CR RESR

19
CR RESR NESR Light-ion scattering Elastic (p,p), (,) … Inelastic (p,p’), (,’) ... Charge exchange (p,n), ( 3 He,t), (d, 2 He) … Quasi-free (p,pn), (p,2p), (p,p) … Transfer (p,t), (p, 3 He), (p,d), (d,p) … ~ 10 … ~ 740 MeV/nucleon Key physics issues Matter distributions (halo, skin…) Single-particle structure evolution (magic numbers, shell gaps, spectroscopic factors) NN correlations, clusters New collective modes (different deformations for p and n, giant resonances strengths) Astrophysical r and rp processes (GT, capture…) In-medium interactions in asymmetric and low-density matter EX otic nuclei studied in L ight-ion induced reactions at the NESR storage ring

description

CR RESR. NESR. EX otic nuclei studied in L ight-ion induced reactions at the NESR storage ring. Key physics issues Matter distributions (halo, skin…) Single-particle structure evolution (magic numbers, shell gaps, spectroscopic factors) NN correlations, clusters - PowerPoint PPT Presentation

Transcript of CR RESR

Page 1: CR RESR

CRRESR NESR

Light-ion scattering

Elastic (p,p), (,) …

Inelastic (p,p’), (,’) ...

Charge exchange (p,n), (3He,t), (d,2He) …

Quasi-free (p,pn), (p,2p), (p,p) …

Transfer (p,t), (p,3He), (p,d), (d,p) …

Light-ion scattering

Elastic (p,p), (,) …

Inelastic (p,p’), (,’) ...

Charge exchange (p,n), (3He,t), (d,2He) …

Quasi-free (p,pn), (p,2p), (p,p) …

Transfer (p,t), (p,3He), (p,d), (d,p) …

~ 10 … ~ 740 MeV/nucleon

Key physics issues

• Matter distributions (halo, skin…)

• Single-particle structure evolution(magic numbers, shell gaps, spectroscopic factors)

• NN correlations, clusters

• New collective modes (differentdeformations for p and n, giant resonances strengths)

• Astrophysical r and rp processes (GT, capture…)

• In-medium interactions in asymmetric and low-density matter

Key physics issues

• Matter distributions (halo, skin…)

• Single-particle structure evolution(magic numbers, shell gaps, spectroscopic factors)

• NN correlations, clusters

• New collective modes (differentdeformations for p and n, giant resonances strengths)

• Astrophysical r and rp processes (GT, capture…)

• In-medium interactions in asymmetric and low-density matter

EXotic nuclei studied in Light-ion induced reactions at the NESR storage ring

Page 2: CR RESR

RIB (740 MeV/nucleon)

RESRDeceleration (1T/s) to 100 - 400 MeV/nucleon

Collector RingBunch rotation

Fast stochastic cooling

NESRElectron cooling

Experiments

Later stage of FAIR

Page 3: CR RESR

EXL Set-up – Concept and Design Goals

Internal gas-jet target (>1014 cm-2)

Detection systems for:

• Target recoils (p,,n,…

• Forward ejectiles (p,n,)

• Heavy fragments

Design goals

• Universality: applicable to a wide class of reactions

• High energy and angular resolution

• Fully exclusive kinematical measurements

• High luminosity (> 1028 cm-2 s-1)

• Large solid angle acceptance

• UHV compatibility (in part)

Big R&D effort needed!

Page 4: CR RESR

Challenging requirements:• High efficiency and universality• High angular and energy resolutions• Low threshold• Large dynamic range• High granularity• Vacuum compatibility• …

EXL

Recoil & Gamma

Array

EXL Gamma & Particle Array

EXL Silicon Particle Array

Phase I

Phase II

Page 5: CR RESR

Si DSSD 300 m thick, spatial resolutionbetter than 500 m in x and y, E 30 keV (FWHM).

Thin Si DSSD <100 m thick, spatial resolution better than 100 m in x and y, E 30 keV (FWHM).

Si(Li)9 mm thick, large area 100x100 mm2, E 50 keV (FWHM).

CsI crystals High efficiency, high resolution, 20 cmthick.

Design study• Thin DSSD• PSD with DSSD• Integrated devices E-E monolitic• MAPS• Si(Li)• CsI and other crystals• Vacuum chamber

Choice of detector types for the baseline scenarioof the EXL Recoil & Gamma Array

Synergy with R3B & NUSTAR.

Mass identification

Mass & charge identification

Lower thresholds

Energy – Position – Identification

Page 6: CR RESR

Characteristics of EGPA (EXL Particle and Gamma Array)

• Detect both s and charged particles

• Gamma sum energy, and individual energies

• 95% 4 coverage, =80% for E= 2-4 MeV

• Stopping 300 MeV protons E = 2-3% for s and 1% for fast protons

• Bins in polar angle of 1o-4o for Doppler Correction

• Total of about 1500 crystals of 20 cm in length

• 2 Phases : 1.7 + 0.6 M€ if CsI

Page 7: CR RESR
Page 8: CR RESR

The MUST2 Array

•Compact and efficient: bound and unbound states• -particle coincidences•Examples : (,6Be) with cryogenic target 2-nucleon transfer for pairing studies 2-proton decay measurementsIPNO-GANIL-SACLAY collaboration

Page 9: CR RESR

MATE MATE for Si, Si(Li) & CsIfor Si, Si(Li) & CsI

16 ch 16 ch

AmpSlow

Amp Fast

TACMultiplex

MULTIPLEXER

PULSER

Disc LE

HT

Stop

TrackHold

PAwide band+/-ve

MUFEE

MATE

6 mm

Slow ControlGain, Disc ..

Page 10: CR RESR

MATE - PerformanceMATE - Performance

• 16 Channels (Fast & Slow)– Bipolar (slow & fast)– Slow Control – Energy (Track & Hold)

• 1µs/3µs RC-CR

• 0.3 - 50/250MeV (1:800)• 25/90 KeV

– Time• Disc Leading Edge • TAC (300nsec)• 240 psec jitter

• Chip 36mm²– BCMOS 0.8 µ – 16000 transistors– 35 mWatt/channel

• Serial output 2 MHz

6 mm

What is New What is New ??- In Nuc. Phys. Env. new- Dynamic Range 1:800 new- Time & Energy new

And it’s functioning !

Page 11: CR RESR

R&D Detection Group

Gaseous DetectorsWire Chambers, MPGD

ALICE @ CERNHADES @ GSI

ScintillatorsPhotomultipliers

G0 & DVCS @ Jefferson LabP.AUGER Observatory

http://ipnweb.in2p3.fr/~rddHead : Joel Pouthas5 Engineers3 Technicians (Mechanics)2 Technicians (Electronics)4 Technicians (Assembling Detectors)1 Secretary (part time)

3 Clean Rooms 3D measuring Machine

Page 12: CR RESR

Jefferson Lab.@ Newport News Jefferson Lab.@ Newport News DVCS / CLAS DVCS / CLAS

424 crystals, 160 mm 424 crystals, 160 mm long, long,

APD readoutAPD readout

20022002 R&D R&D20032003 Construction of a prototype Construction of a prototype2004 (Jan) Prototype test on beam2004 (Jan) Prototype test on beam20042004 Final design and construction Final design and construction2005 (Mar) Experiment2005 (Mar) ExperimentPROTOTYPE 100 Crystals

Inner Inner calorimetercalorimeter (PbWO(PbWO44))

MechanicsMechanics

Page 13: CR RESR

Jefferson Lab.@ Newport News Jefferson Lab.@ Newport News DVCS / CLAS DVCS / CLAS

2 GeV electron2 GeV electron

Electromagnetic Electromagnetic ShowerShower

SimulationSimulation

Geant 4 simulationGeant 4 simulation

Page 14: CR RESR

Jefferson Lab.@ Newport News Jefferson Lab.@ Newport News DVCS / CLAS DVCS / CLAS

Page 15: CR RESR

GSI @ Darmsdat GSI @ Darmsdat PANDA PANDA / / EMEM CalorimeterCalorimeter

Beginning of studiesBeginning of studies

September 2004September 2004

StudiesStudiesMechanicsMechanicsThermalThermalIntegrationIntegration

SimulationsSimulationsGeant 4Geant 4

R&D PrototypesR&D Prototypes

Page 16: CR RESR

GSI @ Darmsdat GSI @ Darmsdat PANDA PANDA / / EMEM CalorimeterCalorimeter

Carbon Cells Carbon Cells

Page 17: CR RESR

GSI @ DarmsdatGSI @ DarmsdatEXLEXL

Page 18: CR RESR

A Few Questions to Address

• Do we need 2 calorimeters for EXL and R3B?

• Why does the EXL calorimeter have 1500 modules and the R3B 10000?

• Do we need sum energy for EXL applications? (i.e how important is 4 coverage?)

• Is CsI the best material? (see Jürgen Gerl’s talk). Do we need cooling?

• Will APDs give sufficient dynamic range, or do we need PMTs?

• Does EGPA need vacuum?

• ….

Page 19: CR RESR

How can we (IPNO) help answer• Produce a first complete realistic mechanical design.

Engineering time will be available starting october.

• Do detailed Géant 4 simulations of some specific experimental situations (A post doc, Flore Skaza, has been hired for one year and will start in sept.)

• Do studies on materials?

• We are willing to contribute to both EXL and R3B.

• We need to co-ordinate with other groups and labs.