Coupled_Axial-Shear-Flexure_Interaction_Hysteretic_Model_for_Seismic_Response_Assessment_of_Bridges.ppt...

download Coupled_Axial-Shear-Flexure_Interaction_Hysteretic_Model_for_Seismic_Response_Assessment_of_Bridges.ppt

of 28

Transcript of Coupled_Axial-Shear-Flexure_Interaction_Hysteretic_Model_for_Seismic_Response_Assessment_of_Bridges.ppt...

  • 7/21/2019 Coupled_Axial-Shear-Flexure_Interaction_Hysteretic_Model_for_Seismic_Response_Assessment_of_Bridges.ppt

    1/28

    1Quake Summit 2010

    10/08/2010

    Coupled Axial-Shear-Flexure Interaction Hyteretic!odel "or Seimic #epone

    Aement o" $rid%e

    Shi-&u 'u( )h*+* Student

    ,ian han%( Aitant )ro"eor

    +epartment o" Ci.il n.ironmental n%ineerin%ni.erity o" Cali"ornia( o An%ele

  • 7/21/2019 Coupled_Axial-Shear-Flexure_Interaction_Hysteretic_Model_for_Seismic_Response_Assessment_of_Bridges.ppt

    2/28

    2Quake Summit 2010

    3utline

    Introduction Motivation & Objectives

    Shear-Flexure Interaction Under Constant Axial Load

    Proposed Axial-Shear-Flexure Interaction ASFI! Sche"e Pri"ar# Curves and $#steretic Models Considerin% Co"bined Actions

    eneration o' Pri"ar# Curve Fa"il#

    Stress Level Index & ()o-sta%e Loadin% Approach

    Model *eri'ication Static C#clic (ests

    Co"parison )ith Fiber Section Model under Seis"ic Loadin%s

    Li"itations and +no)n Issues

    Factors A''ectin% ASFI & ,''ects on rid%e .esponses Arrival (i"e o' *ertical round Motion

    *ertical-to-$ori/ontal PA .atio

    Su""ar#

  • 7/21/2019 Coupled_Axial-Shear-Flexure_Interaction_Hysteretic_Model_for_Seismic_Response_Assessment_of_Bridges.ppt

    3/28

    3Quake Summit 2010

    Introduction

    !oti.ation

    rid%e colu"ns are subjected to co"bined actions o'

    axial0 shear and 'lexure 'orces due to structural and

    %eo"etrical constraints s1e)ed0 curved etc2! and the

    "ulti-directional earth3ua1e input "otions2

    Axial load variation can directl# i"pact the ulti"ate

    capacit#0 sti''ness and h#steretic behavior o' shear and

    'lexure responses2 Accurate seis"ic de"and assess"ent o' brid%es needs

    to realisticall# account 'or co"bined actions2

    345ecti.e

    An e''icient anal#tical sche"econsiderin% axial-shear-

    'lexural interaction Shear and 'lexural h#steretic "odelsre'lectin% the

    e''ects o' axial load variationand accu"ulated "aterial

    da"a%ee2%2 stren%th deterioration0 sti''ness de%radin%0

    and pinchin% behavior!

  • 7/21/2019 Coupled_Axial-Shear-Flexure_Interaction_Hysteretic_Model_for_Seismic_Response_Assessment_of_Bridges.ppt

    4/28

    4Quake Summit 2010

    Axial-Shear-Flexural Interaction

    4 Si%ni"icance o" 6on-linear Shear-Flexural Interaction

    73ce4e and Saatcio%lu 1989:

    Shear displace"ent can be si%ni'icant -- even i' a .C "e"ber is not

    %overned b# shear 'ailure as is the case in "ost o' .C colu"ns!2

    Inelastic shear behavior -- .C "e"bers )ith hi%her shear stren%th

    than 'lexural stren%th do not %uarantee an elastic behavior in shear

    de'or"ation2

    4 Couplin% o" Axial-Shear-Flexural #epone

    7l!andooh and ;ho4arah 200

  • 7/21/2019 Coupled_Axial-Shear-Flexure_Interaction_Hysteretic_Model_for_Seismic_Response_Assessment_of_Bridges.ppt

    5/28

    5Quake Summit 2010

    Axial-Shear-Flexure Interaction at !aterial e.el

    MCFT

    fsx

    fs#

    fcx

    fc#

    fx

    f#

    vx#

    vcx#

    x

    6

    y

    fc6

    fc7

    c

    7

    6

    6

    7

    7 77 70"ax 8 8

    0

    0

    6 799

    7

    crc

    c c

    c c

    sx s x y x

    sy s y y y

    ff

    f f

    f E f

    f E f

    = +

    = = =

    ,3uilibriu" Strain Co"patibilit# Constitutive La)

    *ecchio and Collins 6:;

  • 7/21/2019 Coupled_Axial-Shear-Flexure_Interaction_Hysteretic_Model_for_Seismic_Response_Assessment_of_Bridges.ppt

    6/28

    6Quake Summit 2010

    +eri.ation o" Flexural and Shear )rimary Cur.e

    5iscreti/e .C "e"ber into s"all pieces2 For each piece o' .C ele"ent0

    esti"ate M-= and >-? relationship b# Modi'ied Co"pression Field (heor#

    MCF(0 *ecchio and Collins 6:;

    M

    M=V*h

    dy

    VN

    yi

    V

    MCFT

    M

    =

    M

    +

    +

    F-UEL

    S-UEL

    SSI spring

    FNDN

    DECK

    S-UEL

    F-UEL

    Rigid C!"#n

    Input the *-@sand M- curve to

    Shear-U,L & Flexural-U,L2

    $s

    V

    S-UEL

    $#

    M

    %

    M

    F-UEL

    Inte%rate curvature and shear

    strain to %et displace"ent2

    BD E =id##i G ?id# H

    Flexural de"ormation Shear de"ormation

    h G @s

  • 7/21/2019 Coupled_Axial-Shear-Flexure_Interaction_Hysteretic_Model_for_Seismic_Response_Assessment_of_Bridges.ppt

    7/287Quake Summit 2010

    Shear-Flexure Interaction 7SFI: under Contant Axial oad

    0 5 10 15

    0

    10

    20

    30

    40

    50

    60

    70

    Total Displacement (mm)

    Shear(kN)

    total displ.

    shear displ.

    flexural displ.

    0 5 10 15

    0.02

    0.025

    0.03

    0.035

    0.04

    0.045

    0.05

    0.055

    0.06

    Total Displ. (mm)

    Shear-to-TotalDispl.Ratio

    0 0.5 1 1.5 2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4 M/V =0.076(m)1M/V =0.229(m)

    2M/V =0.381(m)

    3M/V =0.534(m)

    4M/V =0.686(m)

    5M/V =0.838(m)

    6M/V =0.991(m)

    7M/V =1.143(m)

    8M/V =1.296(m)

    9

    M/V ratio

    ColumnHeight(m)

    0 2 4 6 8 10 120

    50

    100

    150

    200

    250

    300

    Shear Strain (mm/m)

    Shear

    (kN)

    V-1

    V-2

    V-3

    V-4

    V-5

    V-6

    V-7

    V-8

    V-9

    0 5 10 15 20 25 300

    30

    60

    90

    Curvature (rad/km)

    Moment(kN-m)

    M-1

    M-2

    M-3

    M-4

    M-5

    M-6

    M-7

    M-8

    M-9

    dy

    V

    N

    yi

    M

    M=V*h

    Sections )ith di''erent M* ratio

    level o' shear-'lexural interaction!

    de"onstrate di''erent "echanicalproperties and behaviors

    Section )ith hi%her M* ratioJ Lar%er "o"ent capacit#

    S"aller shear capacit#

    Maxi"u" "o"ent capacit# isbounded b# pure bendin% case

  • 7/21/2019 Coupled_Axial-Shear-Flexure_Interaction_Hysteretic_Model_for_Seismic_Response_Assessment_of_Bridges.ppt

    8/288Quake Summit 2010

    Impro.ed Hyteretic #ule "or Shear Flexural Sprin%

    nloadin% reloadin% ti""ne depend on>

    Pri"ar# curve +elastic0 Crac10 & Kield!

    Crac1ed Kielded

    Shear 'orce level

    Max ductilit# experienced

    Loadin% c#cles at "ax ductilit# level

    Axial load ratio

    -80 -60 -40 -20 0 20 40 60 80-25

    -20

    -15

    -10

    -5

    0

    5

    10

    15

    20

    25

    Shear Displacement

    Shear

    Force

    Hysteretic Loop

    ,

    FA

    C

    5

    I

    +

    L

    M

    N

    O

    P

    .

    S

    (

    U

    *

    Shear 5isplace"ent

    ShearForce

    *cr

    *#

    "axi"u" pea1 @"0*"!

    hardenin% re'erence point

    @"0*

    "!

    previous pea1 @p0*

    p!

    pinchin% re'erence point @p0*p!

    $

    Structural characteristics

    5a"a%e in the colu"n

    Loadin% histor#

    *ar#in% durin% earth3ua1e QQ

    O/cebe and Saatcio%lu06:;:!

    &" 'nd (h'ng ), . EESD

  • 7/21/2019 Coupled_Axial-Shear-Flexure_Interaction_Hysteretic_Model_for_Seismic_Response_Assessment_of_Bridges.ppt

    9/289Quake Summit 2010

    3utline

    Introduction Motivation & Objectives

    Shear-Flexure Interaction Under Constant Axial Load

    Proposed Axial-Shear-Flexure Interaction ASFI! Sche"e Pri"ar# Curves and $#steretic Models Considerin% Co"bined Actions

    eneration o' Pri"ar# Curve Fa"il#

    Stress Level Index & ()o-sta%e Loadin% Approach

    Model *eri'ication Static C#clic (ests

    Co"parison )ith Fiber Section Model under Seis"ic Loadin%s

    Li"itations and +no)n Issues

    Factors A''ectin% ASFI & ,''ects on rid%e .esponses Arrival (i"e o' *ertical round Motion

    *ertical-to-$ori/ontal PA .atio

    Su""ar#

  • 7/21/2019 Coupled_Axial-Shear-Flexure_Interaction_Hysteretic_Model_for_Seismic_Response_Assessment_of_Bridges.ppt

    10/2810Quake Summit 2010

    ""ect o" Axial oad ?ariation on =otal )rimary Cur.e

    4 Ulti"ate capacit#and sti''nessincrease )ith co"pressive axial load level24 Kieldin% displace"entis al"ost 'ixed0 re%ardless o' applied axial load2

    4 Crac1in% pointis %ettin% s"aller as axial 'orce decreasin%0 i"pl#in% the

    colu"n bein% relativel# eas# to be crac1ed2

    0 10 20 30 400

    20

    40

    60

    80

    100

    Column Tip Drift (mm)

    Shear(kN)

    PEER-93

    P/P0=-5%(T)

    P/P0=-2%(T)

    P/P0= 0 (-)

    P/P0= 5%(C)

    P/P0=10%(C)P/P0=20%(C)

    0 5 10 15 20 250

    100

    200

    300

    400

    500

    600

    700

    Column Tip Drift (mm)

    Shear(kN)

    PEER-121

    P/P0=-5%(T)

    P/P0=-2%(T)

    P/P0= 0 (-)

    P/P0= 5%(C)

    P/P0=10%(C)P/P0=20%(C)

    0 50 100 150

    50

    100

    150

    200

    250

    Column Tip Drift (mm)

    Shear(kN)

    PEER-122

    P/P0=-5%(T)

    P/P0=-2%(T)

    P/P0= 0 (-)

    P/P0= 5%(C)

    P/P0=10%(C)P/P0=20%(C)

    +unnath et al2

    $5R2

    Calderone-;7;

    $5;29

    Calderone-T7;

    $5T29

  • 7/21/2019 Coupled_Axial-Shear-Flexure_Interaction_Hysteretic_Model_for_Seismic_Response_Assessment_of_Bridges.ppt

    11/2811Quake Summit 2010

    6ormaliation o" )rimary Cur.e

    -10 0 10 20 30 40

    0

    0.5

    1

    1.5

    2

    P/P0(%), Compression is "+".

    Vy(P/P0=n%)/Vy(P/P0=5%C) Y =-2.15*(X-0.60)

    2

    +1.65

    -10 0 10 20 30 40

    0

    0.5

    1

    1.5

    2

    2.5

    P/P0(%), Compression is "+".

    Vu(P/P0=n%)/Vy(P/P0=5%C) Y =-3.20*(X-0.60)

    2

    +2.32

    c! #ield load d! ulti"ate capacit#

    79

    9 9

    U!92 I SU!

    y

    y

    V P P n P

    V P P P

    == +

    =

    79

    9 9

    U!T279F 92

    U!

    u

    y

    V P P n P

    V P P P

    == +

    =

    -10 0 10 20 30 400

    0.1

    0.2

    0.3

    0.4

    0.5

    P/P0(%), Compression is "+".

    cr(P/P0=n%)/y(P/P0=5%C) Y = 0.68*(X+0.25)

    2+0.01

    -10 0 10 20 30 400

    0.2

    0.4

    0.6

    0.8

    1

    P/P0(%), Compression is "+".

    Vcr(P/P0=n%)/Vy(P/P0=5%C) Y = 1.47*(X+0.25)

    2+0.02

  • 7/21/2019 Coupled_Axial-Shear-Flexure_Interaction_Hysteretic_Model_for_Seismic_Response_Assessment_of_Bridges.ppt

    12/2812Quake Summit 2010

    ;eneration o" )rimary Cur.e Family

    i! 9crac1J strai%ht line

    ii! crac1

    #ieldJ interpolation

    iii! #ieldulti"ateJ interpolation

    U U

    !

    F U

    U U

    !

    U U

    U F U U

    !

    U U U U

    !

    2

    F !

    F !

    I I

    ii cr

    I

    y cr

    I I

    ii cr

    I I

    y cr

    n n n

    ii y cr cr

    n n n n

    ii y cr cr

    DL def level

    V VSL stress level

    V V

    DL

    V SL V V V

    =

    =

    = +

    = +

    iv! ulti"ate'ailureJ constant residual stren%th ratio

    ! !

    !

    !

    !

    n I

    iii iii

    I I

    iii y

    I I

    u y

    n n n n

    iii u y y

    ductility unchanged

    V VSL stress level

    V V

    V SL V V V

    =

    =

    = +

    U U

    ! !

    U

    !

    U

    U U

    !

    F

    n I

    iv iv

    I

    iv

    I

    u

    n n

    iv u

    ductility unchanged

    VRSR residual strength ratio

    V

    V RSR V

    =

    =

    =

    n pri"ar# curve predicted!

    I initial pri"ar# curve %iven!

    n critical points0 predicted 'ro" e3uations

    loadin%

    de'lection

    I critical points0 on initial pri"ar# curve

    a a

    a

    b bb

    i ii iii iv

    !

    !

    !

    !

    2

    2

    I

    i n n

    i crI

    cr

    I

    i n n

    i crI

    cr

    DL def level DL

    VSL stress level V SL V

    V

    = =

    = =

    ObjectiveJ eneratin% the pri"ar# curves related to various axial load levels

    'ro" a %iven pri"ar# curve subject to an initial axial load

  • 7/21/2019 Coupled_Axial-Shear-Flexure_Interaction_Hysteretic_Model_for_Seismic_Response_Assessment_of_Bridges.ppt

    13/2813Quake Summit 2010

    Stre e.el Index =@o-ta%e oadin% Approach

    ,3uivalent

    stress level ,3uivalent

    stress level

    -

    @#

    SU

    yV

    @6

    dc

    @"ax

    SU

    effV

    SU

    mV

    9

    @#

    9U

    yV

    @6

    d

    c

    @"ax

    9U

    effV

    9U

    mV

    69

    dc

    @#

    69U

    yV

    @6 @"ax

    69U

    effV

    69U

    mV

    +eep @0 chan%e NJ 69- +eep N0 chan%e @J @6@7

    69

    -

    69U

    effV

    SU

    effV

    @6@7

    69

    c d

    -

    69U

    effV

    SU

    effV

    @6

    c d

    @"ax

    Aumption>

    ,''ective stress level o' a loaded colu"n at

    'ixed ductilit# is independent o' axial load2"ax

    ,''ective Lateral Load0Stress Level Index

    Lateral Capacit# at 0

    eff

    m

    V c

    V d =

  • 7/21/2019 Coupled_Axial-Shear-Flexure_Interaction_Hysteretic_Model_for_Seismic_Response_Assessment_of_Bridges.ppt

    14/2814Quake Summit 2010

    3utline

    Introduction Motivation & Objectives

    Shear-Flexure Interaction Under Constant Axial Load

    Proposed Axial-Shear-Flexure Interaction ASFI! Sche"e Pri"ar# Curves and $#steretic Models Considerin% Co"bined Actions

    eneration o' Pri"ar# Curve Fa"il#

    Stress Level Index & ()o-sta%e Loadin% Approach

    Model *eri'ication Static C#clic (ests

    Co"parison )ith Fiber Section Model under Seis"ic Loadin%s

    Li"itations and +no)n Issues

    Factors A''ectin% ASFI & ,''ects on rid%e .esponses Arrival (i"e o' *ertical round Motion

    *ertical-to-$ori/ontal PA .atio

    Su""ar#

  • 7/21/2019 Coupled_Axial-Shear-Flexure_Interaction_Hysteretic_Model_for_Seismic_Response_Assessment_of_Bridges.ppt

    15/2815Quake Summit 2010

    Cyclic =et> xperimental )ro%ram =)0

  • 7/21/2019 Coupled_Axial-Shear-Flexure_Interaction_Hysteretic_Model_for_Seismic_Response_Assessment_of_Bridges.ppt

    16/2816Quake Summit 2010

    ?eri"ication o" )rimary Cur.e )rediction

    -80 -60 -40 -20 0 20 40 60 80-200

    -150

    -100

    -50

    0

    50

    100

    150

    200

    Displacement (mm)

    ShearForce(kN)

    Hysteretic Loop

    Analytical

    Experimental

    -80 -60 -40 -20 0 20 40 60 80-200

    -150

    -100

    -50

    0

    50

    100

    150

    200

    Displacement (mm)

    ShearForce(kN)

    Hysteretic Loop

    Analytical

    Experimental

    (P-9T7

    Sa1ai and +a)ashi"a

    $5T2TV

    (P-9T6

    Sa1ai and +a)ashi"a

    $5T2TV

    (P-9T6

    (P-9T7

    iven the pri"ar# curve o' (P-9T60 predicts the response o' (P-

    9T72

    iven the pri"ar# curve o' (P-

    9T70 predicts the response o' (P-

    9T62

  • 7/21/2019 Coupled_Axial-Shear-Flexure_Interaction_Hysteretic_Model_for_Seismic_Response_Assessment_of_Bridges.ppt

    17/2817Quake Summit 2010

    -80 -60 -40 -20 0 20 40 60 80-200

    -150

    -100

    -50

    0

    50

    100

    150

    200

    Displacement (mm)

    ShearForce(kN)

    Hysteretic Loop

    Analytical

    Experimental

    -80 -60 -40 -20 0 20 40 60 80-200

    -150

    -100

    -50

    0

    50

    100

    150

    200

    Displacement (mm)

    ShearForce(kN)

    Hysteretic Loop

    Analytical

    Experimental

    ?eri"ication o" !appin% 4et@een +i""erent Axial oad e.el

    (P-9TT

    Sa1ai and +a)ashi"a

    $5T2TV

    (P-9TR

    Sa1ai and +a)ashi"a

    $5T2TV

    (P-9T6

    (P-9T7

    T/-00

    T/-01

    Axial load decreasin%

    Axial load decreasin%

    Axial load

    increasin%

    Axial load

    increasin%

  • 7/21/2019 Coupled_Axial-Shear-Flexure_Interaction_Hysteretic_Model_for_Seismic_Response_Assessment_of_Bridges.ppt

    18/28

    18Quake Summit 2010

    +ynamic ?alidation @ith Fi4er Section !odel

    0 2 4 6 8 10-200

    0

    200

    Time (s)

    Shear(kN)

    0 2 4 6 8 10

    -20

    0

    20

    Time (s)

    TipDispl.(mm)

    -20 -10 0 10 20 30-200

    -150

    -100

    -50

    0

    50

    100

    150

    200

    Tip Displ. (mm)

    Shear(kN)

    OpenSees w/ V-EQ

    OpenSees w/o V-EQ

    ABAQUS w/ V-EQ

    ABAQUS w/o V-EQ

    4 Proposed ASFI "odel in

    %eneral produces lar%er

    displace"ent de"and than

    the 'iber section "odel2

    4 *ibration 're3uencies o' the

    t)o "odels a%ree )ith each

    other indicatin% reasonable

    prediction on the tan%ent

    sti''ness o' the proposed

    ASFI "odel2

    4 Considerin% onl# the SFI

    can #ield %ood prediction on

    the displace"ent de"and2

    AAUS ASFI Model

    OpenSees Fiber Model

  • 7/21/2019 Coupled_Axial-Shear-Flexure_Interaction_Hysteretic_Model_for_Seismic_Response_Assessment_of_Bridges.ppt

    19/28

    19Quake Summit 2010

    *

    @s

    M

    imitation and Eno@n Iue

    4 ,sti"ation on post-pea1 sti''ness o' pri"ar# curve 'a"il#

    "a# not be ade3uate2

    4 Ma# conver%e at an incorrect solution 'or s#ste"s )ith

    #ieldin% plat'or"2

    4 Ma# conver%e at an inconsistent de'or"ed con'i%uration

    'or so'tenin% s#ste"s2

    4 Use o' 'ull sti''ness "atrix can so"eho) i"prove the

    above-"entioned conver%ence issues0 ho)ever0 it is an

    as#""etric "atrix )hich o''sets "ost o' the advanta%es2

  • 7/21/2019 Coupled_Axial-Shear-Flexure_Interaction_Hysteretic_Model_for_Seismic_Response_Assessment_of_Bridges.ppt

    20/28

    20Quake Summit 2010

    3utline

    Introduction Motivation & Objectives

    Shear-Flexure Interaction Under Constant Axial Load

    Proposed Axial-Shear-Flexure Interaction ASFI! Sche"e Pri"ar# Curves and $#steretic Models Considerin% Co"bined Actions

    eneration o' Pri"ar# Curve Fa"il#

    Stress Level Index & ()o-sta%e Loadin% Approach

    Model *eri'ication Static C#clic (ests

    Co"parison )ith Fiber Section Model under Seis"ic Loadin%s

    Li"itations and +no)n Issues

    Factors A''ectin% ASFI & ,''ects on rid%e .esponses Arrival (i"e o' *ertical round Motion

    *ertical-to-$ori/ontal PA .atio

    Su""ar#

  • 7/21/2019 Coupled_Axial-Shear-Flexure_Interaction_Hysteretic_Model_for_Seismic_Response_Assessment_of_Bridges.ppt

    21/28

    21Quake Summit 2010

    Factor A""ectin% ASFI> Arri.al =ime o" ?ertical ;round !otion

    -0.4s-0.3s-0.2s-0.1s 0.0 0.1s 0.2s 0.3s 0.4s0

    1

    2

    3x 10

    6

    MaxBaseShear

    (N)

    tpeak

    V- tpeak

    H

    w/o V-EQ

    no shift on V-EQ

    -0.4s-0.3s-0.2s-0.1s 0.0 0.1s 0.2s 0.3s 0.4s0

    1

    2

    3x 10

    6

    MaxBase

    Shear(N)

    tpeakV- tpeakH

    w/o V-EQ

    no shift on V-EQ

    -0.4s-0.3s-0.2s-0.1s 0.0 0.1s 0.2s 0.3s 0.4s0

    2

    4

    6

    8

    10x 10

    6

    MaxBaseMoment(N-m)

    tpeak

    V- tpeak

    H

    w/o V-EQ

    no shift on V-EQ

    -0.4s-0.3s-0.2s-0.1s 0.0 0.1s 0.2s 0.3s 0.4s0

    2

    4

    6

    8

    10x 10

    6

    MaxBaseMoment(N-m)

    tpeak

    V- tpeak

    H

    w/o V-EQ

    no shift on V-EQ

    -0.4s-0.3s-0.2s-0.1s 0.0 0.1s 0.2s 0.3s 0.4s0

    0.02

    0.04

    0.06

    0.08

    MaxColumnDrift(m)

    tpeakV- tpeakH

    w/o V-EQ

    no shift on V-EQ

    -0.4s-0.3s-0.2s-0.1s 0.0 0.1s 0.2s 0.3s 0.4s0

    0.02

    0.04

    0.06

    0.08

    MaxColumnDrift(m)

    tpeak

    V- tpeak

    H

    w/o V-EQ

    no shift on V-EQ

    a! $J WN77X *J WN77 b! $J WN77X *J NOR

    0 2 4 6 8 10-0.5

    0

    0.5 0.4521(g)

    -0.4432(g)

    Time (s)

    Acceleration(g)

    H

    V

    0 2 4 6 8 10-0.5

    0

    0.5

    1

    0.4521(g)0.5352(g)

    Time (s)

    Acceleration(g)

    H

    V

    a! $ori/ontalJ WN77 (p92R;;s!X

    *erticalJ WN77 (p926T;s!

    b! $ori/ontalJ WN77 (p92R;;s!X

    *erticalJ NOR (p92T77s!

    No si%ni'icant correlation is 'ound2

  • 7/21/2019 Coupled_Axial-Shear-Flexure_Interaction_Hysteretic_Model_for_Seismic_Response_Assessment_of_Bridges.ppt

    22/28

    22Quake Summit 2010

    Factor A""ectin% ASFI> ?ertical-to-Horiontal );A #atio

    0.0 0.2 0.4 0.6 0.8 1.00

    1

    2

    3x 10

    6

    MaxBaseS

    hear(N)

    PGAV/ PGA

    H

    w/o V-EQ

    0.0 0.2 0.4 0.6 0.8 1.00

    1

    2

    3x 10

    6

    MaxBaseS

    hear(N)

    PGAV/ PGA

    H

    w/o V-EQ

    0.0 0.2 0.4 0.6 0.8 1.00

    2

    4

    6

    8

    10x 10

    6

    MaxBaseMome

    nt(N-m)

    PGAV/ PGA

    H

    w/o V-EQ

    0.0 0.2 0.4 0.6 0.8 1.00

    2

    4

    6

    8

    10x 10

    6

    MaxBaseMome

    nt(N-m)

    PGAV/ PGA

    H

    w/o V-EQ

    0.0 0.2 0.4 0.6 0.8 1.00

    0.02

    0.04

    0.06

    0.08

    MaxColumnDrift(m)

    PGAV/ PGA

    H

    w/o V-EQ

    0.0 0.2 0.4 0.6 0.8 1.00

    0.02

    0.04

    0.06

    0.08

    MaxColumnDrift(m)

    PGAV/ PGA

    H

    w/o V-EQ

    a! $J WN77X *J WN77 b! $J WN77X *J NOR

    0.0 0.2 0.4 0.6 0.8 1.0-1

    0

    1

    2x 10

    7

    PGAV/ PGA

    H

    AxialForce(N),comp.is"+"

    Column of Bridge#4 (H/D=2.5, P/P0=15%)

    subject to WN22 (T&V)

    Max

    min

    0.0 0.2 0.4 0.6 0.8 1.0-1

    0

    1

    2x 10

    7

    PGAV/ PGA

    H

    AxialForce(N),comp

    .is"+"

    Column of Bridge#4 (H/D=2.5, P/P0=15%)

    subject to WN22(T) & NO4(V)

    Max

    min

    a! $ori/ontalJ WN77 (p92R;;s!X

    *erticalJ WN77 (p926T;s!

    b! $ori/ontalJ WN77 (p92R;;s!X

    *erticalJ NOR (p92T77s!

    t*pea1Y t$

    pea1 -926s

    4 Lar%er PA*PA$ratio tends to have

    lar%er in'luence on 'orce de"and2

    4 No si%ni'icant correlation exists )ithdri't de"and2

  • 7/21/2019 Coupled_Axial-Shear-Flexure_Interaction_Hysteretic_Model_for_Seismic_Response_Assessment_of_Bridges.ppt

    23/28

    23Quake Summit 2010

    $rid%e #epone Coniderin% ASFI

    1 2 3 4 5 6 7 8 9 100

    0.02

    0.04

    0.06

    MaxCo

    lumnDriftRatio

    Bridge #4, H/D=5.0

    V+H

    H only

    1 2 3 4 5 6 7 8 9 100.5

    1

    1.5

    2

    2.5x 10

    6

    MaxSectionForce(N)

    1 2 3 4 5 6 7 8 9 100

    5

    10

    15x 10

    6

    MaxSectionMoment(N-m)

    1 2 3 4 5 6 7 8 9 100

    1

    2

    3

    4

    MaxDeckAcc.(g)

    Earthquake Index Number

    1 2 3 4 5 6 7 8 9 100

    0.01

    0.02

    0.03

    0.04

    MaxCo

    lumnDriftRatio

    Bridge #4, H/D=2.5

    V+H

    H only

    1 2 3 4 5 6 7 8 9 101.5

    2

    2.5

    3

    3.5x 10

    6

    MaxSectionForce(N)

    1 2 3 4 5 6 7 8 9 104

    6

    8

    10x 10

    6

    MaxSectionMoment(N-m)

    1 2 3 4 5 6 7 8 9 100

    1

    2

    3

    4

    MaxDeckAcc.(g)

    Earthquake Index Number

    -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06-3

    -2

    -1

    0

    1

    2

    3x 10

    6Force-Displacement //Longi.

    Column Drift (m)

    ShearForce(N)

    C1@B1

    C2@B1

    C1@B2

    C2@B2

    -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04-3

    -2

    -1

    0

    1

    2

    3x 10

    6 Force-Displacement //Trans.

    Column Drift (m)

    ShearForce(N)

    l

    l

    Force v2s2 total colu"n dri't $572!

    Considerin% axial variation does not

    chan%e overall brid%e responses

    "uch2

  • 7/21/2019 Coupled_Axial-Shear-Flexure_Interaction_Hysteretic_Model_for_Seismic_Response_Assessment_of_Bridges.ppt

    24/28

    24Quake Summit 2010

    Summary

    4 Axial load considerabl# a''ects the lateral responses o' .C

    colu"ns2

    4 Pri"ar# curves o' the sa"e colu"n under di''erent axial loads

    can be predicted ver# )ell b# appl#in% the nor"ali/ed pri"ar#

    curve and para"eteri/ed critical points2

    4 Mappin% bet)een loadin% branches correspondin% to di''erent

    axial load levels is "ade possible b# brea1in% the step into t)osta%esJ constant de'or"ation sta%e and constant loadin% sta%e2

    4 Model veri'ication sho)s that the proposed "ethod is able to

    capture the e''ects o' axial load variation on the lateral responses

    o' .C colu"ns2

    4 (ransient ti"e anal#sis on individual brid%e colu"n and onprotot#pe brid%e s#ste" sho)s that considerin% axial load

    variation durin% earth3ua1e events does not chan%e the dri't

    de"and si%ni'icantl#2

  • 7/21/2019 Coupled_Axial-Shear-Flexure_Interaction_Hysteretic_Model_for_Seismic_Response_Assessment_of_Bridges.ppt

    25/28

    25Quake Summit 2010

    ACE63+;!6=

    =hank "or your attention G

    (he research presented here )as 'unded b# NationalScience Foundation throu%h the Net)or1 'or ,arth3ua1e

    ,n%ineerin% Si"ulation .esearch Pro%ra"0 %rant CMMI-

    9T9VTV0 o# Pausch1e0 pro%ra" "ana%er2

    Thank You

  • 7/21/2019 Coupled_Axial-Shear-Flexure_Interaction_Hysteretic_Model_for_Seismic_Response_Assessment_of_Bridges.ppt

    26/28

    26Quake Summit 2010

    Analytical !odel "or #C Column

    )latic Hin%e !odel

    Usin% e3uivalent sprin%s to si"ulate shear

    and 'lexural responses o' colu"ns at theele"ent level

    ,"pirical and approxi"ate

    5i''icult to couple to%ether the axial0 shear0

    and 'lexural responses

    Nu"erical instabilit# in the adoptedh#steretic "odels "a# induce conver%ence

    proble"

    Fi4er Section Formulation

    Controllin% the ele"ent responses directl# at

    the "aterial level Couplin% the axial-'lexural interaction

    .otation o' principal axes in concrete as

    lar%e as T9Z! due to the existence o' shear

    stress is not considered

    ,lastic or ri%id bea"

    Linear or Nonlinear

    sprin% ele"ents

    2

    y

    3

    'iber

    y

    3

  • 7/21/2019 Coupled_Axial-Shear-Flexure_Interaction_Hysteretic_Model_for_Seismic_Response_Assessment_of_Bridges.ppt

    27/28

    27Quake Summit 2010

    +e"iciencie o" Current 6umerical !odel

    +e"iciencie o" Current !odel

    Non-linearit# in shear de'or"ation is not accounted 'or2

    Material da"a%e stren%th deterioration and pinchin%! due to c#clic loadin% is not considered2

    Axial-Shear-Flexural interaction is not captured2

    -60 -40 -20 0 20 40 60-150

    -100

    -50

    0

    50

    100

    150

    Dislacement mm

    Shear(kN)

    (a) Nonlinear Timoshenko Beam Element

    Test TP-021

    nonLinear M-

    -60 -40 -20 0 20 40 60-150

    -100

    -50

    0

    50

    100

    150

    Dislacementmm

    Shear(kN)

    (b) OpenSees Fiber Element

    Test TP-021

    OpenSees Fiber

  • 7/21/2019 Coupled_Axial-Shear-Flexure_Interaction_Hysteretic_Model_for_Seismic_Response_Assessment_of_Bridges.ppt

    28/28

    -60 -40 -20 0 20 40 60

    -200

    -100

    0

    100

    200

    -10.0%

    25.0%

    Total Displacement (mm)

    LateralLoad(kN

    )

    TP033: Axial Load= -10(-0.3%) ~ +310(+8.5%) kN

    predicted by equations

    0 5 10 15 200

    50

    100

    150

    200

    Total Displacement (mm)

    LateralLoad(kN)

    EXP

    P/Po= 12.80%

    proposed Eq's

    0 10 20 30 400

    50

    100

    150

    200

    -10.0%

    25.0%

    Total Displacement (mm)

    LateralLoad(kN

    )

    Primary Curve Family of TP-033

    0 5 10 150

    50

    100

    150

    200

    Total Displacement (mm)

    LateralLoad(kN)

    P/P0= 12.80%

    OpenSees

    Comparion o" )rimary Cur.e Family @ith Fi4er !odel

    4 Si#i!'r 5r6nds 'r6 7s6r86d 6296p5 ps5-yi6!d r6spns6:

    4 Fi76r S695in Md6! 86r6s5i#'56s ini5i'! s5i;;n6ss:

    4 Fi76r S695in Md6! "nd6r6s5i#'56s '2i'! !'d 6;;695s:

    0

    10