Course Slides Jan 05 2015(1)

154

Click here to load reader

Transcript of Course Slides Jan 05 2015(1)

Page 1: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 1/154

Copyright @ Samir H. Mushrif

Samir H [email protected]

http://www.ntu.edu.sg/home/shmushrif/

Division of Chemical and Biomolecular Engineering

School of Chemical and Biomedical Engineering

Nanyang Technological University, Singapore

1

Page 2: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 2/154

Copyright @ Samir H. Mushrif

Suraj [email protected]

Division of Chemical and Biomolecular Engineering

School of Chemical and Biomedical Engineering

Nanyang Technological University, Singapore

2

Page 3: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 3/154

Copyright @ Samir H. Mushrif

3

Page 4: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 4/154

Copyright @ Samir H. Mushrif

4Samir H Mushrif (7) Suraj Vasudevan (6) Introduction to Unit Operations/Separation

Processes

Fundamentals

Phase Equilibria/Diagrams

Thermodynamics of Phase Equilibria 

Modeling Phase Equilibria

Distillation

Flash Distillation

Column Distillation

 Advanced Binary Distillation

Multicomponent Distillation

 Absorption and Stripping

Liquid – Liquid Extraction

Mass Transfer Equipment – Design and

Operation Mass Transfer Analysis

Separation using Membranes

 Adsorption and Chromatography

 Aspen – HYSYS

 All the exams and quizzes will be open book type (Wankat Textbook, handwritten class

notes and Slides only. NO laptops, netbooks, ipads, palmtops, smartphones, tablets)

Final Exam (5060%)

25  30% on Fundamentals and Distillation (Samir)

25  30% on Other Separation Processes (Suraj)

Two quizzes/midterms (35  45% combined)

First on Fundamentals and Distillation (Samir)

Second on Other Separation Processes (Suraj)

 Assignments (Upto 5%)

What if you miss a quiz?

Can take it again, but the next

one will be harder.

Page 5: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 5/154

Copyright @ Samir H. Mushrif

5

Textbook

• Separation Process Engineering . Phillip C. Wankat, 2nd/3rd Edition, Prentice

Hall, New Jersey. Other Reference Books

• Seader, J.D and Henley, E.J. (1998) New Jersey, Separation Process

Principles, 3rd Edition, John Wiley, 2010

• Cussler E.L, Diffusion; Mass Transfer in Fluid Systems, end Ed. New York:

Cambridge University Press, 3rd Edition, 1997• McCabe, W.L. Smith, J.C. and Harriot P, Unit Operations of Chemical

Engineering, 7th Edition, Singapore: McGraw-Hill, (2005)

• Treybal, R.E. (1981), Mass-Transfer Operations, 3rd Edition, Singapore:

McGraw-Hill

• Perry, RH, Green DW, Perry’s Chemical Engineers’ Handbook, 8th Edition,

McGraw-Hill – Available Online (2008)

Recommended Books

How to read a Unit Operations book?

Page no. X  to Page no. Y  or Look for the concepts

Page 6: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 6/154

Copyright @ Samir H. Mushrif

6

Please attend lectures and tutorials and browse previous lecture notes before you come

for a class. Learning in a class is a lot easier than self  –study.

Every lecture is like a step in the ladder. If you miss a step, you may have problem

climbing the next (We will do a brief review at the beginning). You may forget the equations, but not the concepts

Silence in the classroom please. Time will be given for discussion.

 Active class participation is strongly encouraged. Ask questions. I shall be in the lecture

theatre 2530 mins. before the lecture begins. Even after the class/tutorial is okay.

Please don’t use laptops, smartphones, ipads etc. in the classroom

Please take notes during the class. Slides only give an overview.

Solve problems and read books. Solve problems to develop your “application” skills; not

because one of them will be in the exam! Watching lecture videos or reading slides is

not sufficient.

Don’t delay your studies till the very last minute 

General Recommendations and Policy

Open door policy (N1.2 –B2 –23). 2 hrs. every week for consultation (Let’s decide thetime now!). Come in groups, if possible.

 Asking conceptual questions by email … may not be a good idea! 

NO consulting 3 days before the exam

Video recording of lectures and slides on the web. Will rerecord, if needed.

Page 7: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 7/154Copyright @ Samir H. Mushrif

7

Page 8: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 8/154Copyright @ Samir H. Mushrif

8Where does this course fit into your curriculum?

Page 9: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 9/154Copyright @ Samir H. Mushrif

9Course Objectives

To learn about different separation processes commonly employed

in industries.

To understand the fundamentals behind these processes and theoperation of separation equipments.

To understand how operating conditions, equipment design and

process variables can affect the separation

To be able to control a process, you have to know the processinside –out

To be able to design some of the most important unit operations like

distillation

Use the state of the art computational tools for design and analysis

of unit operations

Page 10: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 10/154Copyright @ Samir H. Mushrif

10Learning Outcome (Take a look at this slide at the end of the semester ) 

 At the end of the course, you should

Have a list of some of the key separation processes employed in the

industry Be able to read and interpret the thermodynamic data (in the form of

Temperature –Pressure –Composition Diagrams)

Be able to use the data to decide the type of separation method to be

employed

Be able to design single stage processes

Be able to explain how single stage processes can be combined in an

efficient manner to form cascades

Be able to use graphical, mathematical and computational tools to design

countercurrent separations

Be able to design multicomponent systems using HYSYS

Build a strong foundation which will prepare you to learn advanced

separation processes and to handle complications in actual

implementation of these processes

Page 11: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 11/154Copyright @ Samir H. Mushrif

11

Page 12: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 12/154Copyright @ Samir H. Mushrif

12Separations in a Chemical Plant (> 50% of the capital and operating costs)

www.ontime.methanetomarkets.org

Oil Refinery Demonstration

Page 13: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 13/154Copyright @ Samir H. Mushrif

13History of Unit Operations and Chemical Engineering

Arthur D. Little William H. Walker Warren K. Lewis

Pictures from MIT and ACS websites

“Chemical Engineering” as a distinct profession. Difference between a chemical

engineer and a chemist.

 Arthur D. Little coined the term “Unit Operation” 

William H. Walker and Arthur D. Little formed a company and later Walker returnedto MIT

Warren K Lewis, the first head of the chemical engineering department at MIT

Page 14: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 14/154Copyright @ Samir H. Mushrif

14Mixing vs. Separation

What is spontaneous, MIXING or SEPARATION? And why?

Page 15: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 15/154

Copyright @ Samir H. Mushrif

15Mixing vs. Separation

What is spontaneous, MIXING or SEPARATION? And why?

Page 16: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 16/154

Copyright @ Samir H. Mushrif

16Mixing vs. Separation

What is spontaneous, MIXING or SEPARATION? And why?

S T  H G  

Page 17: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 17/154

Copyright @ Samir H. Mushrif

17Mixing vs. Separation

What is spontaneous, MIXING or SEPARATION? And why?

S T  H G   1. Change in free energy has to be +ve or –ve?

2. How does the entropy of the system change upon mixing?

3. What is ∆H  related to?

Page 18: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 18/154

Copyright @ Samir H. Mushrif

18Mixing vs. Separation

What is spontaneous, MIXING or SEPARATION? And why?

S T  H G   1. Change in free energy has to be +ve or –ve?

2. How does the entropy of the system change upon mixing?

3. What is ∆H  related to?

Water and alcohol mix at room temperature

Oil and water do not mix at room temperature

Oil and water may mix at a higher temperature

Page 19: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 19/154

Copyright @ Samir H. Mushrif

19Types of Separation

Distillation

Evaporation

Extraction

Crystallization

Drying

Absorption

OsmosisFiltration

Dialysis

Pervaporation

Adsorption

Ion – Exchange

Centrifugation

Electrolysis

Page 20: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 20/154

Copyright @ Samir H. Mushrif

20How to select a separation process?

Feed and Product Conditions

• Concentration of the species to be removed

• Flowrate of the feed

• Temperature, Pressure

• Physical State of the feed (Solid, liquid, gas)

Property Differences amongst the Components

• Molecular• Thermodynamic

• Transport

Characteristics of the Operation

• Ease of Scale – up

• Energy requirement

• Size Limitations

• Temperature, Pressure and Physical state requirements

Page 21: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 21/154

Copyright @ Samir H. Mushrif

21Three important questions to ask for separations

Will it happen? If yes, how much?

Equilibrium

How fast?

Kinetics

Sodium Chloride Video

mequilibriu K  RT G ln

   F  r  e  e

   E  n  e  r  g  y

   F  r  e  e

   E  n  e  r  g  y

 RT  E a

 Aek 

Page 22: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 22/154

Copyright @ Samir H. Mushrif

22Separations vs. Reactions

Typical Properties

• Chemical potential, equilibrium

coefficient, saturation capacity etc.

Reaction Equilibrium analogous to Separation Equilibrium and Reaction Kinetics

analogous to Separation Kinetics

Typical Properties

• Mass transfer coefficient, Diffusion

coefficient (Diffusivity)

Page 23: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 23/154

Copyright @ Samir H. Mushrif

23Separations vs. Reactions

Typical Properties

• Chemical potential, equilibrium

coefficient, saturation capacity etc.

Reaction Equilibrium analogous to Separation Equilibrium and Reaction Kinetics

analogous to Separation Kinetics

Typical Properties

• Mass transfer coefficient, Diffusion

coefficient (Diffusivity)

Water  + Dimethyl Sulfoxide

Page 24: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 24/154

Copyright @ Samir H. Mushrif

24What controls the separation processes?

Many of the separation processes are equilibrium limited.

Thermodynamic equilibrium data is crucial for the design of aseparation process

Mathematical description of the underlying phenomenon is equally

important

For polymers attracted to the surface,

there is no kinetic barrier but the

 protein competes with the polymer for

adsorption sites. Polymers that are not

attracted to the surface present a large

steric barrier but not very good

thermodynamic prevention because ofthe ability of the protein to deform the

 polymer layer.Satulovsky J et al. PNAS 2000;97:9037-9041

25

Page 25: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 25/154

Copyright @ Samir H. Mushrif

25

26

Page 26: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 26/154

Copyright @ Samir H. Mushrif

26Thermodynamic Equilibrium

Thermal Chemical Mechanical

Temperatures are

the same

Chemical potentials

are the same

Pressures are the

same

Phase Equilibria

(Phase Creation and Phase Addition type Separation Processes – Distillation)

The equilibrium relationships between phases (such as vapor, liquid, solid) of a chemical

compound or mixture under various conditions of temperature, pressure, and composition McGraw Hill Science and Technology Dictionary

Water and Steam in equilibrium at 100 C and 1 atm. pressure

27

Page 27: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 27/154

Copyright @ Samir H. Mushrif

27Phase Diagram of Water (Single Component)

28

Page 28: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 28/154

Copyright @ Samir H. Mushrif

28Critical Point of Water

SupercriticalConditions

http://www.science.uva.nl/research/mgrd/video-cp.html

29

Page 29: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 29/154

Copyright @ Samir H. Mushrif

29Phase Diagram for a Binary System

 Mass Transfer Operations –  Treybal

Now composition comes into picture!

30

Page 30: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 30/154

Copyright @ Samir H. Mushrif

30Gibb’s Phase Rule

2   P C  F 

Degrees of Freedom Number of Components Number of Phases

Examples

• How many triple points can be there for water?

• What are the maximum number of phases in a binary mixture?

 Liquid 

 A 

 Liquid 

 B 

Vapor 

 A 

Vapor 

 B  Number of components = C (i , j, k, …, C )

 Number of phases = P (α, β, γ, …, P )

Temperatures = T α , T  β  , T γ ,… T  P  

Pressures = pα , p β  , pγ ,… p P  

Chemical Potentials = μαi , μα j , μαk  , … μαC  

 μ β i , μ

 β  j , μ

 β k   , … μ β 

C  

… 

 μ P i , μ

 P  j , μ

 P k   , … μ P 

C  

31

Page 31: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 31/154

Copyright @ Samir H. Mushrif

31Gibb’s Phase Rule

Thermal

Chemical

Mechanical

Phase Equilibria: Thermal, Chemical and Mechanical Equilibria

Equations1... 

  P T T T 

  P    

Equations1...     P  p p p   P    

Equations1

...

 ...

...

P

CCC

P j j j

P

iii

 P C 

   

   

   

   

   

   

 

 phasestheallof PressureandeTemperatur 

 phasestheallincomponentsof FractionsMole

21variablesof numberTotal   P C  P   

32

Page 32: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 32/154

Copyright @ Samir H. Mushrif

32Gibb’s Phase Rule

1221 

Equationsof  Numbervariablesof  NumberFreedomof Degrees

 P C  F 

 P C  P C  P  F 

This phase rule is applicable to non – reacting systems

The degrees of freedom correspond to the intensive variables like mole

fractions, pressure and temperature.

Once you select all your degrees of freedom, there exists a unique system.

C P F

1 1 2

1 2 1

1 3 0

33C f f

Page 33: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 33/154

Copyright @ Samir H. Mushrif

33Concept of Vapor Pressure – In the context of VLE

What happens if I keep a bowl of water in open for 12 hrs. at 50 C

on a very hot summer day?

What happens if I keep a lid and cover the bowl?

What is the vapor pressure of water at 100 C?

34C t f V P I th t t f VLE

Page 34: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 34/154

Copyright @ Samir H. Mushrif

34Concept of Vapor Pressure – In the context of VLE

What happens if I keep a bowl of water in open for 12 hrs. at 50 C

on a very hot summer day?

What happens if I keep a lid and cover the bowl?

What is the vapor pressure of water at 100 C?

35V Li id E ilib i (Si l t bi )

Page 35: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 35/154

Copyright @ Samir H. Mushrif

35Vapor – Liquid Equilibria (Single component vs. binary)

Water boils at 100 C under 1 atm. Pressure

 At 100 C, vapor pressure of water is equal to 1 atm.

D E

   T  e  m  p

  e  r  a   t  u  r  e   (               C   )

q (KJ/kg)A

A

B

B

C

C

D

E

Subcooled

Water  

Saturated

Water Only 

Water and

Steam

SaturatedSteam Only 

Superheated

Steam 

How would this curve look at different pressures? Why?

How would this curve look if I have a water (100 C)+ ethanol (78.4 C) mixture?

What will be the boiling point of the mixture?

36V Li id E ilib i (Si l t bi )

Page 36: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 36/154

Copyright @ Samir H. Mushrif

36Vapor – Liquid Equilibria (Single component vs. binary)

Single component VLE Binary VLE

Is the composition of the liquid and the vapor phase same?

If not, can you say something about the distribution? Justify your argument.

Vapor pressure of Water and Water + ethanol mixture same as atmospheric pressure

37V Li id E ilib i (Si l t bi )

Page 37: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 37/154

Copyright @ Samir H. Mushrif

37Vapor – Liquid Equilibria (Single component vs. binary)

Single component VLE Binary VLE

Is the composition of the liquid and the vapor phase same?

If not, can you say something about the distribution? Justify your argument.

Vapor pressure of Water and Water + ethanol mixture same as atmospheric pressure

 A binary mixture boils over a range of temperature and the liquid (andvapor) composition changes during the phase transition. Explain.

38Bi VLE Di (C t t P )

Page 38: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 38/154

Copyright @ Samir H. Mushrif

38Binary VLE Diagram (Constant Pressure)

   T  e  m  p  e  r  a   t  u  r  e   (               C   )

Mole Fraction of component “A” ( xA, yA)0 1

b

 AT 

b

 BT 

Liquid

Vapor

 Bubble point

Curve

 Dew point

Curve

Liquid + Vapor

 xA=0.5

 yA=0.81

39Wh t i th diff b t th t VLE di ?

Page 39: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 39/154

Copyright @ Samir H. Mushrif

39What is the difference between these two VLE diagrams?

   T  e  m

  p  e  r  a   t  u  r  e   (               C   )

Mole Fraction of component“A” ( xA, yA)

   T  e  m

  p  e  r  a   t  u  r  e   (               C   )

Mole Fraction of component“A” ( xA, yA)

40What is the difference between these two VLE diagrams?

Page 40: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 40/154

Copyright @ Samir H. Mushrif

40What is the difference between these two VLE diagrams?

   T  e  m

  p  e  r  a   t  u  r  e   (               C   )

Mole Fraction of component“A” ( xA, yA)

   T  e  m

  p  e  r  a   t  u  r  e   (               C   )

Mole Fraction of component“A” ( xA, yA)

 A A

 A A

 A A

 A A AB

 y x

 x y

 x x

 y y

1

1

1

1VolatlityRelative    

41How would the Composition Curve for “A” ( ) look like?

Page 41: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 41/154

Copyright @ Samir H. Mushrif

41How would the Composition Curve for “A” ( xA, yA) look like?

   T  e  m

  p  e  r  a   t  u  r  e   (               C   )

Mole Fraction of component“A” ( xA, yA)

42How would the Composition Curve for “A” (x y ) look like?

Page 42: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 42/154

Copyright @ Samir H. Mushrif

Mole Fraction of component“A” ( xA) in Liquid

   M  o   l  e   F  r  a  c

   t   i  o  n  o   f  c  o  m  p  o

  n  e  n   t

   “   A   ”

   (  y   A

   )   i  n   V  a  p  o  r

 A x

 A y

   T  e  m

  p  e  r  a   t  u  r  e   (               C   )

Mole Fraction of component“A” ( xA, yA)

 A x  A y

How would the Composition Curve for “A” ( xA, yA) look like?

43How would the Enthalpy Composition Curve look like?

Page 43: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 43/154

Copyright @ Samir H. Mushrif

How would the Enthalpy –Composition Curve look like?

   T  e  m  p  e

  r  a   t  u  r  e   (               C   )

Mole Fraction of component

“A” ( xA, yA)

44How would the Enthalpy Composition Curve look like?

Page 44: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 44/154

Copyright @ Samir H. Mushrif

How would the Enthalpy –Composition Curve look like?

   T  e  m  p  e

  r  a   t  u  r  e   (               C   )

Mole Fraction of component

“A” ( xA, yA)

   E  n   t   h  a   l  p  y   (   K   J   /  m  o   l   )

Mole Fraction of component

“A” ( xA, yA)

45How would the Pressure Composition Curve look like?

Page 45: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 45/154

Copyright @ Samir H. Mushrif

How would the Pressure –Composition Curve look like?

   T  e  m  p  e

  r  a   t  u  r  e   (               C   )

Mole Fraction of component

“A” ( xA, yA)

46How would the Pressure Composition Curve look like?

Page 46: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 46/154

Copyright @ Samir H. Mushrif

How would the Pressure –Composition Curve look like?

   T  e  m  p  e

  r  a   t  u  r  e   (               C   )

Mole Fraction of component

“A” ( xA, yA)

   P  r  e  s  s  u  r  e   (  a   t  m .   )

Mole Fraction of component

“A” ( xA, yA)

47Boiling of a Binary Mixture at Constant Pressure

Page 47: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 47/154

Copyright @ Samir H. Mushrif

Boiling of a Binary Mixture at Constant Pressure

   T  e  m  p  e  r  a   t  u  r  e   (               C   )

Mole Fraction of component “A” ( xA, yA)0 1

b

 AT 

b

 BT 

Liquid

Vapor

 Bubble point

Curve

 Dew point

Curve

 L

 L

 A x

 A y

?andaboutsayyoucanWhat V 

 A

 L

 A   y x

How do I travel on the composition curve if I transform a liquid of composition “x LA” completely to vapors?

48Boiling of a Binary Mixture at Constant Pressure

Page 48: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 48/154

Copyright @ Samir H. Mushrif

Boiling of a Binary Mixture at Constant Pressure

   T  e  m  p

  e  r  a   t  u  r  e   (               C   )

Mole Fraction of component “A” ( xA, yA)0 1

b

 AT 

b

 BT 

Liquid

Vapor

 Bubble point

Curve

 Dew point

Curve

 L

 L

 A x

 A y

 A

 L

 A

 A

 L

 A   y x y x   ?andaboutsayyoucanWhat

49Boiling of a Binary Mixture at Constant Pressure

Page 49: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 49/154

Copyright @ Samir H. Mushrif

Boiling of a Binary Mixture at Constant Pressure

   T  e  m  p

  e  r  a   t  u  r  e   (               C   )

Mole Fraction of component “A” ( xA, yA)0 1

b

 AT 

b

 BT 

Liquid

Vapor

 Bubble point

Curve

 Dew point

Curve

 L

 L

 A x

 A y

1 B1 D

1 B

 A x

1 D

 A x

Tie Line

50Boiling of a Binary Mixture at Constant Pressure

Page 50: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 50/154

Copyright @ Samir H. Mushrif

Boiling of a Binary Mixture at Constant Pressure

   T  e  m  p

  e  r  a   t  u  r  e   (               C   )

Mole Fraction of component “A” ( xA, yA)0 1

b

 AT 

b

 BT 

Liquid

Vapor

 Bubble point

Curve

 Dew point

Curve

 L

 L

 A x

 A y

1 B2 B

1 D

2 D

2 B

 A x

2 D

 A x

51Boiling of a Binary Mixture at Constant Pressure

Page 51: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 51/154

Copyright @ Samir H. Mushrif

Boiling of a Binary Mixture at Constant Pressure

   T  e  m  p

  e  r  a   t  u  r  e   (               C   )

Mole Fraction of component “A” ( xA, yA)0 1

b

 AT 

b

 BT 

Liquid

Vapor

 Bubble point

Curve

 Dew point

Curve

 L

 L

 A x

 A y

1 B2 B

3 B

1 D

2 D

3 D

3 B

 A x

3 D

 A x

52Mass balance for the two phases

Page 52: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 52/154

Copyright @ Samir H. Mushrif

Mass balance for the two phases

   T  e  m  p  e  r  a   t  u  r  e   (               C   )

Mole Fraction of component “A” ( xA, yA)0 1

b

 AT 

b

 BT 

Liquid

Vapor

 Bubble point

Curve

 Dew point

Curve

 L

 L

 A x

 A y

1 B2 B 1 D

2 D E 

 phases?)(vaporand)(liquidof amountsrelativethe bewhat would

, pointreachesittillheatedisncompositiowithfeedof molesIf 

V  L

 E  x F    L

 A

2 B

 A x

2 D

 A x

53Lever – Arm Rule

Page 53: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 53/154

Copyright @ Samir H. Mushrif

Lever   Arm Rule

2of length

2of length

get,we(b)Equationinto(a)equationfromngSubstituti

(b) 

: balanceMaterialA""Component(a) 

: balanceMaterialOverall

2

2

22

22

 EB

 ED

 L

 x x L x xV 

 F 

Vx Lx Fx

V  L F 

 L A B A

 D A

 L A

 x x

 x x

 L

 A

 B

 A

 D

 A

 L

 A

 D

 A

 B

 A

 L

 A

54

Page 54: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 54/154

Copyright @ Samir H. Mushrif

55Thermodynamics of Phase Equilibria

Page 55: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 55/154

Copyright @ Samir H. Mushrif

Thermodynamics of Phase Equilibria

Thermal Chemical Mechanical

Temperatures are

the same

Chemical potentials

are the same

Pressures are the

same

Phase Equilibria

(Phase Creation and Phase Addition type Separation Processes – Distillation)

The equilibrium relationships between phases (such as vapor, liquid, solid) of a chemical

compound or mixture under various conditions of temperature, pressure, and composition McGraw Hill Science and Technology Dictionary

What is Chemical Potential? And Why does it have tobe equal for a component in all phases at equilibrium?

56Equality of Chemical Potentials

Page 56: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 56/154

Copyright @ Samir H. Mushrif

Equality of Chemical Potentials

 B

 L

 B

 A

 L

 A

 B

 B A

 A B

 L

 B A

 L

 A

 B

 B B

 L

 B A

 A A

 L

 A

 B

nT  P  B

 A

nT  P  AnnT nn P 

 B A

Vyd Vyd  Lxd  Lxd 

Vyd  Lxd Vyd  Lxd dG

G P T 

dnn

Gdn

n

GdP 

 P 

GdT 

GdG

 B A

 P T G

nn P T  f  G

 B

 A

 A

 B B A B A

    

    

    

  

 

  

 

 

  

 

 

  

 

 

  

 

 and

0

)(minmequilibriuatissystemwhen the,and particular aAt

andcomponentsof amounts

 and,inchangessmalltodueinchangeThe

,,,

,,,,,,,,

57Do I have a “chemical potential meter”?

Page 57: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 57/154

Copyright @ Samir H. Mushrif

p

""componentof fugacitytheis

lngasidealanlike behaveseverythingnotBut

ln

componentinchangetodueis pressureinchangetheIf 

 pressureof in terms

  potentialChemical 

can writewegasidealanFor

mics,ThermodynaFrom

,,,

,,,

2

i f  

 f   RTd d 

 P  RTd d 

i

 P  P 

 RT 

n

 P 

 RT nV 

 P n

n P 

G

i

ii

ii

nT 

i

in P T ii

i

nT 

i

n P T ii

 j j

 j j

 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

58VLE in terms of “Fugacity”

Page 58: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 58/154

Copyright @ Samir H. Mushrif

g y

i

 L

i   f   f   

m,EquilibriuLiquid-VaporAt

Fugacity is something like “pressure”

Single component VLE

Water and Steam in equilibrium at 100 C – Vapor pressure of water and

(partial) pressure of steam are equal

 P  yVP  x wwW  

59VLE in terms of “Fugacity”

Page 59: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 59/154

Copyright @ Samir H. Mushrif

g y

i

 L

i   f   f   

m,EquilibriuLiquid-VaporAt

Fugacity is something like “pressure”

Binary VLE

Vapor and Liquid phases of water and ethanol in equilibrium at T C, VP of

the system equal to P (Ideal gas and Ideal Liquid)

 P  yVP  x iii 

60VLE in terms of “Fugacity” (non – ideal systems)

Page 60: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 60/154

Copyright @ Samir H. Mushrif

g y ( y )

Where does the non – ideality for gases and liquids come

from?

61VLE in terms of “Fugacity” (non – ideal systems)

Page 61: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 61/154

Copyright @ Samir H. Mushrif

g y ( y )

tcoefficienfugacity

statestandardatfugacitycomponent pure

tcoefficienactivity

where

aswritten becanequationAbove

m,EquilibriuLiquid-VaporAt

0

i

0i

i

i

iiii

i

 L

i

 f  

 P  y f   x

 f   f  

 

 

  

Where does the non – ideality for gases and liquids come

from? – Intermolecular Forces

62How to calculate these coefficients?

Page 62: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 62/154

Copyright @ Samir H. Mushrif

Liquid Phase Gas Phasei tCoefficienActivity i tCoefficienFugacity

van Laar

NRTL

UNIQUAC

UNIFAC

Margules

Van der Waals EOS

Redlich – Kwong (RK)

Peng – Robinson (PR)

Elliott, Suresh, and Donohue

(ESD)

63VLE of an ideal system (Ideal Liquid and Ideal Gas)

Page 63: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 63/154

Copyright @ Samir H. Mushrif

tCoefficienonDistributi

LawsRaoult'calledalsoisequationaboveThe

1:GasIdealanFor

,1:LiquidIdealanFor

m,EquilibriuLiquid-VaporAt

0i

0i

ii

i

i

iii

i

ii

iiii

i

 L

i

 K  P 

VP 

 x

 y

 P  yVP  x

VP  f  

 P  y f   x f   f  

 

 

  

64Binary Vapor Pressure Curve using Raoult’s Law 

Page 64: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 64/154

Copyright @ Samir H. Mushrif

 P  P  y P  yVP  xVP  x P  yVP  x

 B A   P 

 B

 P 

 A B B A Aiii  

  B A A A   VP  xVP  x P    1

Mole Fraction of component “A” ( xA)

   P  r  e  s  s  u  r  e

0 1

65Binary Vapor Pressure Curve using Raoult’s Law 

Page 65: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 65/154

Copyright @ Samir H. Mushrif

  B A A A   VP  xVP  x P    1

Mole Fraction of component “A” ( xA)

   P  r  e  s  s  u  r  e

0 1

T  Can you calculate the “red

(P vs.y A)” curve?

66Binary Vapor Pressure Curve using Raoult’s Law 

Page 66: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 66/154

Copyright @ Samir H. Mushrif

  B A A A   VP  xVP  x P    1

Mole Fraction of component “A” ( xA)

   P  r  e  s  s  u  r  e

0 1

 P 

VP  x y

 P 

VP  x y

 P 

VP  x y

 P  yVP  x

 B A A

 B B B

 A A A

 A A A

11

????1

1

 B

 A

 A A

 A A

VP 

VP 

 y x

 x y

Can you calculate the “red

(P vs.y A)” curve?

67Binary Vapor Pressure Curve using Raoult’s Law 

Page 67: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 67/154

Copyright @ Samir H. Mushrif

  B A A A   VP  xVP  x P    1

Mole Fraction of component “A” ( xA)

   P  r  e  s  s  u  r  e

0 1

 P 

VP  x y

 P 

VP  x y

 P 

VP  x y

 P  yVP  x

 B A A

 B B B

 A A A

 A A A

11

  B

 A AB

 B

 A

 A A

 A A

 K 

 K 

VP 

VP 

 y x

 x y

VolatilityRelative

1

Can you calculate the “red

(P vs.y A)” curve?

68How to construct a T –  xy diagram for an ideal system?

Page 68: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 68/154

Copyright @ Samir H. Mushrif

C T 

 B AVP 

 x

 x y

VP 

VP 

 y x

 x y

 AB A

 A AB A AB

 B

 A

 A A

 A A

log

:EquationAntoine

chartPriesterDeMethodsGraphical

EquationAntoine

data pressurevaporcomponent puretheisneedyouAll

111

1

 

  

Can you calculate the boiling point of Ethanol at 1 atm. if I give you

the Antoine Equation parameters?

69De Priester chart

Page 69: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 69/154

Copyright @ Samir H. Mushrif

From Separati on Process Engi neeri ng, Thi rd Editi on  by Phillip C. Wankat

(ISBN: 0131382276) Copyright © 2012 Pearson Education, Inc. All rights reserved.

70Binary y –  x diagram for an ideal system (constant α)

Page 70: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 70/154

Copyright @ Samir H. Mushrif

Mole Fraction of component

“A” ( xA) in Liquid

   M  o   l  e   F  r  a  c   t   i  o  n  o   f  c  o  m  p  o  n  e

  n   t

   “   A   ”   (  y

   A   )   i  n   V  a  p  o  r

 A x

 A y

Increasing α 

71An interesting question

Page 71: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 71/154

Copyright @ Samir H. Mushrif

Mole Fraction of component

“A” ( xA) in Liquid

   M  o   l  e   F  r  a  c   t   i  o  n  o   f  c  o  m  p  o  n  e

  n   t

   “   A   ”   (  y

   A   )   i  n   V  a  p  o  r

 A x

 A y

11  

 AB A

 A AB A

 x x y 

 

Can you prove mathematically

that a ( y,x) curve defined by the

following equation (with

constant α AB) can not look like

the “blue”, “red” or “green”

curves shown in this figure?

72Bubble and Dew Point Calculation

Page 72: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 72/154

Copyright @ Samir H. Mushrif

I have a mixture (liquid phase) of two components, A and B, with

mole fractions x A and x B , at pressure P . What is the bubble point of

the mixture?

OR

I have a mixture (vapor phase) of two components, A and B, withmole fractions x A and x B , at pressure P . What is the dew point of

the mixture?

Do not construct the entire (T, xy) diagram.

Antoine equation parameters are given and assume ideal mixture.

73Bubble and Dew Point Calculation

Page 73: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 73/154

Copyright @ Samir H. Mushrif

 iterate.not,If .1if Check5.

 andfractions;mole phasevaportheCalculate4.

at, pressuresvaporcomponent puretheCalculate3.

 asguessretemperatuinitialanTake2.

  pressuregivenat the 

andof  pointsBoilingtheCalculate1.

 B A

 B B B

 A A A

initial  B A

 B

 B B

 B

 A Ainitial 

 B

 B

 B

 A

 y y

 P 

VP  x y

 P 

VP  x y

T VP VP 

T  xT  xT 

 P 

T  BT  A

74

Page 74: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 74/154

Copyright @ Samir H. Mushrif

75Deviations from Ideal Behavior

Page 75: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 75/154

Copyright @ Samir H. Mushrif

Mole Fraction of component “A” ( xA)

   T  o   t  a   l   P  r  e  s  s  u  r  e

0 1

Mole Fraction of component “A” ( xA)0 1

 BVP 

 AVP 

   T  o   t  a   l   P  r  e  s  s  u  r  e

 BVP 

 AVP 

What gives rise to non –  ideality? –  Intermolecular Forces

(Tendency of molecules to escape)

76+ve Deviation from Raoult’s Law 

Page 76: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 76/154

Copyright @ Samir H. Mushrif

Mole Fraction of component “A” ( xA

)

   P  r  e  s  s  u  r  e

0 1

 BVP 

 AVP 

 A A A

 A A A

 A

 A A

 A A A A

 A

 L

 A

VP  x P  y

 P  yVP  x

VP  f  

 P  y f   x

 f   f  

A

0A

0A

1:GasIdealanFor

,1:LiquidIdealanFor

m,EquilibriuLiquid-VaporAt

 

 

 

  

idealisphasegasthe

 andideal-nonisphaseliquidtheIf 

)veislog(

)veislog(

idealityfromdeviationve:1γ

idealityfromdeviationve:1γ

 A

 A

Page 77: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 77/154

78Small Deviation vs. Large Deviation

Page 78: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 78/154

Copyright @ Samir H. Mushrif

Mole Fraction of component “A” ( xA)

   P  r  e  s  s  u  r  e

0 1

 BVP 

 AVP 

Mole Fraction of component “A” ( xA)

   P  r  e  s  s  u  r  e

0 1

 BVP 

 AVP 

What is the difference when the deviations are large?

79Small Deviation vs. Large Deviation

Page 79: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 79/154

Copyright @ Samir H. Mushrif

Mole Fraction of component “A” ( xA)

   P  r  e  s  s  u  r  e

0 1

 BVP 

 AVP 

Mole Fraction of component “A” ( xA)

   P  r  e  s  s  u  r  e

0 1

 BVP 

 AVP 

What is the difference when the deviations are large?

Is there a maximum in pressure? Do we have the same pressure for two

different compositions?

80P –  xy  Curves for Large Deviation from ideality

Page 80: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 80/154

Copyright @ Samir H. Mushrif

Mole Fraction of “A” ( x A ,y A)

   P  r  e  s  s  u  r  e

0 1

Liquid (P vs. x A)

Vapor (P vs. y A)

81P –  xy  Curves for Large Deviation from ideality

Page 81: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 81/154

Copyright @ Samir H. Mushrif

Mole Fraction of “A” ( x A ,y A)

   P  r  e  s  s  u  r  e

0 1

Liquid (P vs. x A)

Vapor (P vs. y A)

Can it look like this?Explain mathematically and physically.

82P –  xy  Curves for Large Deviation from ideality

Page 82: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 82/154

Copyright @ Samir H. Mushrif

Mole Fraction of “A” ( x A ,y A)

   P  r  e  s  s  u  r  e

0 1

Liquid (P vs. x A)

Vapor (P vs. y A)

Can it look like this?Explain.

 B B A A

 B A B A A B A

 B A B B B A A A

 B B A

 A

 A A

 A A A

 B A

 A

 B A A A

 x y x y

 K  K  x x K  y y

 x K  x K  y x K  y

 K  P 

VP 

 P 

VP 

 x

 y K 

 P  yVP  x

VP VP 

 x

 P  P 

VP  xVP  x P 

,

1

 and

FugacityVaporFugacityLiquid

ismequilibriuforconditionBut the

0then,inmaximumaisthereIf 

1

BA

A

BA

BA

  

 

  

  

83P –  xy  Curves for Large Deviation from ideality

Page 83: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 83/154

Copyright @ Samir H. Mushrif

Mole Fraction of “A” ( x A ,y A)

   P  r  e  s  s  u  r  e

0 1

Liquid (P vs. x A)

Vapor (P vs. y A)

Mole Fraction of “A” ( x A ,y A)

Liquid (P vs. x A)

Vapor (P vs. y A)

   P  r  e  s  s  u  r  e

What is the difference between these two curves? Explain using intermolecular forcesand thermodynamics Vapor –  Liquid composition is the same for a particular composition

The more volatile component becomes a less volatile component

VP at a composition is more than the individual component vapor pressures

10

84T  –  xy  and x  –  y  Curves for Large Deviation from ideality

Page 84: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 84/154

Copyright @ Samir H. Mushrif

Mole Fraction of “A” ( x A ,y A)

   T  e  m  p  e  r  a   t  u  r  e

0 1

Liquid (P vs. x A)

Vapor (P vs. y A)

Mole Fraction of “A” in Liquid ( x A)

0 1   M  o   l  e   F  r  a  c   t   i  o

  n  o   f   “   A   ”   i  n   V  a

  p  o  r   (  y   A

   )

Minimum Boiling Azeotrope –  Constant Boiling Mixture 

85-ve Deviation from Ideality

Page 85: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 85/154

Copyright @ Samir H. Mushrif

Mole Fraction of component “A” ( xA)

   P  r  e  s  s  u  r  e

0 1

 BVP 

 AVP 

   A  c   t   i  v   i   t  y   C  o  e   f   f

 .  γ

   A   /   B

0 1Mole Fraction of component “A” ( xA)

1 B 

  A 

What will be the boiling point of an azeotrope of a mixture which

shows large – ve deviations from ideality?

86P –  xy  Curves for Large –ve Deviation from ideality

Page 86: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 86/154

Copyright @ Samir H. Mushrif

Mole Fraction of “A” ( x A ,y A)

   P  r  e  s  s  u  r  e

0 1

Liquid (P vs. x A)

Vapor (P vs. y A)

Mole Fraction of “A” ( x A ,y A)

Liquid (P vs. x A)

Vapor (P vs. y A)

   P  r  e  s  s  u  r  e

10

What is the difference between these two curves? Explain using intermolecular forcesand thermodynamics Vapor –  Liquid composition is the same for a particular composition

The more volatile component becomes a less volatile component

VP at a composition is less than the individual component vapor pressures

Page 87: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 87/154

88Partial Miscibility –  Heteroazeotropes (Large +ve deviations) 

Page 88: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 88/154

Copyright @ Samir H. Mushrif

Mole Fraction of “A” ( x A ,y A)

   T  e  m  p  e  r  a   t  u  r  e

0 1

Liquid

(T vs. x A)

Vapor (T vs. y A)

Mole Fraction of “A” in Liquid ( x A)

0 1   M  o   l  e   F  r  a  c   t   i  o

  n  o   f   “   A   ”   i  n   V  a

  p  o  r   (  y   A

   )

A

B

C

A

B C

How will the VLE composition look like when you are in the 2 –  

phase region? 

89Partial Miscibility –  Heteroazeotropes (Large +ve deviations) 

Page 89: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 89/154

Copyright @ Samir H. Mushrif

Mole Fraction of “A” ( x A ,y A)

   T  e  m  p  e  r  a   t  u  r  e

0 1

Liquid

(T vs. x A)

Vapor (T vs. y A)

Mole Fraction of “A” in Liquid ( x A)

0 1   M  o   l  e   F  r  a  c   t   i  o

  n  o   f   “   A   ”   i  n   V  a

  p  o  r   (  y   A

   )

A

B

C

A

B C

A* C*B*

2 Liquids

90Partial Miscibility –  Heteroazeotropes (Large +ve deviations) 

Page 90: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 90/154

Copyright @ Samir H. Mushrif

Mole Fraction of “A” ( x A ,y

 A)

   T  e  m  p  e  r  a   t  u  r  e

0 1

Liquid

(P vs. x A)

Vapor (P vs. y A)

Mole Fraction of “A” in Liquid ( x A

)0 1   M

  o   l  e   F  r  a  c   t   i  o

  n  o   f   “   A   ”   i  n   V  a

  p  o  r   (  y   A

   )

Why “Heteroazeotropes” are Minimum Boiling Azeotropes? 

Why does the liquid phase split at lower temperatures?

91Some examples 

Page 91: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 91/154

Copyright @ Samir H. Mushrif

Ideal Mixture

• Hexane + Heptane, Benzene + methyl benzene, 1-propanol +

2-propanol

Positive Deviation from Raoult’s Law 

• Water + Ethanol (minimum boiling azeotrope)

• CS2 + Acetone (minimum boiling azeotrope)

Negative deviation from Raoult’s Law 

• Chloroform + Acetone (maximum boiling azeotrope)

• Water + Nitric Acid (maximum boiling azeotrope)

Heteroazeotropes Isobutanol + Water at 1 atm.

92

Page 92: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 92/154

Copyright @ Samir H. Mushrif

93Basic Principle of Distillation (Reduce the pressure) 

z

Page 93: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 93/154

Copyright @ Samir H. Mushrif

P 1

P 2

z  

x   y  

D  

F  E  

T  P  z  F  ,,, 1

T  P  x L ,,, 2

T  P  yV  ,,, 2

Liquid

Vapor

94Basic Principle of Distillation (Increase the temperature) 

z

Page 94: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 94/154

Copyright @ Samir H. Mushrif

1,,,   T  P  z  F 

2,,,   T  P  x L

2,,,   T  P  yV 

T 1

T 2

z  

x   y  

D   F  E  

 P 

Liquid

Vapor

Page 95: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 95/154

96Continuous Flash (Single Stage) Distillation 

Page 96: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 96/154

Copyright @ Samir H. Mushrif

Which variable can be specified?

QV 

 L

 x

 y

drum

 :suppliedheatof Amount.6 :feedtheof  portionVapor5.

 :feedtheof  portionLiquid.4

 :drumflashtheof eTemperatur 3.

 :fractionmole phaseLiquid.2

 :fractionmole phaseVapor.1

How will the solution procedure be different if

I specify one of the first 5 variables vs.

I specify Q 

97Continuous Flash (Single Stage) Distillation 

Whi h i bl b ifi d?

Page 97: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 97/154

Copyright @ Samir H. Mushrif

Which variable can be specified?

Q

 F 

V  f  V 

 F 

 Lq L

 x

 y

drum

 :suppliedheatof Amount.6

 :feedtheof  portionVapor5.

 :feedtheof  portionLiquid.4

 :drumflashtheof eTemperatur 3.

 :fractionmole phaseLiquid.2

 :fractionmole phaseVapor.1

 

  

 

 

  

 

How will the solution procedure be different if

I specify one of the first 5 variables vs.

I specify Q 

Material and Energy Balance equations are independent

Material and Energy Balance equations are interdependent

98If T drum  is specified …

Page 98: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 98/154

Copyright @ Samir H. Mushrif

T drum

x   y  

F  E  

Liquid

Vapor

Look into your (T, xy) 

diagram and find out the x 

and y at the temperatureT drum

After finding x and y, solve

the material balance

equations (overall and

component) to calculate L 

and V  

 Solve the energy balance

equation to get Q 

99Graphical solution vs. Numerical Solution

Ideal case Raoult’s Law (Sequential)

Page 99: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 99/154

Copyright @ Samir H. Mushrif

Ideal case –  Raoult’s Law (Sequential) 

Non –  ideal case (Iterative)

equations balanceenergyandmaterialSolvent.3

 Calculate2.

EquationsAntoine'ordataVPusingat pressurevaporGet the1.

 Kx y P VP  K 

drum

drum

 procedureiterativey Numericall3.

ncompositioof functionaisand 2.

EquationsAntoine'ordataVPusingat pressurevaporGet the1.

  

drum

drum

 P 

VP  K 

100If x or y  is specified …

Page 100: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 100/154

Copyright @ Samir H. Mushrif

T drum

x   y  

F  E  

Liquid

Vapor

Look into your (T,xy) 

diagram and find out the

T drum corresponding to the x or y

Find the corresponding x or y

After finding x and y, solve

the material balance

equations (overall and

component) to calculate L 

and V  

 Solve the energy balance

equation to get Q 

101If f (V/F ) or q (L /F ) is specified …

Page 101: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 101/154

Copyright @ Samir H. Mushrif

 ploton the linestraightarepresentsequationThis

1

1

1

 of in termsor

11

 balance,materialcomponenttheFrom

 x,y

 z q

 xq

q y

q

 z  f  

 x f  

 f   y

V  F  L

 z V 

 F  x

 L yVy Lx Fz 

 

  

 

 

  

 

 

  

 

 

  

  

 

  

 

 

  

 

 x 

  y

One of these points is my solution!

But, which one?

 

 f  

 f  1Slope

 y = x = z

Page 102: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 102/154

103What if I have more than 2 components? (Let’s say 3 …)

: PTPHzzFGiven

Page 103: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 103/154

Copyright @ Samir H. Mushrif

11

21

,

,,,

T  P 

 H  z  z  F   f  

Q   drum

drum

 P 

v H  y yV  ,,, 21

 L H  x x L ,,, 21

 

freedomof degree

 singlealeft withstillareWe

 Equations3

1

3

8,,,,,,,:

,,,,,,:

222

111

2211

1121

iii

 LV  f  

drum

drum f  

 x K  y

 LH VH Q FH 

Vy Lx Fz 

Vy Lx Fz 

V  L F 

T  y x y xV  LQ

 P T  P  H  z  z  F 

RelationsmEquilibriu

BalanceEnergy

component)and(OverallBalanceMaterial

Unknowns

Given

104Multicomponent Flash Distillation

,,,,...,,,: 1121 drumf  P T  P  H  z  z  F Given

Page 104: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 104/154

Copyright @ Samir H. Mushrif

11

21

,

,...,,,

T  P 

 H  z  z  F   f  

Q   drum

drum

 P 

v H  y yV  ,...,,, 21

 L H  x x L ,...,,, 21

 

Freedomof degreeoneleft withstillareWe

21and1

 Equations

1

 

24,...,,,,,,,:

,,,, ,,,

11

111

222

111

2211

1121

i

i

i

i

iii

 LV  f  

C C C 

drum

drum f  

 y x

 x K  yC 

 LH VH Q FH 

Vy Lx Fz 

Vy Lx Fz 

Vy Lx Fz 

V  L F 

C T  y x y xV  LQ

RelationstricStoichiome

RelationsmEquilibriu

BalanceEnergy

component)and(OverallBalanceMaterial

Unknowns

105

theallhaveyou willsystemidealanAssuming K

If T drum  is specified …

Page 105: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 105/154

Copyright @ Samir H. Mushrif

 

solved becan balanceenergythe

andobtained becan,,,,gettingAfter

MethodRaphson- Newtonusingsolved becanequationAbove

011

1

 111

 and111

11 and

11

;and

aswritten becanequationsmEquilibriuandequations balancematerialThe

 theallhaveyou willsystem,idealanAssuming

1

1

11

V  L y x f  

 f   g 

 f   g 

 f   f  

 f   g  f   K 

 z  K 

 f   K 

 z  K 

 f   K 

 z 

 f   K 

 z  K  y

 f   K 

 z  x

 x K  yVy Lx Fz V  L F 

 K 

ii

n

n

nn

i   i

ii

i   i

iiC 

i   i

i

i

iii

i

ii

iiiiii

i

106What if more separation is desired? 

Page 106: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 106/154

Copyright @ Samir H. Mushrif

11,

,,

T  P 

 H  z  F   f  

Q   drum

drum

 P 

v H  yV  ,,

 L H  x L ,,

 z 

What can I do to achieve this separation?

107

Page 107: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 107/154

Copyright @ Samir H. Mushrif

Page 108: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 108/154

109Cascades (Constant Pressure)

Page 109: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 109/154

Copyright @ Samir H. Mushrif

1. Is this the best way to get the desired purity?

2. What am I going to do with streams L2, L1, V 4, V 5?

110Composition of intermediate streams

Page 110: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 110/154

Copyright @ Samir H. Mushrif

 z 

33 , yV 

33 , x L22 , yV 

11, yV 22 , x L

11, x L

44 , x L

55 , x L

44 , yV 

55 , yV 

1. Is the composition of V 4and L

2 similar to that of the feed?

2. Is the composition of V 3 and L1 similar?

3. Is the composition of V 5 and L3 similar?

111Feed the intermediate streams back to the flash drums

yV

Page 111: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 111/154

Copyright @ Samir H. Mushrif

 z  F ,

33, yV 

22 , yV 

11, yV 

33 , x L

22 , x L

11, x L

44 , yV 

55 , yV 

44 , x L

55 , x L

3T 

2T 

54321   T T T T T   

1T 

4T 

5T 

1. How many “Heat Exchangers” do we

have and how many “Flash Drums” do

we have?

2. Is this energetically efficient?

3. How about the size of each flash drum?

112Adding reflux and boilup and combining the heat exchangers

yV

Page 112: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 112/154

Copyright @ Samir H. Mushrif

 z  F ,

33 , yV 

22 , yV 

11, yV 

33 , x L

22 , x L

11, x L

44 , yV 

55 , yV 

44 , x L

55 , x L

3T 

2T 

54321   T T T T T   

1

4T 

5

 D0 L

 B6V 

Do we really need the “heat exchangers”? 

113Let the heat and mass exchange happen simultaneously …

Page 113: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 113/154

Copyright @ Samir H. Mushrif

The two streams L4 and V 5 are exchanging “heat” and “mass” with each other  

Why not let them do it at the same time?

114From Cascades to Distillation Column

Page 115: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 115/154

Copyright @ Samir H. Mushrif

Designing a Binary Distillation Column 

Problem Statement:

116

Page 116: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 116/154

Copyright @ Samir H. Mushrif

Problem Statement:

I have a feed mixture of components “ A” and “ B” with a composition “ z ”

and I want to separate them to a desired composition

How many stages do I need?

What should be my feed location?

How much is the heat load on my reboiler and condenser?

Which equations do I have?

Material Balance

Energy Balance

Vapor –  Liquid Equilibrium Data

117Overall Mass and Energy Balance on a Distillation Column

Q

Page 117: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 117/154

Copyright @ Samir H. Mushrif

 D D   H  x D ,,0 L

 B B   H  x B ,,

 F  F   T  H  z  F  ,,,   D

 L R 0

C Q

 RQ

 D B

 DH  BH QQ FH 

 Dx Bx Fz 

 D B F 

 D B RC  F 

 D B

,calculatecanwe

 specified,isseparation

 of degreetheIf 

columnon the balance

EnergyandMaterial

118How to calculate heat load?

QHV

Page 118: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 118/154

Copyright @ Samir H. Mushrif

condenserthearound balance

EnergyandMaterialWriting

 D D   H  x D ,,0 L

 B B   H  x B ,,

 D

 L R 0

C Q

 RQ

11, H V 

1

110

01101

1

 

However,

1

 and

 H  H  x x

 x z  F  RQ

 x x

 x z  F  D

 Fx x x D

 x D F  Dx Bx Dx Fz 

 H  H  R D H  H  D LQ

 H  D LQ H V  D LV 

 D

 B D

 Bc

 B D

 B

 B B D

 B D B D

 D DC 

 DC 

 

  

 

 

 

 

 

Designing a Binary Distillation Column  119

M t i l B l E b l

Page 119: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 119/154

Copyright @ Samir H. Mushrif

 D0 L

 B

 z  F ,

Material Balances, Energy balances

and Equilibrium Relations:

Rectification section

Feed Tray

Stripping or Exhausting Section

Rectification section –  Lets start from the first tray … 120

BalancesMaterialWritingQ

Page 120: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 120/154

Copyright @ Samir H. Mushrif

 D0 L

11   x L   22   yV 

11, y x

5Equations

5and,,,areUnknowns

equations2,Components2

RelationsmEquilibriu,,,

BalanceEnergyWriting

 and

12221

1111112222

112212

 LV T  y x

T  xh L x Dh yT QT  y H V 

 Dx x L yV  D LV 

 D DC 

 D

  C Q

5Equations

5and,,,areUnknowns

equations2,Components2RelationsmEquilibriu

,,,

BalanceEnergyWriting

 and

BalancesMaterialWriting

23332

2222113333

223323

 LV T  y x

T  xh L x Dh yT QT  y H V 

 Dx x L yV  D LV 

 D DC 

 D

 D0 L

22 , y x

C Q

22   x L 33   yV 

Rectification section –  General set of equations 121

BalancesMaterialWriting

Page 121: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 121/154

Copyright @ Samir H. Mushrif

   

5Equations

5and,,,areUnknowns

equations2,Components2

RelationsmEquilibriu

,,,

BalanceEnergyWriting

 and

BalancesMaterialWriting

111

111111

111

 j j j j j

 j j j j D DC  j j j j

 D j j j j j j

 LV T  y x

T  xh L x Dh yT QT  y H V 

 Dx x L yV  D LV 

Can we write a similar set of equations for the stripping section?

Stripping section –  General set of equations  122

BalancesMaterialWriting

Page 122: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 122/154

Copyright @ Samir H. Mushrif

5Equations

5and,,,areUnknowns

equations2,Components2

RelationsmEquilibriu

,,

BalanceEnergyWriting

 and

BalancesMaterialWriting

11

1111

111

k k k k k 

 B Bk k k k  Rk k k k 

 Bk k k k k k 

 LV T  y x

 x BhT  xh LQT  y H V 

 Bx x L yV  B LV 

 Bk k    y x ,

 RQ

11     k k    x L k k    yV 

How do we know Q R ?

Is the partial reboiler like an additional distillation stage?

1nV 

Operating line for the stripping and rectification section  123

What is an “operating line” ? 

Page 123: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 123/154

Copyright @ Samir H. Mushrif

p g

A quick recap of our flash calculations

An (x,y ) line on which all the points satisfy the material balanceequations

 B

k k 

k k 

 D

 j

 j

 j

 j

 j

 j

 x

 L x

 L y

 xV 

 L

 xV 

 L

 y

 

 

 

 

 

 

 

 

1

sectionstrippingfor thelineOperating

1

sectionionrectificatfor thelineOperating

11

1

11

1

What is the slope of the

“operating line” ? +ve

or – ve?

Where do they

intersect the x = y  

diagonal?

What is the difference between this “operating line” and the one we saw during the

single stage flash calculation? Are x  j  and y  j +1 in equilibrium with each other?

Lets visualize it graphically …  124

Page 124: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 124/154

Copyright @ Samir H. Mushrif

 x 

  y

12

12

2

1

 and betweenRelation

1Slope

1TrayforlineOperating

 x y

 D LV V 

 L

   D x

11, y x

21, y x22

, y x

23

23

3

2

 and betweenRelation

1Slope

2TrayforlineOperating

 x y

 D LV V 

 L

 

32 , y x

Constant Molal Overflow (CMO) Approximation  125

How can we have a single straight line as our “operating line” for the

Page 125: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 125/154

Copyright @ Samir H. Mushrif

rectification (and stripping) section?

sectionStripping

sectionionRectificat

1

1

21

21

V V V V 

 L L L L

V V V V 

 L L L L

k  f   f  

k  f   f  

 j

 j

 Bk k 

 D j j

 xV 

 L x

 L y

 xV 

 L x

 L y

 

  

 

 

  

 

1

sectionstrippingfor thelineOperating

1

sectionionrectificatfor thelineOperating

1

1

Underlying assumption behind CMO  126

11222233 and DxxLyVDxxLyV

Page 126: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 126/154

Copyright @ Samir H. Mushrif

11   x L   22   yV 

22   x L 33   yV 

 

  

 

 

  

 

32

32

21

21

32

2122331122

23

12

2123

11222233

get,we balanceenergythefromAnd

 thenandIf 

 and

 y y

 H  H 

 x x

hh

 H  H hh

 LV h L H V h L H V 

 y y

 x x

 L

 L LV V 

 Dx x L yV  Dx x L yV   D D

The slopes of the liquid and vapor enthalpy lines are equal! They are parallel!

The latent heat does not depend on composition!

CMO Operating line in terms of reflux ratio  127

The operating line equations can also be written in terms of reflux ratio (R ) and

Page 127: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 127/154

Copyright @ Samir H. Mushrif

Boilup ratio (V B )

 B

 B

 B

 Bk 

 B

 B B

 D j j

 xV 

 xV 

V  y

 L B LV 

 B

V V 

 x R

 x R

 R y

 R

 R

 L

 D LV  D

 L

 R

 

  

 

 

  

 

11

sectionstrippingfor thelineOperating

1 and

1

1

1

sectionionrectificatfor thelineOperating

1 and

1

1

Page 128: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 128/154

Rectification Section (total condenser) 129

Page 129: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 129/154

Copyright @ Samir H. Mushrif

 x 

  y

 B x

1, n B   y x1, nn   y x

nn   y x ,

nn   y x ,1

Combining the rectification and stripping sections  130

Page 130: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 130/154

Copyright @ Samir H. Mushrif

 x 

  y

Where do you think the two lines (A, B or C) should intersect and why?

A

B

C

 feed  z 

Equation for the feed line  131

L V

Page 131: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 131/154

Copyright @ Samir H. Mushrif

 L   V 

 LV 

 F 

  z  F  L L F  F 

 F  F  x F  F  F  L L

 F  L L y

 F 

 Fz  x L L yV V 

 F  L LV V V  L LV  F 

 get,we byrdenominatoandnumeratorthedivingandtwotheCombining

get,we balancecomponenttheFrom

gettray wefeedon theBalanceMaterialtheFrom

Page 132: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 132/154

Feed Quality  133

L L L f  V 

Page 133: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 133/154

Copyright @ Samir H. Mushrif

 L   V 

 L   V 

 F 

liquidsubcooled1

q

 F  L L

 L   V 

 L   V 

 F 

 point bubbleatliquid1

q

 F  L L

 L   V 

 L   V 

 F 

feedvaporized partially10  

q

 F  L L

 f   L

 L   V 

 L   V 

 F 

 pointdewatVapors0

q

 L L

 f  V  L   V 

 L   V 

 F 

VaporsdSuperheate0

q

 L L

 f  V 

Feed Line on the plot  134

=   1

Page 134: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 134/154

Copyright @ Samir H. Mushrif

 x 

  y  z (Saturated Vapor) q=0

   (   S  a   t  u  r  a   t  e   d

   L   i  q  u   i   d   )  q  =

Where to introduce the feed?  135

Page 135: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 135/154

Copyright @ Samir H. Mushrif

 x 

  y

Feed introduced here –  

Below the optimum stage

No. of Stages Required = 7

 D x B x

Where to introduce the feed?  136

Page 136: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 136/154

Copyright @ Samir H. Mushrif

 x 

  y

Feed introduced here –  

Above the optimum stage

No. of Stages Required = 7

 D x B x

Where to introduce the feed?  137

Page 137: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 137/154

Copyright @ Samir H. Mushrif

 x 

  y

Feed introduced here –  

At the optimum stage

No. of Stages Required = 5

 D x B x

Limiting Cases –  Total Reflux (Minimum No. of Stages)  138

0  D B F 

Page 138: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 138/154

Copyright @ Samir H. Mushrif

1thenIf 

11

sectionstripping

 for thelineOperating

1thenIf 

1

1

1

sectionionrectificat

 for thelineOperating

1

1

 

 

 

 

 

  

 

 slopeV 

 xV  xV 

 y

 slope R

 x R

 x R

 R y

 B

 B B

k  B

 B

 D j j

 x 

  y

No. of Stages Required = 4

 D x B x

Limiting Cases –  Minimum Reflux (Infinite No. of Stages)  139

linesoperatingtwoThe

Page 139: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 139/154

Copyright @ Samir H. Mushrif

separationdesiredthe

 achievetorequiredare

 stagesof numberInfinite

curvemequilibriu

 on theintersect

p g

 x 

  y

No. of Stages Required = ∞ 

 D x B x

Page 140: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 140/154

Open Steam Distillation  141

CQ  For separations involving a

Page 141: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 141/154

Copyright @ Samir H. Mushrif

 D

 D

 H 

 x D ,,

0 L

 B B   H  x B ,,

 F  F   T  H  z  F  ,,,   D

 L R 0

 s H S ,

mixture of a light component

(ex.methanol) and water.

Since the bottom product is rich

in less volatile component

(water), instead of partially

reboiling water ( with a bit of

methanol), lets supply pure

water vapors.

How will the overall balance change?

How will the tray-balance change?

Open Steam Distillation  142

C Q EnergyandMaterial

Page 142: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 142/154

Copyright @ Samir H. Mushrif

 D

 D

 H 

 x D ,,

0 L

 B B   H  x B ,,

 F  F   T  H  z  F  ,,,   D

 L R 0

 s H S ,lculate)tables/ca(steam

steamof enthalpytheis

late)data/calcu(enthalpy

obtained becan

andn,compositio product

 bottomandtoptheknowweIf 

(3) 

(2) (1) 

columnon the balance

 D B

 D BS C  F 

 D B

 H 

 H  H 

 DH  BH SH Q FH 

 Dx Bx Fz  D BS  F 

Can we solve the material balance independently?

If reflux ratio is specified…  143

EnergyandMaterialWritingC Q11, H V 

Page 143: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 143/154

Copyright @ Samir H. Mushrif

condenserthearound balance

EnergyandMaterialWriting

 D D   H  x D ,,0 L

 B B   H  x B ,,

 D

 L R 0

 RQ

coupledare balancesEnergyandMaterial

(5)and(2)(1),equations;3and

 and,unknowns;threehaveonlyWe

(5) 1

(3),eq.in(4)ngSubstituti

(4) 1

 and

1

110

01101

 D BS 

 DH  BH  H  H  R DSH  FH 

 H  H  R D H  H  D LQ

 H  D LQ H V  D LV 

 D B DS  F 

 D DC 

 DC 

Internal Balances (Rectification section and Feed line)  144

C Q Is the rectification section of

di ill i l

Page 144: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 144/154

Copyright @ Samir H. Mushrif

0 L

 B B   H  x B ,,

 F  F   T  H  z  F  ,,,   D

 L R 0

 s H S ,

“Open Steam” distillation column

any different?

Does the feed tray look any

different?

 D j j   xV 

 L x

 L y  

 

  

  1

sectionionrectificatfor thelineOperating

ion,approximatCMOUnder

1

 1

1

1

 linefeedfor thelineOperating

 z q

 xq

q y

Page 145: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 145/154

Operating lines for Open Steam Distillation 146

Page 146: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 146/154

Copyright @ Samir H. Mushrif

 x 

  y

 D x B x

sectionionRectificatV 

 LSlope 

1forlineFeed   q

sectionStrippingV 

 L

Slope 

 B x x-  asinterceptanhaslineOperating

diagonal.intersectnotdoeslineOperating   B

 Bk k 

 x x y

 xV 

 L x

 L y

 

  

 

 

  

   

 ,0atHence

1

Multiple feed streams 147

C Q How many operating lines will be

h i hi di ill i l ?

Page 147: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 147/154

Copyright @ Samir H. Mushrif

 D x D,0 L

 B x B,

11, z  F 

 RQ

22 , z  F 

there in this distillation column?

Multiple feed streams 148

C Qion,approximatCMOUnder

Page 148: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 148/154

Copyright @ Samir H. Mushrif

 D x D,0 L

 B x B,

11, z  F 

 RQ

22 , z  F 

tion

 j

tion

tion

 D j

 D j j

 x

 L y

 Dx x

 L

 xV 

 L x

 L y

secsec

sec

11

1

1

1

1

11

 

1

 1SectionforlineOperating

 

  

 

1

2

3

11, LV 

22 , LV 

33 , LV 

Multiple feed streams 149

C Qion,approximatCMOUnder

Page 149: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 149/154

Copyright @ Samir H. Mushrif

 D x D,0 L

 B x B,

11, z  F 

 RQ

22 , z  F 

3

2211

3

3

2

11

2

2

11

1

3Section

2Section

1Section

 z  F  z  F  Dx xV 

 L y

 z  F  Dx x

 L y

 Dx x

 L y

 D

 D

 D

1

2

3

11, LV 

22 , LV 

33 , LV 

Multiple feed streams: McCabe – Thiele Method 150

Find x D on the diagonal and draw the

operating line for section–1

Page 150: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 150/154

Copyright @ Samir H. Mushrif

operating line for section – 1.

Feed characteristics are given and you

can draw the feed line for F 1 andoperating line for section – 1 intersects

the feed line.

Material balance on feed tray for F 1 and

calculate L2 and V 2 (know the slope).

Draw the operating line for section – 2. Feed characteristics are given and you

can draw the feed line for F 2 and

operating line for section – 2 intersects

the feed line.

Operating line for section – 3 will pass

through x B. x 

  y

 D

 x B

 x

1forlineFeed   F 

1Section

2forlineFeed   F 

2Section

3Section

1 z 2 z 

Side stream  151

C Q Will the operating lines look the

Page 151: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 151/154

Copyright @ Samir H. Mushrif

 D x D,0 L

 B x B,

S  xS ,

 RQ

 z  F ,

same as those of Multiple feed

streams?

Page 152: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 152/154

153

C Q

Side stream 

ion,approximatCMOUnder

Page 153: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 153/154

Copyright @ Samir H. Mushrif

 D x D,0 L

 B x B,

 RQ

 z  F ,

1

2

3

11, LV 

22 , LV 

33 , LV 

S  xS ,

33

3

22

2

11

1

3Section

2Section

1Section

 Fz Sx Dx xV 

 L y

Sx Dx x

 L y

 Dx x

 L y

S  D

S  D

 D

Side stream: McCabe – Thiele Method 154

Find x D on the diagonal and draw the

operating line for section–1.

Page 154: Course Slides Jan 05 2015(1)

8/10/2019 Course Slides Jan 05 2015(1)

http://slidepdf.com/reader/full/course-slides-jan-05-20151 154/154

operating line for section   1.

Calculate the slope of the operating line

for section – 2 (slope less than theoperating line for section – 1). You can

draw the “pseudo-feed line”. You can

also calculate the y – intercept.

Feed characteristics are given and you

can draw the feed line for F 2 andoperating line for section – 2 intersects

the feed line.

Operating line for section – 3 will pass

through x B.

The last stage in section – 1 has to end at

the intersection of operating lines of

section 1 and section 2

 x 

  y

 D

 x B x

1Section

2forlineFeed   F 

2Section

3Section

S  x z