Cours3 radio link - INSA Lyon

38
Physical layer modelling for future wireless networks 3- Modulation, BER and radio link quality

Transcript of Cours3 radio link - INSA Lyon

Page 1: Cours3 radio link - INSA Lyon

Physical layer modelling for future wireless networks

3- Modulation, BER and radio link quality

Page 2: Cours3 radio link - INSA Lyon

JM G

orc

e -

CIT

I -D

ept T

éléc

om

s

2

Modulation, BER and radio linkModulation, BER and radio link

1- Introduction

2- Basis of modulation� Carrier frequency

� Modulation principle

� Binary modulation

� Digital modulation

� Frequency modulation

3- BER modelling� AWGN

� BPSK /QPSK

� BER for other modulations

4- BER on fading� Time-varying channel

� Rayleigh fading

� Rice fading

� Outage probability

5- PER modelling� pseudo-stationary

� PER computation

� Error coding

� Memory channels

6- Conclusion

Page 3: Cours3 radio link - INSA Lyon

JM G

orc

e -

CIT

I -D

ept T

éléc

om

s

3

II --introductionintroduction

� The quality of a radio link relies on the transmission success probability � reliability– Transmission errors depend on SNR, interference,…

– Packet error rate (PER) depends on bit error rate (BER) and packet size, coding, …

– The instantaneous BER depends on the instantaneous SNR

– Time-varying properties of transmission errors (due to fading, shadowing, …) impact the resulting mean error rate

Page 4: Cours3 radio link - INSA Lyon

JM G

orc

e -

CIT

I -D

ept T

éléc

om

s

4

IntroductionExample

– Setup• AWGN channel• mod BPSK• White noise • Nb bits (200) �PER ~ Nb.BER

AB

SNR

0 100 200 300 400 500-80

-70

-60

-50

-40

-30

-20P(d) dBm

PER

0 100 200 300 400 50000.10.20.30.40.50.60.70.80.9

1

d

PE

R

Page 5: Cours3 radio link - INSA Lyon

JM G

orc

e -

CIT

I -D

ept T

éléc

om

s

5

IntroductionExample (cont.)

– Coverage area ?

– range?– threshold ???

We have : Surf2 > Surf1

0 100 200 300 400 50000.10.20.30.40.50.60.70.80.9

1

d

PE

R

Critical zone

AB

SNR

PER

321

321

d

Page 6: Cours3 radio link - INSA Lyon

JM G

orc

e -

CIT

I -D

ept T

éléc

om

s

6

IntroductionExample (cont.)

• Fading– Rayleigh channel

Γ

Fading duration

-5 0 5 10 1510-5

10-4

10-3

10-2

10-1

100BER in AWGN and Rayleigh channels

Eb/No

BE

R

AWGN Rayleigh

Page 7: Cours3 radio link - INSA Lyon

JM G

orc

e -

CIT

I -D

ept T

éléc

om

s

7

IntroductionExample (cont.)

• AWGN vs Rayleigh– In Rayleigh conditions, no reliable transmissions

0 100 200 300 400 5000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d

PE

R

AWGN

Rayleigh+13dB

Rayleigh

Page 8: Cours3 radio link - INSA Lyon

JM G

orc

e -

CIT

I -D

ept T

éléc

om

s

8

22-- ModulationModulation

Basis of modulation1) Carrier frequency

2) Modulation principle

3) Binary modulation

4) Digital modulation

5) Frequency modulation

Page 9: Cours3 radio link - INSA Lyon

JM G

orc

e -

CIT

I -D

ept T

éléc

om

s

9

modulation1) Carrier frequency

( )000 2cos)( ϕπ +⋅= tfAtp

frequencyf0-f0

Q

I

A0

ϕ0

time

tfjj eeAtp 00 20)( πϕ ⋅⋅=

Amplitude-phase representation

Complex notations

0A

Page 10: Cours3 radio link - INSA Lyon

JM G

orc

e -

CIT

I -D

ept T

éléc

om

s

10

modulation2) Modulation principle

– Modulation = the carrier signal characteristics are slowly modified (such as W <<f0)

The RF signal : tfjRF etAts 02)()( π⋅=

time

W

f0-f0

frequency

W ~ 1,4.Rs.

-4 -3 -2 -1 0 1 2 3 40

0.5

1

Time (t/Ts)

0.20.40.60.8

1

Ts Rs =1/Ts.

Page 11: Cours3 radio link - INSA Lyon

JM G

orc

e -

CIT

I -D

ept T

éléc

om

s

11

modulation3) Binary modulation

Carrier frequency

Amp. mod.

Freq. mod.

Phase mod.

1 0 1 0 1 1

( ) ( )tfjntnfjRF eAenkts 02

0)()(2)()( πϕπ ⋅⋅⋅= +∆

Page 12: Cours3 radio link - INSA Lyon

JM G

orc

e -

CIT

I -D

ept T

éléc

om

s

12

modulation4) Digital Modulation

BPSK / QPSK

Q

I

osc.

sRF(t)m(t)

BPSK (Binary Phase Shift Keying)

Q

I

QPSK (Quadrature Phase Shift Keying)

osc.

m(t) sRF(t)

e(-j2πf0t)

( ) ( )tf2jRFRF

0e)t(m)t(s)t(s π−⋅ℜ=ℜ=

Page 13: Cours3 radio link - INSA Lyon

JM G

orc

e -

CIT

I -D

ept T

éléc

om

s

13

modulation4) Digital Modulation (cont.)

Generalization : A bit word is coded in the amp./phase plan = constellation

M-PSK (M-ary Phase Shift Keying) M-QAM (Quadrature amplitude modulation)

+1-1

j

-j

j

+1-1

-j

Page 14: Cours3 radio link - INSA Lyon

JM G

orc

e -

CIT

I -D

ept T

éléc

om

s

14

modulation4) Digital Modulation (cont.)

• Some properties– Baseband coding– Mean power ?

• Symbol probability

– Number of bits per symbol• Bit rate vs symbol rate

– Constant amplitude modulation ?

Page 15: Cours3 radio link - INSA Lyon

JM G

orc

e -

CIT

I -D

ept T

éléc

om

s

15

modulation

• FSK coding– Transmitted signal

– Baseband coding ??m(t) =??

(((( ))))(((( ))))(((( ))))tff2jexpARe)t(e c ∆∆∆∆±±±±ππππ⋅⋅⋅⋅====

+1-1

j

-j

+∆ω∆ω∆ω∆ω

-∆ω∆ω∆ω∆ω

I-3 exemples de modulation

5) Frequency modulation

Page 16: Cours3 radio link - INSA Lyon

JM G

orc

e -

CIT

I -D

ept T

éléc

om

s

16

modulation

• MSK / GMSK coding– Baseband Waveform?

– The coder works directly with the phase

+1-1

j

-j

( ) ( ) ( ) ( )tfT

ttmtf

T

ttmtS c

bQc

bIMSK ππππ

2sin2

sin2cos2

cos)(

+

=

I-3 exemples de modulation

Peculiar case :

5) Frequency modulation (cont.)

Page 17: Cours3 radio link - INSA Lyon

JM G

orc

e -

CIT

I -D

ept T

éléc

om

s

17

modulation

tTime Domain Frequency Domain

Modulation Domain

6) Signal analysis : VSA

Page 18: Cours3 radio link - INSA Lyon

JM G

orc

e -

CIT

I -D

ept T

éléc

om

s

18

33-- BER modelingBER modeling

1) AWGN

2) BPSK / QPSK error

3) BER for binary modulations

4) BER for higher order modulations

Page 19: Cours3 radio link - INSA Lyon

JM G

orc

e -

CIT

I -D

ept T

éléc

om

s

19

Fading1- AWGN

Received power• Signal model :

• Noise level– AWGN noise

Symbol power : Sk=Ak2 /2

Received energy per bit: Eb=Ak

2.Tb /2

0 Ttime

Ak

0 Ttime

Noise power : N=κ.T°.W=N0.W

Noise energy per symbol :EN=N0.W.Ts

κ=1.38.10-23 J/K Tk = 290 K (en réf. , T° en Kelvin)

note : ideal modulation : if Ts=1/W � EN=N0.

Page 20: Cours3 radio link - INSA Lyon

JM G

orc

e -

CIT

I -D

ept T

éléc

om

s

20

Fading

– Theoretical BER of a BPSK in AWGN

( )2

20

2

xx

e2

1)x(p σ

−−

σπ=

)1a(P)1a/1a(P)1a(P)1a/1â(P))k(err(P kkkkkk −=⋅−===⋅=−== +

u0

( ) ∫∞

− ⋅=

⋅=<

x

u duexerfc

xerfcxp

22

22

1)0( 0

π

σ

=

02

1

N

EerfcP b

e

2- BPSK/QPSK error

0 2 4 6 8 1010-6

10-5

10-4

10-3

10-2

10-1

Eb/N0 (dB)

BE

R

Page 21: Cours3 radio link - INSA Lyon

JM G

orc

e -

CIT

I -D

ept T

éléc

om

s

21

Fading

• An usual function for BER

– Q-function :

– BPSK / QPSK :

– DPSK :

– FSK :

– GMSK :

3- BER for binary modulations

( )

=22

1 zerfczQ

=

0

2

N

EQP b

e

0 2 4 6 8 1010-6

10-5

10-4

10-3

10-2

10-1

Eb/N0 (dB)

BE

R

BPSKQPSKDPSKFSK GMSK

=

0N

EQP b

e

−=

0

exp2

1

N

EP b

e

⋅=0

2

N

EQP b

e

α

68,0=α for GMSK with BT=0.25 (GSM)

Page 22: Cours3 radio link - INSA Lyon

JM G

orc

e -

CIT

I -D

ept T

éléc

om

s

22

Fading

• Increasing the modulation order, decreases the distance between points, at constant power :– Example : M-PSK

distance between symbols:

Symbol error rate

4- BER for higher order modulations

+1-1

j

-j

=M

Ed sM

πsin2

( )

=

≤MN

EQ

MN

MEQP sb

s

ππsin

42sin

log22

00

2

Note : find the best coding scheme with M=8What is the corresponding BER?

Page 23: Cours3 radio link - INSA Lyon

JM G

orc

e -

CIT

I -D

ept T

éléc

om

s

23

Fading

• The symbol error rate (SER) can be often approximated by:

• Find the performance of M-FSK, M-QAM, M-PSK

• Further readings– Spreading spectrum (DSSS)– OFDM

5- Conclusion

⋅=

0N

EkQP s

s α

Page 24: Cours3 radio link - INSA Lyon

JM G

orc

e -

CIT

I -D

ept T

éléc

om

s

24

44-- BER on fading channelsBER on fading channels

1) Time-varying channel

2) Rayleigh Fading

3) Rice fading

4) Outage probability

Page 25: Cours3 radio link - INSA Lyon

JM G

orc

e -

CIT

I -D

ept T

éléc

om

s

25

Fading1- time-varying channels

Γ

Fading duration

γγγ dppp eerr )()(0

⋅= ∫∞

[ ] )t(m)t(h)t(h)t(h)t('m N21 ⊗+++= L

m(t)

m’(t)

Page 26: Cours3 radio link - INSA Lyon

JM G

orc

e -

CIT

I -D

ept T

éléc

om

s

26

Fading

• No main path : NLOS : – The resulting baseband signal is random (complex gaussian)

Diffuse response :

+1-1

BPSK

2- Rayleigh fading

Page 27: Cours3 radio link - INSA Lyon

JM G

orc

e -

CIT

I -D

ept T

éléc

om

s

27

Fading

A α(t) η(t)

sRF(t) yRF(t)

( ) ( ) ( ) ( )ttstAty RFRF ηα +⋅=

( ) ( ) ( )tjett ϕαα ⋅=

Normalized, i.e. unitary mean gain :

( ) ( ) ( ) 12 2222 ==+== σαα yExEEG

xRF(t)

pathloss fading noise

2- Rayleigh fading (cont.)

Page 28: Cours3 radio link - INSA Lyon

JM G

orc

e -

CIT

I -D

ept T

éléc

om

s

28

Fading

Instantaneous SNR : ( ) ( )( )( )( ) ( )

0

2

2

2

N

Et

tE

txEt bRF α

ηγ ==

( )( ) ( )( )00

2

N

E

N

EtEtE bb ===Γ αγMean SNR :

2- Rayleigh fading (cont.)

<

≥=−

00

0exp)(2

2

22

αα

σα

α σα

p

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ξ=α/σ

distribution de Rayleigh normalisée p(x)

Γ−

Γ=⋅=

γ

γααγ exp

1)()(

d

dpp

Page 29: Cours3 radio link - INSA Lyon

JM G

orc

e -

CIT

I -D

ept T

éléc

om

s

29

Fading

– Consequences are fundamental

Γ−Γ−=

⋅= ∫∞

11

2

1

)()(0

γγγ dppp eerr

-5 0 5 10 1510-5

10-4

10-3

10-2

10-1

100

BER in AWGN and Rayleigh channels

Eb/No

BE

R

AWGN Rayleigh

2- Rayleigh fading (cont.)

Page 30: Cours3 radio link - INSA Lyon

JM G

orc

e -

CIT

I -D

ept T

éléc

om

s

30

Fading

• AWGN channel � Rayleigh channel

0 100 200 300 400 5000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d

PE

R

AWGN

Rayleigh+13dB

Rayleigh

Page 31: Cours3 radio link - INSA Lyon

JM G

orc

e -

CIT

I -D

ept T

éléc

om

s

31

Fading

• One main path + diffuse componentsRice distribution

3- Rice fading

+1-1

BPSK

<

≥≥

⋅⋅=+−

00

00;exp)( 202

2

2

22

α

ασ

ασα

α σα

AA

Ip

A

k=A2/2σ2

1 key parameter :

Ratio between LOS and diffusecomponents

0 0.5 1 1.5 2 2.50

0.2

0.4

0.6

0.8

1

1.2

1.4

Instantaneous amplitude x

f(x)

Rice distribution at constant power (A2/2+σ2=1)

k=5k=2 k=1 k=0

Page 32: Cours3 radio link - INSA Lyon

JM G

orc

e -

CIT

I -D

ept T

éléc

om

s

32

Fading

– Def : probability that the instantaneous SNR falls below a certain threshold

4- outage probability

( ) ( ) γγγγγ

dpPPth

thout ⋅=≤≤= ∫0

0:

Page 33: Cours3 radio link - INSA Lyon

JM G

orc

e -

CIT

I -D

ept T

éléc

om

s

33

55-- Packet (Frame) Error Rate Packet (Frame) Error Rate

1- pseudo-stationary hypothesis

In wireless networks, packets are frame-based :

The frame-based channel model:

Pseudo-stationary model :

the channel is assumed stationary during a frame

Γ

Fading durationFrame

Page 34: Cours3 radio link - INSA Lyon

JM G

orc

e -

CIT

I -D

ept T

éléc

om

s

34

PER2- PER computation

In AWGN, the BER is stationary :

In fading channel, the PER is averaged over time

In a general way, the PER is NOT given by:

For high SNR : ???

( ) ( )[ ]Nbp PerrcPP γ−−=≥= 110)(:

( ) ( )[ ]Nbp PP γγ −−≠ 11

( ) ( ) ( )[ ]( ) γγγγγγ

dPpP Nbp ⋅−−⋅= ∫

=0

11/

Page 35: Cours3 radio link - INSA Lyon

JM G

orc

e -

CIT

I -D

ept T

éléc

om

s

35

PER

• Exple :BCH codes

– bloc length– redundancy – minimal distance

3- Error coding

12 −= mntmknr *≤−=1*2 +≥ td

k bits (n-k) bits

Partie information Partie contrôleInformation part control part

(m >3)

( )

( ) ( )( )∑=

−⋅⋅

=t

k

kN

bkb

succ

bppk

N

P

0

1 γγ

γ

Page 36: Cours3 radio link - INSA Lyon

JM G

orc

e -

CIT

I -D

ept T

éléc

om

s

36

PER4- Memory channels

– Errors often appear in burst� discrete Markov chain Gilbert-Elliott (GE) model

G B

α

β α−1

β−1

)(GPe )(BPe

0 0

1 1

)(GPe

)(GPe

)(1 GPe−

)(1 GPe−

0 0

1 1

)(BPe

)(BPe

)(1 BPe−

)(1 BPe−

Page 37: Cours3 radio link - INSA Lyon

JM G

orc

e -

CIT

I -D

ept T

éléc

om

s

37

66-- conclusion conclusion

1- modulation principles have been derived

the throughput and the BER are closely related

2- BER has been derived

it is related to the SNR distribution

3- PER has been derived

realistic fading channels have been taken into account

coding is discussed

time-varying properties have been discussed

Page 38: Cours3 radio link - INSA Lyon

JM G

orc

e -

CIT

I -D

ept T

éléc

om

s

38

More readingsMore readings

� Books – T.H. Rappaport, Wireless communications, principle and practice

– S. Saunders, antennas and propagation for wireless communication systems

� PapersZ. Wang et al; “a simple and general parametrization quantifying performance in fading channels”, IEEE trans on

Communications, 2003

H. Bai et al; “error modeling schemes for fading channels in wireless communications: a survey”, IEEE communications surveys, vol5(2), 2003, http://www.comsoc.org

P. Pham et al; “New cross-layer design approach to ad hoc networks under Rayleigh fading”, IEEE J. on selected areas in communications, Janv2005

G. Zhou et al; “Models and solutions for radio irregularity in wireless sensor networks”. In ACM Trans. on sensor networks 2006

M. Takai et al; “Efficient wireless network simulations with detailed propagation models,” Wireless. Networks,01

P. J M. Belding-Royer et al; “Real-world environment models for mobile network evaluation,” IEEE Journal on selected areas in communications, 2005.

B. Miorandi & E. Altman; “Coverage and connectivity of ad-hoc networks in presence of channel randomness” In IEEE INFOCOM, Miami, USA, 2005

C. Bettstetter and C. Hartman; “Connectivity of wireless multihop networks in a shadow fading environment”. In Wireless Networks, 2005

R. Hekmat and P. Van Mieghem. “Study of connectivity in wireless ad-hoc networks with an improved radio model”. In Proc. of Intl’ workshop WiOpt, 2004.

N. Sadagopan et al. “ PATHS: Analysis of path duration statistics and their impact on reactive MANET routing protocols”, in: Proc. ACM MobiHoc, 2003.