Handgelenkshoehe------------ 58 1036.0 Elbow height---------------- Ellenbogenhoehe------------- 59 304.0 Upper arm length------------ Oberarmlaenge--------------- 60 713.0 Projected arm length-------- Projektivische ganze Armlaen 61 620.0 Functional arm length------- Funktionelle Armlaenge------ 62 544.0 Arm length without hand----- Armlaenge ohne Hand--------- 63 434.0 Length elbow - fingertips--- Ellenbogen > Fingerspitzen-- 64 323.0 Length elbow - grip axes---- Ellenbogen > Griffachse----- 65 380.0 Length bend of elbow-fingert Ellenbeuge > Fingerspitzen-- 66 114.1 Diameter of initial uppera-- Armansatzbreite------------- 67 50.7 Forearm thickness----------- Unterarmdicke--------------- 68 239.0 Forearm length without han-- Unterarmlaenge ohne Hand---- 69 69.9 Breadth of elbow------------ Ellenbogenbreite------------ 70 451.0 Widest breadth for both elbo Breite ueber Ellenbogen----- 71 160.0 Wrist girth----------------- Handgelenkumfang------------ 72 162.0 Smallest forearm girth------ Kleinster Unterarmumfang---- 73 268.3 Biggest forearm girth------- Groesster Unterarmumfang---- 74 341.6 Biggest upper arm girth----- Groesster Oberarmumfang----- 75 1273.8 Vertic-fingertip reach/sitt- Reichweite nach oben-------- 76 1192.7 Vertical grip reach, sitting Reichweite nach oben (Griff) 77 243.1 Elbow height, sitting------- Ellenbogenhoehe------------- 78 182.1 Hand girth without thumb---- Handumfang ohne Daumen------ 79 130.1 Grip girth------------------ Griffumfang----------------- 80 286.2 Fist girth------------------ Faustumfang----------------- 81 56.0 Little finger girth--------- Kleinfingerumfang----------- 82 62.0 Ring finger girth ---------- Ringfingerumfang------------ 83 65.0 Middle finger girth--------- Mittelfingerumfang---------- 84 63.0 Forefinger girth------------ Zeigefingerumfang----------- 85 67.0 Thumb girth----------------- Daumenumfang---------------- 86 15.0 Breadth little finger prox-- Kleinfingerbreite handnah--- 87 13.0 Breadth little finger dist-- Kleinfingerbreite handfern-- 88 16.0 Breadth ring finger proxim-- Ringfingerbreite handnah--- 89 14.0 Breadth ring finger distal-- Ringfingerbreite handfern-- 90 18.0 Breadth middle finger prox-- Mittelfingerbreite handnah-- 91 15.0 Breadth middle finger dist-- Mittelfingerbreite handfer-- 92 18.0 Breadth forefinger proxima-- Zeigefingerbreite handnah--- 93 15.0 Breadth forefinger distal--- Zeigefingerbreite handfern-- 94 19.0 Breadth of thumb distal----- Daumenbreite koerperfern----

Page 40: Cruzbike cuervo&vendetta project 2011 internet

40 virtual human engineering 95 58.0 Length little finger-------- Kleinfingerlaenge----------- 96 73.0 Length ring finger---------- Ringfingerlaenge------------ 97 77.0 Length middle finger-------- Mittelfingerlaenge---------- 98 25.0 Midd-fing-prox-phalanx lengt Mittelfingergrundgliedlaenge 99 24.0 Midd-fing-middle phal-length Mittelfingermittelgliedlaeng 100 25.0 Midd-fing-distal phal-length Mittelfingerendgliedlaenge-- 101 69.0 Length of forefinger-------- Zeigefingerlaenge----------- 102 60.0 Length of thumb------------- Daumenlaenge---------------- 103 100.0 Length of palm-------------- Handflaechenlaenge---------- 104 174.0 Length of hand-------------- Handlaenge------------------ 105 92.0 Breadth of hand with thumb-- Handbreite mit Daumen------- 106 79.0 Breadth of hand without th-- Handbreite ohne Daumen------ 107 26.0 Thickness of hand----------- Handdicke------------------- 108 7.0 Radius of fingertips-------- Fingerkuppenradius---------- 109 40.8 Grip dia-thumb/middle fg-tip Greifdurchmesser 1---------- 110 41.8 Grip dia-thumb/forefingertip Greifdurchmesser 2---------- 111 30.8 Gr-dia-foref-tip/dist-thumb Greifdurchmesser 3---------- 112 20.9 Gr-dia-foref-tip/prox-thumb Greifdurchmesser 4---------- 113 68.6 Circular reach-through dimen Kreisfoermige Durchgreifgroe 114 0.0 Projective leg (+foot) lengt Projektivische Beinlaenge--- 115 0.0 Crotchheight inside leg+fo-- Schritthoehe---------------- 116 0.0 Gluteal height-------------- Gesaessfaltenhoehe---------- 117 444.4 Knee joint height----------- Kniegelenkhoehe------------- 118 72.0 Medial ankle height--------- Fussknoechelhoehe medial---- 119 68.0 Lateral ankle height ------- Fussknoechelhoehe lateral--- 120 250.0 Length of foot-------------- Fusslaenge------------------ 121 181.5 Length of forefoot---------- Vorderfusslaenge------------ 122 101.0 Projective foot breadth ---- Fussbreite.----------------. 123 62.0 Breadth of heel------------- Fersenbreite---------------- 124 263.0 Breadth of ball of the foot- Fussballenumfang------------ 125 570.3 Girth of shank-------------- Oberschenkelumfang---------- 126 364.2 Girth of knee--------------- Knieumfang------------------ 127 352.2 Girth of calf--------------- Wadenumfang----------------. 128 239.1 Girth of ankle-------------- Fesselumfang---------------- 129 504.0 Height knee-sole of the foot Kniehoehe > Fussohle-------- 130 397.0 Height of sitting plane----- Sitzflaechenhoehe ---------- 131 482.0 Length buttock to calf/sitti Koerpersitztiefe bis Wade-- 132 586.0 Length buttock to knee/sitti Sitztiefe einschliessl.Knie- 133 796.8 Max-sitt-depth/buttock-tipto Sitztiefe > Fusszehen------- 134 1044.0 Length buttock-sole, sitting Gesaess (Ruecken)-Beinlaenge 135 144.0 Height of shank------------- Oberschenkelhoehe----------- 136 86.1 Breadth of single knee------ Kniebreite eines Knies------ 137 187.1 Breadth oth knees closed/sit Kniebreite beider(geschloss) 138 218.0 Height of head-------------- Kopfhoehe------------------- 139 180.6 Height of face (chin-front-- Gesichtshoehe(Kinn-Stirnmi-- 140 125.0 Eye-vertex height----------- Augen-Scheitel-Hoehe-------- 141 136.8 Ear height, tragion-vertex-- Ohr-Scheitel-Hoehe---------- 142 148.5 Nose-vertex height---------- Nasen-Scheitel-Hoehe-------- 143 183.8 Mouth-vertex height--------- Mund-Scheitel-Hoehe--------- 144 125.0 Distance root of nose - chin Abstand Nasenwurzel - Kinn-- 145 57.7 Nose height, subnasal-nasion Nasenhoehe------------------ 146 60.9 Auricular height------------ Ohrmuschellaenge------------ 147 121.4 Breadth initial neck-------- Halsansatzbreite------------ 148 105.1 Breadth of lower jaw angle-- Unterkieferwinkelbreite----- 149 31.6 Breadth of nose, lateral---- Nasenbreite----------------- 150 32.7 Auricular breadth- --------- Ohrmuschelbreite------------

Page 41: Cruzbike cuervo&vendetta project 2011 internet

virtual human engineering 41 151 18.4 Horizontal ear-head distance Ohrmuschelabstand----------- 152 136.8 Zygomatic face breadth------ Jochbogenbreite------------- 153 31.6 Breadth of root of the nose- Nasenwurzelbreite----------- 154 61.0 Interpupillary breadth------ Pupillenabstand------------- 155 87.8 Breadth of upper face------- Obergesichtsbreite---------- 156 109.2 Smallest forehead breadth--- Kleinste Stirnbreite-------- 157 149.0 Breadth of head------------- Kopfbreite------------------ 158 178.6 Breadth of head with ears--- Kopfbreite mit Ohren-------- 159 179.0 Head length/glabel-opistho-- Kopftiefe------------------- 160 213.4 Length nosetip-opisthocranio Kopftiefe ab Nasenspitze---- 161 167.2 Length ectocanthus-opisthocr Kopftiefe ab Augenwinkel---- 162 95.4 Length tragion-opisthocranio Kopftiefe ab Tragion-------- 163 546.0 Horizontal head girth ------ Kopfumfang------------------ 164 335.0 Sagittal head curve--------- Sagittaler Kopfbogen-------- 165 344.0 Transversal head curve,tragi Transversaler Kopfbogen----- 166 299.5 Lower head curve,ear-chin-ea Ohr-Kinn-Ohr-Bogen---------- 167 330.2 Girth of neck--------------- Halsumfang------------------ 168 384.2 Initial neck girth---------- Halsansatzumfang------------ 169 0.0 Bodyweight------------------ Körpergewicht---------------

Page 42: Cruzbike cuervo&vendetta project 2011 internet

42 virtual human engineering

Design data

Fitting DIN 33402 2005 MASCULIN 50%

Page 43: Cruzbike cuervo&vendetta project 2011 internet

virtual human engineering 43

Page 44: Cruzbike cuervo&vendetta project 2011 internet

44 virtual human engineering

Page 45: Cruzbike cuervo&vendetta project 2011 internet

virtual human engineering 45

Design data:

DIN 33402-2005 FEMININ 50 the trochanter height prportional coefficient is - 0.2284Recommended slider clamp - handlebar distance correcture 260 mm

Page 46: Cruzbike cuervo&vendetta project 2011 internet

46 virtual human engineering CRUZBIKE VENDETTA

Analysis tasks:I have the entire frame designed in detail except for a particular dimension that relates to arm reach, a similar question we analysed in the Cu-ervo project. I need your digital humans placed into the frame to resolve this!

Requirements… we need to ensure 1. the placement of the bars gives arms 2. an aerodynamic position, 3. and a position that lets them perform with good strength, 4. allows proper visibility 5. and leg clearance.

Similar questions to the Cuervo project - but this time with three tube-sets for the front triangle .. 6. small, 7. medium, 8. large

and with two handlebar types,

9. road bike style drop bars 10. and bull horn bars.

The key question we need to determine is 11. the distance from bar to head tube (‘y’), 12. to make the hand grip 50mm shorter than what a fully extended, straight arm could reach. 13. We need this for the bull bar and for the drop bar. We want to see y being the same for drop bar and bull bar. If 50mm becomes 30 mm on the bull bar, it is okay. The bullhorn bars should give an almost straight and almost horizontal arm position - the arms should point up, but only 5 degrees14. Head support positionsI cannot extend the adjustment range further (have developed the design through many in-terations to the current conclusion) so you might indicate the percentile range that has been cap-tured and we will accept that.15. definition of the percentile range-dependent tube sets.Restrictions:

Page 47: Cruzbike cuervo&vendetta project 2011 internet

virtual human engineering 47 1. the seat angle and position is fixed. (H point fixed vertical positioning line)2. the attached drawing file shows the dimen-sions etc of the smallest triangle

3. the test populations: - for the end size control ISO 7250-2 2010 USA male 95% down to JAPAN female 5%. - and for the middle size control German Male/Female 50% Assembly AnalysisAssembly components:Testpopulation:ISO 7250-2 2010 JAPAN Feminin 05%ISO 7250-2 2010 GERMAN Feminin 50%ISO 7250-2 2010 GERMAN Masculin 50%ISO 7250-2 2010 USA Masculin 95%

CAD Data: CRUZBIKE VENDETTA front drived recumbent

Vendetta frame2 handlebar shape variants (drop bar, bull horn bar)3 telescopic boom variants (small medium large)3 chain stay variants (small medium large)4 slider variants

Ergonomics analysis tools:1. Measurement analysis tools2. Visibility analysis tool3. Bodyforce analysis tool4. Posture analysis tools

Positioning of the testpopulation:Fixed Hpoint position with vertical variability + thorso contact with the seat backFixed seat position and orientationFixed seat back position and orientationAssembly analysis tasks:

1 Define for all testpopulation the optimal dis-tance (leg clearance) between the slider/fork steering intersection point and the handlebar axis line and the crank.

2 Define for all testpopulation the optimal grip

positions

3 Define the bodyheight/percentil ranges for the 3 front triangle tube.

APPENDIX 1. Test populatin descriptionBasic human body measurements for techno-logical design —

Statistical summaries of body measurements from individual ISO populations:

ISO 7250-2 2010 JAPAN Feminin 05%ISO 7250-2 2010 GERMAN Feminin 50%ISO 7250-2 2010 GERMAN Masculin 50%ISO 7250-2 2010 USA Masculin 95%

Page 48: Cruzbike cuervo&vendetta project 2011 internet

48 virtual human engineering

Page 49: Cruzbike cuervo&vendetta project 2011 internet

virtual human engineering 49

Page 50: Cruzbike cuervo&vendetta project 2011 internet

50 virtual human engineering

Page 51: Cruzbike cuervo&vendetta project 2011 internet

virtual human engineering 51

Page 52: Cruzbike cuervo&vendetta project 2011 internet

52 virtual human engineering

Page 53: Cruzbike cuervo&vendetta project 2011 internet

virtual human engineering 53

Page 54: Cruzbike cuervo&vendetta project 2011 internet

54 virtual human engineering

Page 55: Cruzbike cuervo&vendetta project 2011 internet

virtual human engineering 55

Page 56: Cruzbike cuervo&vendetta project 2011 internet

56 virtual human engineering

Page 57: Cruzbike cuervo&vendetta project 2011 internet

virtual human engineering 57

Page 58: Cruzbike cuervo&vendetta project 2011 internet

58 virtual human engineering

Page 59: Cruzbike cuervo&vendetta project 2011 internet

virtual human engineering 59

Page 60: Cruzbike cuervo&vendetta project 2011 internet

60 virtual human engineering

Page 61: Cruzbike cuervo&vendetta project 2011 internet

virtual human engineering 61

Page 62: Cruzbike cuervo&vendetta project 2011 internet

62 virtual human engineering

Page 63: Cruzbike cuervo&vendetta project 2011 internet

virtual human engineering 63

Page 64: Cruzbike cuervo&vendetta project 2011 internet

64 virtual human engineering

Page 65: Cruzbike cuervo&vendetta project 2011 internet

virtual human engineering 65

Page 66: Cruzbike cuervo&vendetta project 2011 internet

66 virtual human engineering

Appendix 1

About Cruzbike Inc.

Source: http://www.cruzbike.com/contact-some-one-cruzbike-inc

Cruzbike Inc. was founded in 2006 by a U.S. Phy-sician and an Australian Inventor. We want people to know there is a new way to ride a bike - a way that is safe, healthy and more than anything will renew your love of cycling.

Jim Parker, M.D. Co Founder and [email protected]

As a radiologist, I know human anatomy from head-to-toe. A standard bike places too much pressure on several sensitive areas of the body. This becomes more of a problem as we age. I did an exhaustive search of alternate bicycle designs before concluding that the Cruzbike is the best combination of comfort, performance, safety, and ergonomic design.

It also looks cool, goes very fast, and is simply fun to ride. In the photos, note that the hands and wrists are not bearing weight, the back is sup-ported, the head is in a comfortably high and up-right position for viewing traffic (without craning the neck), the rider’s weight is not centered over the genitals (which can cause pain, numbness, and loss of function), and the laid-back posture creates nearly the same aerodynamic profile as a racer on a standard bicycle in a tuck position.

John Tolhurst, Co Founder and Design [email protected]

For over a decade I’ve been struck by the possibili-ties for front wheel drive cycling - a configuration that today has proven its excellence. On all kinds of surfaces - with a load up or without, with my four year old child on the back or not – the Cruzbike is the daily rider, Dad’s taxi, the weekend sprinter, and the lazy beach cruiser all rolled into one. And given the versatility in the Cruzbike design, which

to me as a designer is very important, the front wheel drive system as we have implemented it still provides excellent efficiency and ergonom-ics. The Cruzbike’s frame rigidly supports the crank to retain your precious cycling energy, without the need for expensive construction techniques or exotic materials. The seating posi-tion, the carefully shaped seat and the full body engagement in the cycling experience, as with a standard bike, ensure an exceptional ergonomic package. Add to that the use of standard parts and the Cruzbike design offers flexibility of use, economy, safety, efficiency and ergonomic per-fection, all rolled into one.

Before designing the Cruzbike and founding Cruzbike Inc., I spent ten years in the architec-ture profession and fifteen years consulting be-fore being made a Fellow of the Institute of Man-agement Consultants CMC logo. I have BA, BSc and MBA degrees from Australian universities. I am motivated by the hope that we all have a future on our fragile spaceship earth - and a vision that there are many more exciting and practical low energy vehicles yet to be built.

Maria Parker, Co Owner of Cruzbike [email protected]

I arrange shipping for customers and talk to them about their new bikes.

It is a great pleasure to be able to own and work with a product I really believe in. I recently took a Sofrider on the cycle North Carolina 7 day ride. It was more fun than I could have possibly imag-ined. The first few days on the trip a few people asked me about and commented on the bike. By the third day at every rest stop I was questioned about it and every evening I would spend hours discussing its merits with interested, sore, road bike riders.

I really enjoy talking with customers and poten-tial customers about our terrific bikes. If I can help you, please call me on our toll free number

Appendix 2

About Virtual Human Engineering

Human Engineering is the discipline dedicated to applying technical knowledge about human beings to products, processes, systems and work environments so that these essentials can be designed to withstand the demands of users. The need for such a discipline has arisen due of considerations of health and safety, efficiency, comfort and the development of human inter-ests and potentials.

Virtual Human Engineering recognises human beings in different virtual environments. Design-ing for humans is a decisive factor in the qual-ity of products. Ergonomics, safety and comfort hold important advantages over the competition and increase customer satisfaction. Extensive virtual analysis of design and construction al-low for early corrections to be implemented and avoid subsequent expensive redesign.

Virtual Human Engineering Inc.

Foundation: 01. 02. 2010. Stuttgart

Profile: Research and development in the field of Information Technology (IT) of Ergonomics, Industrial Design and New Media, as well as the education and consultation in these specialities and the distribution of coherent software prod-ucts and solutions.

The Human in sight

Ergonomics aims to improve productivity of work systems and to reduce the loads acting on the working humans. We would like to provide you with the ergonomic planning of human friendly products and workplaces.

Our objectives are:

optimization of human/machine system, increas-ing the performance of the system, increasing

Page 67: Cruzbike cuervo&vendetta project 2011 internet

virtual human engineering 67

the reliability of the system with the help of the Virtual Reality Simulation Environment;modelling and simulation of human bodies;simulation of human behaviour and human sig-nals. Global online Standard for Human EngineeringSituation

Nowadays Virtual Human Engineering has be-come a worldwide technology. However, until now, only the larger companies and concerns have be able to enjoy its benefits. Virtual Human Engineering is now accessible to middle and small size companies.Technological Trends

- Online Software Service Trend: in the future more and more software products will be avail-able as online services. No software lincence will be required, instead the user will be charged the same way as for electricity and gas service.

-Collaboration Platform Trend: In the future us-ers will be subscribed at collaboration platforms and will have access to external competencies.

-Online Virtual Reality Trend: an increasing number of design software products will include VR modules or be based on VR technologies.

- Intuitive User Interface Concept Trend: more and more software products will have intuitively learnable user interfaces and humanised input devices. (iPod)

The future

Why can online collaboration solutions have global advatages for smaller companies as well? A worldwide online human engineering collaboration helps making decisions faster and makes possible the transfer of knowledge and experience. Advantages for Companies: They can use only the necessary part of the offered services for making decisions. There are no more unnecessary investments. Early stage

problem recognitions ensure the reduction of costs, an increase in efficiency and a significant gain in quality and competitiveness. Advantages for employees: Workplaces and devices will be formed better and can be used more efficiently. Founder and CEO: Dipl. - Des. Dipl - Inf. (UNI) László ÖrdöghScharrstraße 7.. D- 70563 Stuttgart Germany

http://virtualhumanengineering.com/

Cooperation partners:

NexStep Consulting Kft Hungary &Institute of Material Handling and Industrial En-gineering, Professorship of Ergonomics,Dresden University of Technology

Appendix 3

About CharAT Ergonomics

CHarAT Ergonomics offers a human simulation model. Using this model, ergonomically related questions can be answered long before the construction of a physical prototype. This saves valuable product design time and cost. With the help of virtual human models, key features of accessibility and manageability can be studied, positioning and comfort analysis can be carried out and the field of sight reasonably judged.

The interactive simulations enable you to learn more about the loads and to see them direct-ly through the high quality visualization of the geometry of the human body. Through specific anthropometric population databases simula-tions can be carried out depending on the type of a person. This allows product decisions to be made faster and any expensive physical test can be reduced. CHarAT Ergonomics allows for ergonomic simulations to be carried out under different specialities and conditions.

Ready for Your Challenge

CHarAT: Ergonomics provides all the necessary functionality to ensure the virtual human success-fully integrates into your product design process. Additionally, CHarAT is easily learnt and can be easily adjusted to your specific tasks. The biome-chanical human model can be flexibly configured for graphic representation of the points and lines of joints. The statistical data used for the simulations is based on national and internationally recognised anthropometric data bases. This enables world-wide usage.

There is a wide range of applications for Ergonom-ics. From workplace design, through the assess-ment of installation accessibility and maintenance to the research on usability, the possibilities are unlimited. When it comes to the design, develop-ment and production of user friendly products, Er-gonomics meet all expectations. For example, in vehicles the position of seats and the accessibility of the dashboards can be tested; in machine man-ufacturing, operating elements can be studied at an early stage whether they are safe to use; in the service sector, studies can be carried out whether an accessory is easy and fast to replace or not. Buildings can also benefit from Ergonomics as the whole usability of a structure can be tested in an early stage.

PRODUCT HIGHLIGHTS

Reduces the time and cost expenditure during the whole life cycle of the productEasy adjusting of the human modelConsideration of branch specified enlargementEarly stage control of assembly and service fea-turesSafety and comfort analysisReduces the number of prototypesReduction of expensive physical testsSpecific scenario tests can be specifiedEnhancement of user friendliness

Page 68: Cruzbike cuervo&vendetta project 2011 internet

68 virtual human engineering

CharAT Ergonomics is a 3dsMAX 2010 Plugin cre-ated by Virtual Human Engineering GmbH. It is de-signed for ergonomic analysis and the shaping of technology used by people. It is used as an intel-ligent tool for DIGITAL MOCK UP by ergonomists, engineers, designers, workplace designers as well as architects and interior decorators and also in research and academic education.

CharAT Ergonomics is programmed in C++ and designed for effective visualization. There are no compromise solutions in the software architecture and handling.

For the designing of the model the following an-thropometric databanks were used: “ANTHRO-POLOGISCHER ATLAS” (Flügel, Greil, Sommer, 1983), “Handbuch der Ergonomie” (Lufthansaver-lag, 1975), “BODYSPACE” (Pheasant, 1988), “DIN 30402” (2005), “Internationaler anthro-pometrischer Datenatlas” (Jürgens, BAU, 1989), Europamensch, UHP. Variability: Nationalitäten Geschlecht Alter Perzentil Proportionalität So-matotypen Akzeleration. Furthermore customers can also use their own particular databanks. The adjustment of design-configuration concepts, pop-ulations and tests is absolutely no problem.

CharAT Ergonomics Skeleton Models consist of 1-200 bone elements that can be parameterized and configured with scripts. The absolute flexibil-ity of the kinematic structure enables free adjust-ments throughout the design process to reach the analysis objectives.The analysis organization will be immediately re-alized in a database management system. All the CharAT Ergonomics Services are integrated in it. Every record can be stored separately and inte-grated again in any subsequent project. This way the projects are 100% repeatable and together with the excellent level of documentation, they make a good base for ergonomists and designers to communicate.

For the animation of the models in different body postures, an intuitive interaction procedure with many adjustment options can be used. The rotato-

ry and translational movements of the kinematic chain can be set in free space but they can also be directed to particular positions determined by the graphic environment. Fast and reliable posi-tioning and inverse Biomechanics are available for the optimization of static/dynamic space de-mand and activity analysis.

CharAT Ergonomics can see your surroundings. Through a stereo subjective camera it displays the digital mock-up surroundings - what a hu-man with the same head position would see. Viewpoint restrictions caused by glasses and masks can also be set. The design-concept as-sessment through the stereo subjective camera is compromise free.

The current position and the collisions with the surroundings of the models can be detected and recorded in real-time. The real-time detection of obstacles makes the optimization of static/dy-namic space possible.

Using animation, CharAT Ergonomics automati-cally tests the physical strain of joints. These values can be issued numerically or as a graph. The real-time signal enable immediate and intui-tive problem detection and the correction of the body position as well as comfort assessment.

System requirements 3ds Max 2010 / CahrAT Ergonomics

32-Bit 3ds Max 2010 or 3ds Max Design 2010 for Windows

Operating system: Microsoft® Windows® 7 Pro-fessional, Microsoft® Windows Vista® Business (SP2 or higher), or Microsoft® Windows® XP Professional (SP2 or higher)

For general animation and rendering (typically fewer than 1,000 objects or 100,000 polygons):

Page 69: Cruzbike cuervo&vendetta project 2011 internet

virtual human engineering 69 * Intel® Pentium® 4 1.4 GHz or equivalent AMD® processor with SSE2 technology** 2 GB RAM (4 GB recommended)* 2 GB swap space (4 GB recommended)*** 3 GB free hard drive space* Direct3D® 10 technology, Direct3D 9, or OpenGL®-capable graphics card* 256 MB or higher video card memory, 1 GB or higher recommended)* Three-button mouse with mouse driver soft-ware* DVD-ROM drive* Microsoft® Internet Explorer® 7.0 or higher or Mozilla® Firefox® 2.0 or higher browser* Internet connection for web downloads and Autodesk® Subscription-aware access

64-Bit 3ds Max 2010 or 3ds Max Design 2010 for Windows

Operating system: Microsoft Windows 7 Profes-sional x64, Microsoft Windows Vista Business

x64 (SP2 or higher), or Microsoft Windows XP Professional x64 (SP2 or higher)

For general animation and rendering (typically fewer than 1,000 objects or 100,000 polygons):

* Intel 64 or AMD 64 processor with SSE2 tech-nology** 4 GB RAM (8 GB recommended)* 4 GB swap space (8 GB recommended)*** 3 GB free hard drive space* Direct3D 10, Direct3D 9, or OpenGL-capable graphics card†* 256 MB or higher video card memory, 1 GB recommended* Three-button mouse with mouse driver soft-ware* DVD-ROM drive††* Microsoft Internet Explorer 7.0 or higher or Mozilla Firefox 2.0 or higher browser* Internet connection for web downloads and Autodesk Subscription-aware access

For large scenes and complex data sets (typically more than 1,000 objects or 100,000 polygons):

* Intel® 64 or AMD64 processor with SSE2 tech-nology** 8 GB RAM* 8 GB swap space*** 3 GB free hard drive space* Direct3D 10, Direct3D 9, or OpenGL-capable graphics card* 1 GB or higher video card memory)* Three-button mouse with mouse driver software* DVD-ROM drive* Microsoft Internet Explorer 7.0 or higher or Mozil-la Firefox 2.0 or higher browser)* Internet connection for web downloads and Au-todesk Subscription-aware access

Page 70: Cruzbike cuervo&vendetta project 2011 internet

70 virtual human engineering

Appendix 4.

What is a recumbent (Wikipedia)

A recumbent bicycle is a bicycle that places the rider in a laid-back reclining position. Most re-cumbent riders choose this type of design for er-gonomic reasons; the rider’s weight is distributed comfortably over a larger area, supported by back and buttocks. On a traditional upright bicycle, the body weight rests entirely on a small portion of the sitting bones, the feet, and the hands.

Most recumbent models also have an aerodynam-ic advantage; the reclined, legs-forward position of the rider’s body presents a smaller frontal profile. A recumbent holds the world speed record for a bicycle, and they were banned from international racing in 1934.[1]

Recumbents are available in a wide range of con-figurations, including: long to short wheelbase; large, small, or a mix of wheel sizes; overseat, un-derseat, or no-hands steering; and rear wheel or front wheel drive. A variant with three wheels is a recumbent tricycle.

Recumbents can be categorized by their wheel-base, wheel sizes, steering system, faired or un-faired, and front-wheel or rear-wheel drive.WheelbaseBacchetta Corsa, a short wheelbase high racer

Long wheelbase (LWB) models have the pedals located between the front and rear wheels; short wheelbase (SWB) models have the pedals in front of the front wheel; compact long wheelbase (CLWB) models have the pedals either very close to the front wheel or above it. Within these catego-ries are variations, intermediate types, and even convertible designs (LWB to CLWB) - there is no “standard” recumbent.Wheel sizes

The rear wheel of a recumbent is usually behind the rider and may be any size, from around 16

inches (410 mm) to the 700c of an upright rac-ing cycle. The front wheel is commonly smaller than the rear, although a number of recumbents feature dual 26-inch (ISO 559), ISO 571 (650c), or ISO 622 (700c) wheels. Notable among these are “highracers”, such as the Bacchetta Corsa and Strada or Volae Team, or the “LWB-style” RANS Stratus XP. Larger wheels generally have lower rolling resistance but a higher profile lead-ing to higher air resistance. Highracer aficiona-dos also claim that they are more stable, and al-though bicycle stability increases with the height of the center of gravity above the ground, the wide variety of recumbent designs makes such generalizations unreliable. Another advantage of both wheels being the same size is that the bike requires only one size of inner tube.

Cruzbike Silvio (2009) A pivot-boom, front wheel-drive, 700C road bike (with rear rack).

The most common arrangement is probably an ISO 559 (26-inch) rear wheel and an ISO 406 (20-inch) front wheel. The small front wheel and large rear wheel combination is used to keep the pedals and front wheel clear of each other, avoiding the problem called “heel strike” (where the rider’s heels catch the wheel in tight turns). A pivoting-boom front-wheel drive (PBFWD) con-figuration also overcomes heel strike since the pedals and front wheel turn together. PBFWD bikes may have dual 26-inch (660 mm) wheels or larger.Handlebar setup for under-seat steering (USS)Steering

Steering for recumbent bikes can be generally categorized as

* over-seat (OSS) or above seat steering (ASS); * under-seat (USS); or * center steering or pivot steering.

OSS/ASS is generally direct—the steerer acts on the front fork like a standard bicycle handle-bar—but the bars themselves may extend well behind the front wheel (more like a tiller); al-ternatively the bars might have long rearward extensions (sometimes known as Superman or Kingcycle bars). Chopper-style bars are some-times seen on LWB bikes. USS is usually in-direct—the bars link to the headset through a system of rods and bell cranks. Most tadpole trikes are USS. Center steered or pivot steered recumbents, such as Flevobikes and Pythons, may have no handlebars at all.

Drive

As with upright bicycles, most recumbents are rear wheel drive. However, due to the proxim-ity of the crank to the front wheel, front wheel drive (FWD) can be an option, and it allows for a much shorter chain. One style requires the chain to twist slightly to allow for steering.[4] Another style, Pivoting-boom FWD (PBFWD), has the crankset connected to and moving with the front fork.[5] In addition to the much shorter chain, the advantages to PBFWD are use of a larger front wheel for lower rolling resistance without heel strike (you can pedal while turning) and use of the upper body when sprinting or climb-ing. The main disadvantage to all FWD designs is “wheelspin” when climbing steep hills covered with loose gravel, wet grass, etc. This mainly affects off-road riders, and can be ameliorated by shifting the weight forward, applying steady pressure to the pedals, and using tires with more aggressive tread. Another disadvantage of PB-FWD for some riders is a slightly longer “learn-ing curve” due to adaptation to the pedal-steer effect (forces applied to the pedal can actually steer the bike). Beginner riders tend to swerve along a serpentine path until they adapt a bal-

Page 71: Cruzbike cuervo&vendetta project 2011 internet

virtual human engineering 71 anced pedal motion. After adaptation, a PBFWD recumbent can be ridden in as straight a line as any other bike, and can even be steered accu-rately with the feet only. Examples of PBFWD recumbents include Cruzbike, Flevo Bike, and Python Lowracer.A RANS V2 Formula long wheelbase recumbent bike fitted with a front fairing

Fully suspended bikes

Modern recumbent bikes are increasingly being fitted with front and rear suspension systems for increased comfort and traction on rough sur-faces. Coil, elastomer, and air-sprung suspen-sion systems have all been used on recumbent bikes, with oil or air-damping in the forks and rear shock absorbers. The maturation of fully-suspended conventional mountain bikes has aided the development of these designs, which often use many of the same parts, suitably mod-ified for recumbent use.

Fairings

Some riders fit their bikes with aerodynamic de-vices called fairings. These can reduce aerody-namic drag[6] and help keep the rider warmer and drier in cold and wet weather. Fairings are also available for upright bikes, but are much less common.

Seats

The seats themselves are either of mesh stretched tightly over a frame (as in the Gold Rush pictured) or foam cushions over hard shells like the Stinger pictured, which might be moulded (as here) or assembled from sheet ma-terials. Hard-shell seats predominate in Europe, mesh seats in the USA.[edit] VariationsThis Barcroft Columbia is an example of how a tandem recumbent can be fitted within a com-pact layout for easy transport.Challenge Hurricane: a mid-racer.

Mountain bike recumbents

With the right equipment and design, recum-

bent bikes can be used for riding unpaved roads and offroad, just as with conventional mountain bikes. Because of their longer wheelbase and the manner in which the rider is confined to the seat, recumbents are not as easy to use on tight, curving unpaved singletrack. Large-diam-eter wheels, mountain gearing and off-road spe-cific design have been used since 1999 on the Lightfoot Ranger. Crank-forward designs that facilitate climbing out of the saddle, such as the RANS Dynamik, also can be used off-road.[7][edit] Lowracers

Lowracers are a type of recumbent more com-mon in Europe among racing enthusiasts. These typically have two 20” wheels or a 26” wheel at the rear and 20” wheel at the front. The seat is positioned between the wheels rather than above them. The extreme reclined position, and the fact that the rider is sitting in line with the wheels rather than atop them, makes this type the most aerodynamic of unfaired recumbents.

Highracers

Highracers are distinguished by using two large wheels (usually two ISO 559 or 26”). This neces-sitates a higher bottom bracket than on a low-racer so that the rider’s legs are above the front wheel, and this in turn requires a higher seat. The seating position may be otherwise identi-cal to that on a lowracer allowing similar aero-dynamics. “Racer” in the name implies that this will often be the case, since these bikes strive for speed.

Highracers are generally more maneuverable than lowracers since their higher center of grav-ity allows stability at lower speeds (see Bicycle and motorcycle dynamics). Given the same seating position they may be faster than lowrac-ers, since it is widely believed that rolling resis-tance is inversely proportional to wheel diame-ter, although good data on this subject is scarce. However, lowracer proponents reply that their design is faster due to aerodynamics. The rea-soning is that the riders body is in line with the wheels, reducing drag.

Hip and elbow injuries are more common on

highracers than on lowracers due to the greater height from which the rider can fall. However, the injuries are very rare and seldom serious.

Semi-recumbent and crank forward bicycles

Bicycles that use positions intermediate between a conventional upright and a recumbent are called semi-recumbent or crank forward designs. These generally are intended for casual use and have comfort and ease of use as primary objectives, with aerodynamics sacrificed for this purpose.

Tandem recumbents

Just as with upright bicycles, recumbents are built and marketed with more than one seat, thus com-bining the advantages of recumbents with those of tandem bicycles. In order to keep the wheelbase from being any longer than absolutely necessary, tandem recumbents often place the stoker’s crank-set under the captain’s seat.[edit] Recumbent tricycles

Recumbent tricycles (trikes) are closely related to recumbent bicycles, but have three wheels instead of two. Trikes come in two varieties, the delta, with two rear wheels, and the tadpole, with two front wheels.A tadpole recumbent tricycle made by Inspired Cycle Engineering with a transparent front fairing

Characteristics of recumbent trikes include:

* The rider does not need to disengage from the pedals when stopped. * The trike can be geared very low to enable mountain climbing while heavily loaded and at a slow speed, without losing stability. * Trikes are capable of turning sharply with-out leaning, producing lateral “g forces” similar to sports cars. * Recumbent trikes may also be more suitable for people with balance or limb disabilities.

Page 72: Cruzbike cuervo&vendetta project 2011 internet

72 virtual human engineering