Critical Wavepath Refraction Migration

20
Critical Wavepath Critical Wavepath Refraction Refraction Migration Migration Maike Buddensiek, Maike Buddensiek, University of Utah, University of Utah, Feb. 2003 Feb. 2003

description

Critical Wavepath Refraction Migration. Maike Buddensiek, University of Utah, Feb. 2003. Outline. Introduction - Why are we doing this? Basic concept of CRRM method Results of synthetic data Conclusions and further research. Introduction. - PowerPoint PPT Presentation

Transcript of Critical Wavepath Refraction Migration

Page 1: Critical Wavepath Refraction Migration

Critical Wavepath Critical Wavepath Refraction MigrationRefraction Migration

Maike Buddensiek,Maike Buddensiek,

University of Utah, Feb. 2003University of Utah, Feb. 2003

Page 2: Critical Wavepath Refraction Migration

OutlineOutline

• Introduction - Why are we doing this? Introduction - Why are we doing this?

• Basic concept of CRRM methodBasic concept of CRRM method

• Results of synthetic dataResults of synthetic data

• Conclusions and further researchConclusions and further research

Page 3: Critical Wavepath Refraction Migration

IntroductionIntroduction

• Refraction data contain hidden Refraction data contain hidden information of reflection traveltimes.information of reflection traveltimes.

• After resorting the data, they are After resorting the data, they are kinematical equivalent to critical kinematical equivalent to critical reflections.reflections.

• Those critical refractions can be Those critical refractions can be migrated just like reflections.migrated just like reflections.

• Less artifacts Less artifacts

• Velocity of refracting layer not necessaryVelocity of refracting layer not necessary

• Any refractor geometry can be migratedAny refractor geometry can be migrated

Page 4: Critical Wavepath Refraction Migration

BasicBasic ConceptConcept

A X M Y B

TAYTAY + TBX - TAB TAY + TBX TAY + TBX - TAB

v1

v2

Page 5: Critical Wavepath Refraction Migration

Basic ConceptBasicBasic ConceptConcept

A X M Y B

TAYTAY + TBX - TAB TAY + TBX TAY + TBX - TAB

v1

v2

Page 6: Critical Wavepath Refraction Migration

Basic ConceptBasicBasic ConceptConcept

A X M Y B

TAYTAY + TBX - TAB TAY + TBX TAY + TBX - TAB

v1

v2

Page 7: Critical Wavepath Refraction Migration

Basic ConceptBasicBasic ConceptConcept

A X M Y B

TAYTAY + TBX - TAB TAY + TBX TAY + TBX - TAB = TXY

v1

v2

TAY + TBX - TAB

Page 8: Critical Wavepath Refraction Migration

BasicBasic ConceptConcept

A X M Y B

TXYdata : kinematics of reflection

v1

v2 O

Critical Distance

TAY + TBX - TAB = TXY

Page 9: Critical Wavepath Refraction Migration

Migration by RaytracingMigration by Raytracing

A X M Y B

v1

v2

TXO + TOY = TXOYtheory

O

Page 10: Critical Wavepath Refraction Migration

Incidence Angles for RaytracingIncidence Angles for Raytracing

A X M Y B

v1

v2

Page 11: Critical Wavepath Refraction Migration

Migration by RaytracingMigration by Raytracing

A X M Y B

TXOYtheory TXY

data

v1

v2 O

Page 12: Critical Wavepath Refraction Migration

Migration by RaytracingMigration by Raytracing

v1

v2 O

Critical Distance

A X M Y B

TXOYtheory = TXY

data

Page 13: Critical Wavepath Refraction Migration

CRRM MethodCRRM Method• 1. Select A, B, X, Y and then trace rays1. Select A, B, X, Y and then trace rays

• 2. Determine T2. Determine TXOYXOYtheorytheory

• 3. Determine T3. Determine TXYXYdatadata

• 4. If T4. If TXYXYdatadata = T = TXOYXOY

theorytheory – Smear refraction energy at O. Smear refraction energy at O. – Otherwise no energy is smeared.Otherwise no energy is smeared.

v1

v2 O

A X M Y B

Page 14: Critical Wavepath Refraction Migration

Dipping Layer Model 1Dipping Layer Model 1

600

300

Page 15: Critical Wavepath Refraction Migration

Dipping Layer Model 2Dipping Layer Model 2

600

300

Page 16: Critical Wavepath Refraction Migration

Low Frequency UndulationLow Frequency Undulation

600

300

Page 17: Critical Wavepath Refraction Migration

High Frequency UndulationHigh Frequency Undulation

600

300

Page 18: Critical Wavepath Refraction Migration

Fault ModelFault Model

600

300

Page 19: Critical Wavepath Refraction Migration

ResultsResults

• Very accurate mapping of the refractorsVery accurate mapping of the refractors

• No artifactsNo artifacts

• The refracting velocity is not knownThe refracting velocity is not known

• Problemaict zones just result in Problemaict zones just result in unmapped tracesunmapped traces

Page 20: Critical Wavepath Refraction Migration

ConclusionConclusion

• The CRRM method has the potential to The CRRM method has the potential to migrate refraction data more precisely migrate refraction data more precisely than traditional methods.than traditional methods.

• CRRM does not produce artifacts like CRRM does not produce artifacts like traditional methods do.traditional methods do.

• Future Work: Make suggested changes Future Work: Make suggested changes and then apply to field data.and then apply to field data.