Coulomb-excitation of the exotic nuclei 94 Kr and 96 Kr

25
Coulomb-excitation of the exotic nuclei 94 Kr and 96 Kr M. Albers 1 , N. Warr 1 , D. Mücher 1 , A. Blazhev 1 , J. Jolie 1 , B. Bastin 2 , C. Bernards 1 , J. Butterworth 3 , P. van Duppen 2 , S. Das Gupta 4 , H. de Witte 2 , J. Diriken 2 , C. Fransen 1 , L. Gaffney 5 , D. Jenkins 3 , N. Marginean 6 , D. Radeck 1 , S. Rigby 5 , M. Scheck 5 , M. Seidlitz 1 , B. Siebeck 1 , G. Simpson 7 , B.S. Nara Singh 3 , T. Thomas 1 , J. van de Walle 8 , B. Wadsworth 3 , the REX-ISOLDE Collaboration, and the MINIBALL Collaboration 1: Institut für Kernphysik der Universität zu Köln, Germany 2: Instituut voor Kern- en Stralingsfysíca, KU Leuven, Belgium 3: Department of Physics, University of York, United Kingdom 4: Dipartemento di Fisica, Universita di Camerino and INFN-Sezione di Perugia, Italy 5: Department of Physics, University of Liverpool, United Kingdom 6: H. Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania 7: LPSC, Universite Joseph Fourier Grenoble, France

description

Coulomb-excitation of the exotic nuclei 94 Kr and 96 Kr. - PowerPoint PPT Presentation

Transcript of Coulomb-excitation of the exotic nuclei 94 Kr and 96 Kr

Page 1: Coulomb-excitation of the exotic nuclei  94 Kr and  96 Kr

Coulomb-excitation of the exotic nuclei 94Kr and 96Kr

M. Albers1, N. Warr1, D. Mücher1, A. Blazhev1, J. Jolie1, B. Bastin2, C. Bernards1, J. Butterworth3, P. van Duppen2, S. Das Gupta4, H. de Witte2, J. Diriken2, C. Fransen1, L. Gaffney5, D. Jenkins3, N. Marginean6, D. Radeck1, S. Rigby5, M. Scheck5, M. Seidlitz1, B. Siebeck1, G. Simpson7, B.S. Nara Singh3, T. Thomas1, J. van de Walle8, B. Wadsworth3,

the REX-ISOLDE Collaboration, and the MINIBALL Collaboration

1: Institut für Kernphysik der Universität zu Köln, Germany2: Instituut voor Kern- en Stralingsfysíca, KU Leuven, Belgium3: Department of Physics, University of York, United Kingdom4: Dipartemento di Fisica, Universita di Camerino and INFN-Sezione di Perugia, Italy5: Department of Physics, University of Liverpool, United Kingdom6: H. Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania7: LPSC, Universite Joseph Fourier Grenoble, France8: PH Department, Cern, Switzerland

Page 2: Coulomb-excitation of the exotic nuclei  94 Kr and  96 Kr

Outline

1. Introduction and motivation

2. Experimental setup and data analysis

3. Experiment on 94Kr

4. Experiment on 96Kr

5. Conclusion and outlook

Page 3: Coulomb-excitation of the exotic nuclei  94 Kr and  96 Kr

Introduction

A~100 mass region is well suited for understanding

the development of collectivity

N=50

Shell closure

Page 4: Coulomb-excitation of the exotic nuclei  94 Kr and  96 Kr

0

20

40

60

80

100

120

140

160

180

200

36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68

neutron number

B (E

2))

Se

Kr

Sr

Zr

Mo

Ru

N=50Shell closure

1: A. Kumar, M.R. Guyne, Phys. Rev. C32(1985)2116;2: W. Urban et al., Nucl. Phys. A 689 (2001) 605

Interpretation: correlated occupation of Nilsson states: πg9/2 < - > ν h11/2 (1,2)krypton-isotopes: Z=36 reduced pn-interaction ?

Page 5: Coulomb-excitation of the exotic nuclei  94 Kr and  96 Kr

Mean-Square Charge Radii

Number of Neutrons

δ<

r2>

[fm

2]

M. Keim et al., Nucl. Phys. A586 (1995) 219-239

Page 6: Coulomb-excitation of the exotic nuclei  94 Kr and  96 Kr

N=50

Shell closure

E(2+1,96Kr)*=241 keV

*: N. Marginean et al., PRC80, (2009), 021301

Page 7: Coulomb-excitation of the exotic nuclei  94 Kr and  96 Kr

Setup of the experiment on 94Kr

Beam: 94Kr @2.85 MeV/u delivered by the REX-ISOLDE post accelerator primary target: UCX mass separation: “High Resolution Separator” (HRS) tcollect + tbreed ≈ 80ms ions at the target: 3∙105 ions/sec charge state: 22+

target: 196Pt (~17h) and 48Ti (~2h) particle and γ detectors:

the high-efficiency MINIBALL γ-ray spectrometer for the detection of the emitted γ quants

a DSSD detector for particle gate and Doppler-correction

an ionization chamber for measurement of beam composition and identification of beam contaminants

Page 8: Coulomb-excitation of the exotic nuclei  94 Kr and  96 Kr

MINIBALL γ-ray spectrometer

Online γ-spectrum with 268 MeV 94Kr beam on 196Pt target

94Sr

94Zr94Y

94Sr94Sr94Zr

511 keV 94Y

energy [keV]

ZrYSrRbKr 94β

18.6min

94β

75s

94β

2.73s

94β

212ms

94

Consisting of 8 MINIBALL

cluster detectors with 18 segments per cluster

Energy and efficiency calibration performed using a 152Eu source

Page 9: Coulomb-excitation of the exotic nuclei  94 Kr and  96 Kr

Double sided silicon strip detector (DSSD)

Consisting of four quadrants 16 annular strips per quadrant at the front 24 radiant segments per quadrant the back total area: 50cm² (93% active) calibration performed using a quad-alpha source

Page 10: Coulomb-excitation of the exotic nuclei  94 Kr and  96 Kr

Ionization chamber

Gas in ( CF4)

Ionization chamber

Si Detector

Ions from REX

Page 11: Coulomb-excitation of the exotic nuclei  94 Kr and  96 Kr

Ionization chamber Calibration (using a stable beam) is difficult:

Detector-response not linear to dE and E dE,E depending on Z,A,Q (stripping on Mylar-Foile!) working on simulations...

1: 4He2+

2: 12C3+

3: 16O4+

4: 20Ne5+

5: 40Ar10+

6: 80Kr20+1

2

3

4

5

6

A/q=4

Page 12: Coulomb-excitation of the exotic nuclei  94 Kr and  96 Kr

Identification of 94Kr beam components

94Kr

94Rb ≈ 30(3)%

T1/2 (94Kr)=212 mstcollect + tbreed ≈ 80msRadioactive decay law: ~24% of 94Kr decays to 94Rb

A/q=4.273

Page 13: Coulomb-excitation of the exotic nuclei  94 Kr and  96 Kr

Particle gated γ-spectra of 94Kr particles on 196Pt

plectrum plots

0,0

50,0

100,0

150,0

200,0

250,0

300,0

0,0 20,0 40,0 60,0 80,0 100,0 120,0 140,0 160,0 180,0 200,0

lab angle

lab

en

erg

y

annular strip

pa

rtic

le e

ne

rgy

Catkin* calculation of the reaction kinematic

Experimentally determinedparticle energy vs. lab angle

*: catkin2.02, W.N. Catford (1998,2005)

Kr+Rb-particles

Pt-particles

γ peaks caused by Coulex reaction appear Doppler shifted in the γ spectrum, because the Coulomb excited ions emit their γ probably in flight. By setting a particle gate, the Doppler shifted γ peaks can be corrected.

cos

c

v1EE 0γ

Page 14: Coulomb-excitation of the exotic nuclei  94 Kr and  96 Kr

Particle gated γ-spectra of 94Kr particles on 196Pt

energy [keV] energy [keV]

Particle gate on Kr-regionDoppler-correction for A=94

Particle gate on Pt-regionDoppler-correction for A=196

γPγPγPP

21

P coscos)cos(sinsinA

E21

A

E21f

4+->2+ 196Pt94Kr, 2+ ->0+

Page 15: Coulomb-excitation of the exotic nuclei  94 Kr and  96 Kr

Determination of the absolute transition strength Using the computer code CLX* by Ower et al, based

upon the Coulex theory of Winther and de Boer**

σP,T ~ B(E2 ; 2+1 0+

1)P,T

196Pt: B(E2; 2+1 0+

1) = 40.6(2) W.u.

94Kr: B(E2; 2+1 0+

1) = 23.5(52) W.u.

τ = 7.3(16) ps

TT

T

T

T

T

P

T

TP σ

W

W

b

b

N

N

ε

εσ

*: H. Ower, computer code CLX**: A. Winther and J. de Boer, Coulomb Excitation, (Academic, New York, 1965)

Page 16: Coulomb-excitation of the exotic nuclei  94 Kr and  96 Kr
Page 17: Coulomb-excitation of the exotic nuclei  94 Kr and  96 Kr

Setup of the experiment on 96Kr

Beam: 96Kr @2.85 MeV/u delivered by the REX-ISOLDE post accelerator primary target: UCX mass separation: “High Resolution Separator” (HRS) tcollect + tbreed ≈ 110ms Charge state: 23+ Particles at the target: 1.2∙104 ions/sec

Target: 196Pt (~9h): CERN-wide power failure Particle and γ detectors:

the high-efficiency MINIBALL γ-ray spectrometer for the detection of the emitted γ quants

A DSSD detector for particle gate and Doppler-correction

A Ionization chamber for measurement of beam composition and identification of beam contaminants

Page 18: Coulomb-excitation of the exotic nuclei  94 Kr and  96 Kr

Identification of 96Kr beam components

T1/2 (96Kr) ≈ 80 mstcollect + tbreed ≈ 110msRadioactive decay law: ~62% of 96Kr decays to 96Rb

ERest [ch.]

dEga

s [c

h.] dEgas [ch.]

T1-

Tim

e (s

)

96Kr, 96Rb

Beam-Gate

A/q=4.174

Page 19: Coulomb-excitation of the exotic nuclei  94 Kr and  96 Kr

Separation of 96Kr from decay products

T1/2 (96Kr) ≈ 80 mstcollect + tbreed ≈ 110msRadioactive decay law: ~62% of 96Kr decays to 96Rb

dEgas [ch.]

dEgas [ch.]

Cou

nts

Cou

nts

94Kr

94Rb

96Kr 96Rb

Page 20: Coulomb-excitation of the exotic nuclei  94 Kr and  96 Kr

Particle gated γ-spectra of 96Kr particles on 196Pt

annular strip

par

ticl

e en

erg

y

Experimentally determined particle energy vs. lab angle

Kr+Rb particles

Pt-particles

Page 21: Coulomb-excitation of the exotic nuclei  94 Kr and  96 Kr

Particle gated γ-spectra

Prompt γ, any particle

T1< 600 ms

?!

Gate on Kr+RbDoppler corrected for A=96T1 < 600 ms

Keep in mind: 4+->2+ 196Pt: 521 keV

552 keV? (~

195

keV

)

Page 22: Coulomb-excitation of the exotic nuclei  94 Kr and  96 Kr

Particle gated γ-spectra

?!

Gate on Kr+RbDoppler corrected for A=96T1 < 600 ms

Keep in mind: 4+->2+ 196Pt: 521 keV

552 keV? (~

195

keV

)

Prompt γ, any particle

T1> 600 ms

Page 23: Coulomb-excitation of the exotic nuclei  94 Kr and  96 Kr

0

20

40

60

80

100

120

140

160

180

200

36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68

neutron number

B (

E2

)

Se

Kr

Sr

Zr

Mo

Ru

0

500

1000

1500

2000

2500

34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

neutron number

ener

gy

[keV

]

Se

Kr

Sr

Zr

Mo

Ru

?

?

Page 24: Coulomb-excitation of the exotic nuclei  94 Kr and  96 Kr

Mean-Square Charge Radii

Number of Neutrons

δ<

r2>

[fm

2]

M. Keim et al., Nucl. Phys. A586 (1995) 219-239

Page 25: Coulomb-excitation of the exotic nuclei  94 Kr and  96 Kr

Conclusion and Outlook

We determined a B(E2; 2+1 0+

1) value of 23.5(52) W.u. for 94Kr, which results in a lifetime of the 2+

1 state of τ = 7.3(16) ps.

An ionization chamber was used to measure the beam composition and to identify several contaminants, especially for the 96Kr beam

Our data on 96Kr do not confirm the previously known value of E(2+

1) so far. In contrast, we have some evidence for a 2+

1-state at about 552 keV. Continuation of the experiment needed, maybe using a different charge state (23+ 22+) to reduce the charge breeding and charge collecting time