Couple Dtl

download Couple Dtl

of 58

Transcript of Couple Dtl

  • 8/17/2019 Couple Dtl

    1/58

    ECE  451 – Jose Schutt ‐ Aine   1

    ECE 451

    Coupled Lines

    Jose E. Schutt-Aine

    Electrical & Computer Engineering

    University of Illinois

     [email protected]

  • 8/17/2019 Couple Dtl

    2/58

    ECE  451 – Jose Schutt ‐ Aine   2

    Signal Integrity

    Crosstalk Dispersion AttenuationReflection Distortion Loss

    Delta I Noise Ground Bounce Radiation

    Sense Line

    Drive Line

    Drive Line

    Crosstalk Noise

  • 8/17/2019 Couple Dtl

    3/58

    ECE  451 – Jose Schutt ‐ Aine   3

    TEM 

    PROPAGATION

    L

     z

    C

    I

    V

    +

    -

     z

     Z o  Z1 Z2

    Vs

  • 8/17/2019 Couple Dtl

    4/58

    ECE  451 – Jose Schutt ‐ Aine   4

    Telegrapher’s Equations

     L: Inductance per unit length.

    C : Capacitance per unit length.

    L

     z

    C

    I

    V

    +

    -

    V I  L z t 

     I V C 

     z t 

  • 8/17/2019 Couple Dtl

    5/58

    ECE  451 – Jose Schutt ‐ Aine   5

    50 line 1

    line 2

    50

    line 1

    line 2

    50 line 1

    line 2

    line 1

    line 2

    Crosstalk noise depends on termination

  • 8/17/2019 Couple Dtl

    6/58

    ECE  451 – Jose Schutt ‐ Aine   6

    50 line 1

    line 2

    50

    line 1

    line 2

    line 1

    line 2

    tr = 1 ns tr = 7 ns

    Crosstalk depends on signal rise time

  • 8/17/2019 Couple Dtl

    7/58

    ECE  451 – Jose Schutt ‐ Aine   7

    50 line 1

    line 2

    50

    line 1

    line 2

    line 1

    line 2

    tr = 1 ns tr = 7 ns

    Crosstalk depends on signal rise time

  • 8/17/2019 Couple Dtl

    8/58

    ECE  451 – Jose Schutt ‐ Aine   8

    tr = 1 ns tr = 7 ns

    Crosstalk depends on signal rise time

    50 line 1

    line 2

    line 1

    line 2

    line 1

    line 2

  • 8/17/2019 Couple Dtl

    9/58

    ECE  451 – Jose Schutt ‐ Aine   9

    Coupled Transmission Lines

    ws

    h

    Cs

    V1

    V2

    I1

    I2

    Cs

    Cm

    Lm

  • 8/17/2019 Couple Dtl

    10/58

    ECE  451 – Jose Schutt ‐ Aine   10

    1 1 211 12

    V I I  L L

     z t t 

     

     

    1 1 211 12

     I V V C C 

     z t t 

     

     

    2 1 221 22

     I V V C C  z t t 

       

    Telegraphers Equations for Coupled Transmission Lines

    Maxwellian Form

    2 1 221 22

    V I I  L L

     z t t 

     

     

  • 8/17/2019 Couple Dtl

    11/58

    ECE  451 – Jose Schutt ‐ Aine   11

    1 1 2s m

    V I I  L L

     z t t 

     

     

    2 1 2m s

    V I I  L L

     z t t 

     

     

    1 1 1 2s m m

     I V V V C C C 

     z t t t 

     

     

    2 1 2 2m m s

     I V V V C C C  z t t t 

       

    Telegraphers Equations for Coupled Transmission Lines

    Physical form

  • 8/17/2019 Couple Dtl

    12/58

    ECE  451 – Jose Schutt ‐ Aine   12

    Relations Between Physical

    and Maxwellian Parameters

    (symmetric lines)

    L11 = L22 = Ls

    L12 = L21 = Lm

    C11 = C22 = Cs+Cm

    C12 = C21 = - Cm

  • 8/17/2019 Couple Dtl

    13/58

    ECE  451 – Jose Schutt ‐ Aine   13

    11 12e eV I  L L

     z t 

    11 12e e I I 

    C C  z t 

    Add voltage

    and current

    equations

     Z e

      = L11 + L12

    C 11 + C 12=

     Ls + Lm

    C s

    ve  =1

    (L11 + L12 )(C 11 + C 12 )=

    1

    (Ls + Lm )C s

    Ve : Even mode voltage

    Ie : Even mode current

    V e =1

    2V 1 + V 2( )

     I e =1

    2 I 1 + I 2( )

    Impedance

    velocity

    Even Mode

  • 8/17/2019 Couple Dtl

    14/58

    ECE  451 – Jose Schutt ‐ Aine   14

    Subtract voltage

    and current

    equations

    Vd : Odd mode voltage

    Id : Odd mode current

    Impedance

    velocity

    Odd Mode

    11 12d d V I  L L

     z t 

    11 12d d  I I 

    C C  z t 

    d 1 21

    V2

    V V 

    d 1 21I2

     I I 

    11 12

    d 11 12 2

    Z = = s m

    s m

     L L L L

    C C C C  

    11 12 11 12

    1 1v = =

    ( )( ) ( )( 2 )s m s m L L C C L L C C 

  • 8/17/2019 Couple Dtl

    15/58

    ECE  451 – Jose Schutt ‐ Aine   15

    +1   +1

    EVEN

    +1   -1

    ODD

    Mode Excitation

  • 8/17/2019 Couple Dtl

    16/58

    ECE  451 – Jose Schutt ‐ Aine   16

    PHYSICAL SIGNIFICANCE OF EVEN- AND

    ODD-MODE IMPEDANCES

    * Ze and Zd are the wave resistance seen by the even

    and odd mode travelling signals respectively.

    V 1 = Z 11 I 1 + Z 12 I 2

    V 2  = Z 21 I 1 + Z 22 I 2

    * The impedance of each line is no longer described

    by a single characteristic impedance; instead, we have

  • 8/17/2019 Couple Dtl

    17/58

    ECE  451 – Jose Schutt ‐ Aine   17

    Even-Mode Impedance: ZeImpedance seen by wave propagating through the coupled-

    line system when excitation is symmetric (1, 1).

    Odd-Mode Impedance: ZdImpedance seen by wave propagating through the coupled-

    line system when excitation is anti-symmetric (1, -1).

    Common-Mode Impedance: Zc = 0.5ZeImpedance seen by a pair of line and a common return by a

    common signal.

    Differential Impedance: Zdiff = 2ZdImpedance seen across a pair of lines by differential mode

    signal.

    Definitions

  • 8/17/2019 Couple Dtl

    18/58

    ECE  451 – Jose Schutt ‐ Aine   18

    EVEN AND ODD-MODE IMPEDANCES

    Z11, Z22 : Self Impedances

    Z12, Z21 : Mutual Impedances

    For symmetrical lines,

    Z11 = Z22 and Z12 = Z21

  • 8/17/2019 Couple Dtl

    19/58

    ECE  451 – Jose Schutt ‐ Aine   19

    EXAMPLE

    (Microstrip)

    r = 4.3Zs = 56.4

    Single Line

    Dielectric height = 6 mils

    Width = 8 mils

    r = 4.3

    Coupled Lines

    Height = 6 mils

    Width = 8 milsSpacing = 12 mils

    Ze = 68.1 Zd = 40.8

    Z11 = 54.4 Z12 = 13.6

  • 8/17/2019 Couple Dtl

    20/58

    ECE  451 – Jose Schutt ‐ Aine   20

    ( ,0) ( ,0) ( ,0) ( ,0)e d e d  tdr 

    e d e d  

    a t a t a t a t   I 

     Z Z Z Z 

    ( ,0) ( ,0)tdr e d  V a t a t   d a ( ,0) 0t   

    = 2

    tdr e

    tdr 

    V Z 

     I 

    Even Mode

    coaxial line

    Zg

    line 1

    line 2

    Zg

    stepgenerator 

    V b

    Vf  IT

    +

    -VT I2

    I1

    reference plane tied to ground 

    e g

    1

    Z = 2( ) Z1

    e

    e  

    e

    2

    v =e

    l

     

  • 8/17/2019 Couple Dtl

    21/58

    ECE  451 – Jose Schutt ‐ Aine   21

    coaxial line

    Zg

    Zg

    stepgenerator 

    V b

    Vf line 1

    line 2

    IT

    VTI2 reference plane floating

    +

    -

    I1

    tdr e d e d  V = a (t,0)+a (t,0)- a (t,0)-a (t,0)  f bV V 

    tdr

    ( ,0) ( ,0)I = e d 

    e d 

    a t a t  

     Z Z 

    tdr

    ( ,0) ( ,0)I =- e d 

    e d 

    a t a t  

     Z Z 

    ae(t,0) = 0 ,

    V tdr 

     I tdr  = 2 Z d 

    1 1 2l, v =

    2 1

    d d g

     Z Z   

       

     

    Odd Mode

  • 8/17/2019 Couple Dtl

    22/58

    ECE  451 – Jose Schutt ‐ Aine   22

    EXTRACT INDUCTANCE AND

    CAPACITANCE COEFFICIENTS

    s

    1L = +

    2

    e d 

    e d 

     Z Z 

    v v

    1s

    e e

    C  Z v

    m

    1L = -

    2

    e d 

    e d 

     Z Z 

    v v

    m

    1 1 1C = -

    2 e e d d   Z v Z v

    d s eZ < Z < Z

  • 8/17/2019 Couple Dtl

    23/58

    ECE  451 – Jose Schutt ‐ Aine   23

    20

    40

    60

    80

    100

    120

    4 6 8 10 12 14 16 18Spacing (mils)

    Even-Mode Impedanceh=3 mils

    h=5 mils

    h=7 mils

    h=10 mils

    h=14 mils

    h=21 mils

       Z  e   (

     

       )

    Measured even-mode impedance

  • 8/17/2019 Couple Dtl

    24/58

    ECE  451 – Jose Schutt ‐ Aine   24

    20

    25

    30

    35

    40

    45

    50

    4 6 8 10 12 14 16 18

    Spacing (mils)

    Odd-Mode Impedanceh=3 mils

    h=5 mils

    h=7 mils

    h=10 mils

    h=14 mils

    h=21 mils

       Z   d   (

     

       )

    Measured odd-mode impedance

  • 8/17/2019 Couple Dtl

    25/58

    ECE  451 – Jose Schutt ‐ Aine   25

    0.158

    0.16

    0.162

    0.164

    0.166

    0.168

    0.17

    4 6 8 10 12 14 16 18Spacing (mils)

    Even-Mode velocityh=3 mils

    h=5 mils

    h=7 mils

    h=10 mils

    h=14 mils

    h=21 mils

      v  e

       (  m   /  n

      s   )

    Measured even-mode velocity

  • 8/17/2019 Couple Dtl

    26/58

    ECE  451 – Jose Schutt ‐ Aine   26

    0.175

    0.18

    0.185

    0.19

    0.195

    0.2

    0.205

    0.21

    4 6 8 10 12 14 16 18

    Spacing (mils)

    Odd-Mode Velocity

    h=3 mils

    h=5 mils

    h=7 mils

    h=10 mils

    h=14 mils

    h=21 mils

      v   d

       (  m   /  n

      s   )

    Measured odd-mode velocity

  • 8/17/2019 Couple Dtl

    27/58

    ECE  451 – Jose Schutt ‐ Aine   27

    0

    50

    100

    150

    200

    250

    4 6 8 10 12 14 16 18

    Spacing (mils)

    Mutual Inductance   h=3 mils

    h=5 mils

    h=7 mils

    h=10 mils

    h=14 mils

    h=21 mils

       L  m    (  n

       H   /  m   )

    Measured mutual inductance

  • 8/17/2019 Couple Dtl

    28/58

    ECE  451 – Jose Schutt ‐ Aine   28

    10

    15

    20

    25

    30

    35

    40

    4 6 8 10 12 14 16 18

    Spacing (mils)

    Mutual Capacitance   h=3 milsh=5 mils

    h=7 mils

    h=10 mils

    h=14 mils

    h=21 mils

       C  m

       (  p   F   /

      m   )

    Measured mutual capacitance

  • 8/17/2019 Couple Dtl

    29/58

    ECE  451 – Jose Schutt ‐ Aine   29

    40

    50

    60

    70

    80

    90

    100

    110

    10 20 30 40 50

    Typical Even & Odd Mode Impedances

    ZevenZodd

       Z  e  v  e  n ,

       Z  o   d   d   (   O   h  m  s   )

    Distance (mils)

    Even & Odd Mode Impedances

  • 8/17/2019 Couple Dtl

    30/58

    ECE  451 – Jose Schutt ‐ Aine   30

    Microstrip : Inhomogeneous

    structure, odd and even-mode velocities

    must have different values.

    Stripline : Homogeneous configuration,

    odd and even-mode velocities have

    approximately the same values.

    Modal Velocities in Stripline and Microstrip

  • 8/17/2019 Couple Dtl

    31/58

    ECE  451 – Jose Schutt ‐ Aine   31

    Microstrip vs Stripline

    Microstrip (h =8 mils)

    w = 8 mils

    r = 4.32Ls = 377 nH/mCs = 82 pF/m

    Lm = 131 nH/m

    Cm = 23 pF/mve = 0.155 m/ns

    vd = 0.178 m/ns

    Stripline (h =16 mils)

    w = 8 mils

    r = 4.32Ls = 466 nH/mCs = 86 pF/m

    Lm = 109 nH/m

    Cm = 26 pF/mve = 0.142 m/ns

    vd = 0.142 m/ns

    50

    50

  • 8/17/2019 Couple Dtl

    32/58

    ECE  451 – Jose Schutt ‐ Aine   32

    -0.4

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    0.4

       V  o   l   t  s

    microstrip

    C

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

       V  o   l   t  s

    stripline

    C

    50

    50

    Microstrip vs Stripline

    Sense line response at near end

    Probe

  • 8/17/2019 Couple Dtl

    33/58

    ECE  451 – Jose Schutt ‐ Aine   33

    1( )  e e d d  

     j z j z j z j z

    v v v v

    e e d d  

    even odd  V z A e B e A e B e

     

    2 ( )  e e d d  

     j z j z j z j z

    v v v v

    e e d d  

    even odd  

    V z A e B e A e B e

     

    Zs1

    Zs2 ZL2

    ZL1line 1

    line 2

    General Solution for Voltages

  • 8/17/2019 Couple Dtl

    34/58

    ECE  451 – Jose Schutt ‐ Aine   34

    1

    1 1

    ( )  e e d d  

     j z j z j z j z

    v v v v

    e e d d  e d 

    even odd  

     I z A e B e A e B e Z Z 

     

    2

    1 1( )   e e d d  

     j z j z j z j zv v v v

    e e d d  

    e d 

    even odd  

     I z A e B e A e B e Z Z 

     

    Zs1

    Zs2 ZL2

    ZL1line 1

    line 2

    General Solution for Currents

  • 8/17/2019 Couple Dtl

    35/58

    ECE  451 – Jose Schutt ‐ Aine   35

    odd

    even

    First reflection

    even

    even

    odd

    odd

    Second reflection

    odd

    odd

    odd

    odd

    even

    even

    even

    even

    Zs1

    Zs2 ZL2

    ZL1line 1

    line 2

    Coupling of Modes

    (asymmetric load)

  • 8/17/2019 Couple Dtl

    36/58

    ECE  451 – Jose Schutt ‐ Aine   36

    Coupling of Modes

    (symmetric load)

    Zs

    Zs ZL

    ZLline 1

    line 2

    odd

    even

    First reflection

    even

    odd

    Second reflection

    odd

    even

  • 8/17/2019 Couple Dtl

    37/58

    ECE  451 – Jose Schutt ‐ Aine   37

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

       V  o   l   t  s

    0 5 10 15 20 25 30

    Time (ns)

    Drive Line at Near End

    35 40

    -0.15

    -0.1

    -0.05

    0

    0.05

    0.1

    0.15

    0.2

       V  o   l   t  s

    0 5 10 15 20 25 30

    Time (ns)

    Sense Line at Near End

    35 40

  • 8/17/2019 Couple Dtl

    38/58

    ECE  451 – Jose Schutt ‐ Aine   38

    1 2 3

    31 1 211 12 13

    V  I V V C C C 

     z t t t 

       

     

    32 1 221 22 23

    V  I V V C C C 

     z t t t 

       

     

    3 31 231 32 33

     I V V V C C C 

     z t t t 

       

     

    31 1 211 12 13

     I V I I  L L L

     z t t t 

       

     

    32 1 221 22 23

     I V I I  L L L

     z t t t 

       

     

    3 31 231 32 33

    V I  I I  L L L

     z t t t 

       

     

    Three‐Line Microstrip

    h i Al h d

  • 8/17/2019 Couple Dtl

    39/58

    ECE  451 – Jose Schutt ‐ Aine   39

    11 13( )V I 

     L L z t 

       

     

    11 13( ) I V 

    C C  z t 

       

     

    Subtract (1c) from (1a) and (2c) from (2a), we get

    This defines the Alpha mode with:

    1 3V V V    1 3 I I I    and

    The wave impedance of that mode is:

    11 13

    11 13

     L L Z 

    C C  

    and the velocity is 11 13 11 13

    1u

     L L C C   

    Three‐Line – Alpha Mode

    Th Li M d l D iti

  • 8/17/2019 Couple Dtl

    40/58

    ECE  451 – Jose Schutt ‐ Aine   40

    In order to determine the next mode, assume that

    1 2 3V V V V        

    1 2 3 I I I I       

    31 211 21 31 12 22 32 13 23 33V    I  I I 

     L L L L L L L L L z t t t 

                

     

    31 211 21 31 12 22 32 13 23 33 I    V V V 

    C C C C C C C C C   z t t t 

                

     

    By reciprocity L32

    = L23 , L

    21= L

    12, L

    13= L

    31

    By symmetry, L12

    = L23

    Also by approximation, L22   L11 , L11+L13   L11

    Three‐Line – Modal Decomposition

  • 8/17/2019 Couple Dtl

    41/58

    ECE  451 – Jose Schutt ‐ Aine   41

    31 211 12 13 12 112V    I  I I 

     L L L L L z t t t 

                

     

    In order to balance the right-hand side into I, we need to have

    12 11 2 11 12 13 2 11 12 22 L L I L L L I L L I    

    2

    12 122 L L  

    or  2   

    Therefore the other two modes are defined as

    The Beta mode with

    Three‐Line – Modal Decomposition

    Th Li B t M d

  • 8/17/2019 Couple Dtl

    42/58

    ECE  451 – Jose Schutt ‐ Aine   42

    The Beta mode with

    1 2 32V V V V     

    1 2 32 I I I I    

    The characteristic impedance of the Beta mode is:

    11 12 13

    11 12 13

    22

     L L L Z C C C 

      

    and propagation velocity of the Beta mode is

    11 12 13 11 12 131

    2 2

    u

     L L L C C C    

    Three‐Line – Beta Mode

    Three Line Delta Mode

  • 8/17/2019 Couple Dtl

    43/58

    ECE  451 – Jose Schutt ‐ Aine   43

    The Delta mode is defined such that

    1 2 32V V V V    

    1 2 32 I I I I   

    The characteristic impedance of the Delta mode is

    11 12 13

    11 12 13

    22

     L L L Z C C C 

     

    The propagation velocity of the Delta mode is:

    11 12 13 11 12 131

    2 2

    u

     L L L C C C   

    Three‐Line – Delta Mode

  • 8/17/2019 Couple Dtl

    44/58

    ECE  451 – Jose Schutt ‐ Aine   44

    1 0 1

    1 2 1

    1 2 1

     E 

     

    1 2 3

    Alpha mode

    Beta mode*

    Delta mode*

    Symmetric 3‐Line Microstrip

    In summary: we have 3 modes for the 3-line system

    *neglecting coupling between nonadjacent lines

    C l W id

  • 8/17/2019 Couple Dtl

    45/58

    ECE  451 – Jose Schutt ‐ Aine   45

    1 2 3

    r  = 4.3

    113 17 5

    ( / ) 16 53 16

    5 17 113

    C pF m

    346 162 67

    ( / ) 152 683 152

    67 162 346

     L nH m

    0.45 0.12 0.45

    0.5 0 0.50.45 0.87 0.45

     E 

    0.44 0.49 0.44

    0.5 0 0.50.10 0.88 0.10

     H 

    Coplanar Waveguide

    Co la a Wa e uide

  • 8/17/2019 Couple Dtl

    46/58

    ECE  451 – Jose Schutt ‐ Aine   46

    73 0 0

    ( ) 0 48 0

    0 0 94

    m Z 

    56 23 8

    ( ) 22 119 22

    8 23 56

    c Z 

    0.15 0 0

    ( / ) 0 0.17 00 0 0.18

     pv m ns

    1 2 3

    r  = 4.3

    Coplanar Waveguide

  • 8/17/2019 Couple Dtl

    47/58

    ECE  451 – Jose Schutt ‐ Aine   47

    WS' S'WS

    r h

    2S k 

    S W 

    ( ) : Complete Elliptic Integral of the first kind K k 

    '( ) ( ')K k K k  

    2 1/ 2' (1 )k k 

    30 '( ) (ohm)( )1

    2

    ocp

    K k  Z K k 

     

     

    1/ 22

    1cp

    v c 

     

    Coplanar Waveguide

  • 8/17/2019 Couple Dtl

    48/58

    ECE  451 – Jose Schutt ‐ Aine   48

    S WW

    r h

    120 '( ) (ohm)

    ( )1

    2

    ocs

    K k  Z 

    K k 

     

     

    Coplanar Strips

    Q lit ti C i

  • 8/17/2019 Couple Dtl

    49/58

    ECE  451 – Jose Schutt ‐ Aine   49

    Characteristic Microstrip Coplanar Wguide Coplanar strips

    eff * ~6.5 ~5 ~5

    Power handling High Medium Medium

    Radiation loss Low Medium Medium

    Unloaded Q High Medium Low or High

    Dispersion Small Medium Medium

    Mounting (shunt) Hard  Easy Easy

    Mounting (series) Easy Easy Easy

    * Assuming r =10 and h=0.025 inch

    Qualitative Comparison

    V Transmission Line

  • 8/17/2019 Couple Dtl

    50/58

    ECE  451 – Jose Schutt ‐ Aine   50

    2p

    h

    w

    dielectric

    ground 

    signal strip

    a s issio i e

    V Li Ch i i I d

  • 8/17/2019 Couple Dtl

    51/58

    ECE  451 – Jose Schutt ‐ Aine   51

    0

    50

    100

    150

    200

    250

    0 0.1 0.2 0.3 0.4 0.5 0.6

    w/h

    CHARACTERISTIC IMPEDANCE

    30º

    37.5º

    45º52.5º

    60º

    Microstrip

    0.7 0.8 0.9 1

       Z  o   (  o   h  m  s   )

    Calculated values of the characteristic impedance for a single-line v-strip structure as a

    function of width-to-height ratio w/h. The relative dielectric constant is r = 2.55.

    V‐Line Characteristic Impedance

    V Li Eff ti P itti it

  • 8/17/2019 Couple Dtl

    52/58

    ECE  451 – Jose Schutt ‐ Aine   52

    1.8

    1.85

    1.9

    1.95

    2

    2.05

    2.1

    2.15

    2.2

    0 0.1 0.2 0.3 0.4 0.5 0.6

    w/h

    EFFECTIVE PERMITTIVITY

    30º

    37.5º

    45º

    52.5º

    60º

    Microstrip

    0.7 0.8 0.9 1

       E   f   f  e  c   t   i  v  e   R  e   l  a

       t   i  v  e   D   i  e   l  e  c   t  r   i  c   C  o  n  s   t  a  n   t

    Calculated values of the effective relative dielectric constant for a single-line

    v-strip structure as a function of width-to-height ratio w/h.

    The relative dielectric constant is r = 2.55

    V‐Line – Effective Permittivity

    Th Li V T i i Li

  • 8/17/2019 Couple Dtl

    53/58

    ECE  451 – Jose Schutt ‐ Aine   53

    h

    y

    x

    Region2

    Region3

    Region4

    Region6

    Region1

    Region5

    2pw

    dielectricground surface

    signal strip

    s

    Three‐Line – V Transmission Line

    V‐Line and Microstrip

  • 8/17/2019 Couple Dtl

    54/58

    ECE  451 – Jose Schutt ‐ Aine   54

    74.00 -0.97 -0.23

    C (pF/m) = -0.97 74.07 -0.97

    -0.23 -0.97 74.00

    425.84 20.35 7.00

    L (nH/m) = 20.36 422.85 20.36

    7.00 20.35 425.84

    52.49 -5.90 -0.57

    C (pF/m) = -5.90 53.27 -5.90

    -0.57 -5.90 52.49

    609.74 113.46 41.79

    L (nH/m) = 113.54 607.67 113.54

    41.79 113.46 609.74

    Microstrip V-line

    Comparison of the inductance and capacitance matrices

     between a three-line v-line and microstrip structures.

    The parameters are p/h = 0.8 mils, w/h = 0.6 and r = 4.0.

    h

    y

    x

    Region2

    Region3

    Region4

    Region6

    Region1

    Region5

    2pw

    dielectricground surface

    signal strip

    s1 2 3

    i e a i o ip

    V Li C li C ffi i

  • 8/17/2019 Couple Dtl

    55/58

    ECE  451

     – Jose

     Schutt 

    ‐ Aine   55

    0

    50

    100

    150

    200

    250

    300

    350

    0 0.2 0.4 0.6 0.8 1 1.2s/h

    Mutual Inductance

    V-line

    microstrip

       L  m

       (  n   H   /  m   )

    0

    5

    10

    15

    20

    2530

    35

    40

    0 0.2 0.4 0.6 0.8 1 1.2s/h

    Mutual Capacitance

    V-line

    microstrip

       C  m

       (  p   F   /  m   )

    Plot of mutual inductance (top) and mutual capacitance (bottom) versus spacing-to-height ratiofor v-line and microstrip configurations. The parameters are w/h = 0.24, r = 4.0.

    V‐Line: Coupling Coefficients

  • 8/17/2019 Couple Dtl

    56/58

    ECE  451

     – Jose

     Schutt 

    ‐ Aine   56

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0 0.2 0.4 0.6 0.8 1 1.2s/h

    Coupling Coefficient

    V-line

    microstrip

       K  v

    Plot of the coupling coefficient versus spacing-to-height ratio for v-line and microstrip configurations.

    The parameters are w/h = 0.24, r = 4.0.

    V‐Line vs Microstrip: Coupling Coefficients

    Advantages of V‐Line

  • 8/17/2019 Couple Dtl

    57/58

    ECE  451

     – Jose

     Schutt 

    ‐ Aine   57

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    1 3 5 7 9 11 13 15 17

    microstrip

    V-60

    V-30

    Frequency (GHz)

    Line

    arAttenua

    tion

    Propagation Function

    2p

    h

    w

    dielectric

    ground

    signal strip

     Advantages of V Line

    * Higher bandwidth

    * Lower crosstalk

    * Better transition

    ground reference

    ground reference

     d  i e  l e c

      t  r  i c

     s  u  b s

      t  r a  t e

    signal strip

    Advantages of V‐Line

    I

  • 8/17/2019 Couple Dtl

    58/58

    ECE  451

     – Jose

     Schutt 

    ‐ Aine   58

    -8

    -7

    -6

    -5

    -4

    -3

    -2

    -1

    0

    0 5 10 15 20 25

    Insertion Loss

    Vline

    Microstrip   2   0   *   l  o  g   1   0   *   |   S   2   1   |

    Frequency (GHz)

    V‐Line vs Microstrip: Insertion Loss