Cosmic Ray Energetics And Mass for the International Space...

1
Operations Nominal data collection of 3 years on the Japanese Experimental Module Exposed Facility (JEMEF) 24/7 monitoring from the Science Operation Center (SOC) at University of Maryland Data produced at 355 kbps, or 3.7 GB/day 32 GB of onboard data storage (4fold redundant) Continuous downlink of housekeeping and science data in near realtime for monitoring Commanding to adjust instrument operation parameters as needed Science Mission Statement Extend the energy reach of direct measurements of cosmic rays to the highest energy possible to investigate cosmic ray origins, acceleration and propagation. Detector Systems 1 Silicon Charge Detector (SCD) 4 layers of 2x2 cm 2 silicon pixels used to determine incident particle charge Carbon Targets (Ctargets) – Layers of carbon plates to induce hadronic interactions for measurement in the calorimeter Top/Bottom Counting Detector (TCD/BCD) Plastic scintillators for electron/proton distinction Calorimeter (CAL) – 20 layers of alternating tungsten plates and scintillating fibers used to measure incident particle energy and trajectory within the instrument Boronated Scintillator Detector (BSD) Borondoped scintillator to capture thermal neutrons from hadronic interactions in the calorimeter providing additional e/p distinction Science Flight Computer (SFC) – The onboard computer used to control detectors, assemble events and store science data General Payload Attributes – Mass: 1258 kg. size: 1.85 m x 0.95 m x 1 m, power consumption: 550 W Acknowledgements The authors thank NASA GSFC WFF for project management and engineering support, and NASA JSC ISS Program Office for the launch support and the ISS accommodation. This work was supported in the U.S. by NASA grants NNX11AC52G, NNX08AC15G, NNX08AC16G and their predecessor grants, as well as by directed RTOP funds to NASA GSFC WFF. It is supported in Korea by the Creative Research Initiatives of MEST/NRF and by National Research Foundation Grants NRF2014R1A2A2A01002734, NRF2014R1A1A2006456. It is supported in France by IN2P3/CNRS and CNES and in Mexico by DGAPAUNAM and CONACYT. Balloon Heritage 6 flights totaling 161 days over Antarctica Flight altitude around 40 km, with residual atmospheric overburden ~3.9 g/cm 2 Successful recovery and refurbishing of hardware Discovery of discrepant hardening of elemental spectra Measurements of energy spectra at high energies Abstract The Cosmic Ray Energetics And Mass (CREAM) instrument is designed to directly measure cosmic rays with energy between 10 12 10 15 eV and composition from proton to iron thereby investigating cosmic ray origins, acceleration and propagation. CREAM has four subsystems: a silicon charge detector (SCD), top/bottom counting detectors (TCD/BCD), a calorimeter (CAL), and a boronated scintillator detector (BSD). Reconfiguring the payload for implementation on the International Space Station will provide an order of magnitude increase in exposure time and remove the atmospheric overburden as compared to previous balloon flights. In preparation for launch, the newly configured hardware must be tested, and remote monitoring and control capabilities must be established. The project overview, current status of testing, and preparations for launch are discussed here. What are Cosmic Rays? Energetic particles which are primarily protons but include nuclei and a small amount of electrons Originate and accelerate in both galactic and extragalactic sources Secondary cosmic rays are produced through spallation with interstellar medium They can be measured from the ground (indirect) or from the upper atmosphere/space (direct) Cosmic rays are one piece of the puzzle of modern cosmology and must be investigated in order to fully understand the complexities of our Universe The CREAM team in Antarctica just before launch. Attached to the payload are solar panels (black squares) and the communication satellite (round dome on upper right of the payload). Comparison of highenergy spectra from a nominal ISSCREAM mission (red circles) with existing data (black symbols). 2 Data from previous experiments include BESS (open squares), ATIC2 (open diamonds), JACEE (X), and RUNJOB (open inverted triangles). The CREAM heavy nuclei data: carbon (open circles), oxygen (filled squares), neon (open crosses), magnesium (open triangles), silicon (filled diamonds), and iron (asterisks). Science Questions Do supernovae supply the bulk of cosmic rays? What is the history of cosmic rays in the galaxy? What is the origin of the “knee” around 3x10 15 eV in the cosmic ray energy spectrum? Can the energy spectra of cosmic rays result from a single mechanism? References 1. H. S. Ahn et al., The Cosmic Ray Energetics And Mass (CREAM) Instrument, Nuclear Instrumental Methods A 579, 10341053, 2007; H. J Hyun, et al., Development of Top/Bottom Counting Detectors for the CREAM Experiment on the ISS, Proc. 33rd Int. Cosmic Ray Conf., Rio de Janeiro, ID 1017, 2013; T. Anderson et al., The ISSCREAM Boronated Scintillator Detector, Proc. 33rd Int. Cosmic Ray Conf., Rio de Janeiro, ID 0350, 2013 2. E. S. Seo et al., Cosmic Ray Energetics And Mass for the International Space Station (ISSCREAM). Advances in Space Research, in press, 2014. 3. H. S. Ahn et al., Discrepant Hardening Observed in CosmicRay Elemental Spectra. Astrophys. J Lett. 714 L89L92, 2010. 4. E. S. Seo, Direct Measurements of Cosmic Rays Using Balloon Borne Experiments, Astroparticle Physics, 39/40, 7687, 2012. Measured energy spectra of cosmic ray protons and helium nuclei. 3 The CREAMI spectra are compared with selected previous measurements using open symbols for protons and lled symbols for helium: CREAM (circles), AMS (stars), BESS (squares), CAPRICE (inverted triangles). Measuring boron to carbon ratio at high energies helps distinguish between propagation models. 4 ISSCREAM seeks to improve measurements in the region highlighted by the circle. Cosmic ray energy spectra span many orders of magnitude. ISSCREAM will extend direct measurements to the highest energy currently possible, approaching the “knee.” Cosmic Ray Energetics And Mass for the International Space Station E.S. Seo 1,* , Y. Amare 1 , T. Anderson 2 , D. Angelaszek 1 , M. Buénerd 3 , M. Copley 1 , S. Coutu 2 , L. Derome 3 , C. Ebongue 1 , L. Eraud 3 , I. Faddis 1 , B. Fields 1 , M. Gupta 1 , J.H. Han 1 , I.J. Howley 1 , H.G. Huh 1 , Y.S. Hwang 4 , H.J. Hyun 4 , S. Im 2 , H.B. Jeon 4 , J.A. Jeon 5 , D.Y. Kim 1 , H.J. Kim 4 , K.C. Kim 1 , M.H. Kim 1 , K. Kwashnak 1 , H.Y. Lee 5 , J. Lee 5 , M.H. Lee 1 , J. Liang 1 , J.T. Link 6 , L. Lutz 1 , A. Malinin 1 , J. Meade 1 , A. MenchacaRocha 7 , J.W. Mitchell 6 , S. Nutter 8 , O. Ofoha 1 , H. Park 4 , H.A. Park 5 , I.H. Park 5 , J.M. Park 4 , P. Patterson 1 , N. PicotClemente 1 , J.R. Smith 1 , P. Walpole 1 , R.P. Weinmann 1 , J. Wu 1 , Y.S. Yoon 1 1 Inst. for Phys. Sci. and Tech., University of Maryland College Park, USA; 2 Dept. of Physics, Penn State University, USA; 3 Laboratoire de Physique Subatomique et de Cosmologie, UJF – CNRS/IN2P3 – INP, France; 4 Dept. of Physics, Kyungpook National University, Republic of Korea; 5 Sungkyunkwan University, Physics Department, Republic of Korea; 6 Astrophysics Space Division, NASA Goddard Space Flight Center, USA; 7 Instituto de Fisica, Universidad Nacional Autonoma de Mexico,Mexico; 8 Dept. of Physics & Geology, Northern Kentucky University, USA *Principal Investigator Planned Measurements Measure elemental energy spectra of proton through iron from 10 12 to 10 15 eV Extend the boron to carbon ratio measurement to energies previously unavailable Identify high energy electrons to search for nearby sources Current Status Final verification including mechanical, electromagnetic, and thermal vacuum qualification testing was completed at Goddard Space Flight Center in August 2015 Payload was delivered to Kennedy Space Center for integration with SpaceX Dragon capsule trunk Launch is manifested for SpaceX11 in 2016 Payload will be installed on to the JEMEF via ISS and JEMEF robotic arms Path taken by CREAMI on its then record breaking flight of 42 days. The first circumnavigation is shown in red, the second in green, and the third in yellow. http://cosmicray.umd.edu/isscream/ SpaceX Launch Research Data Center, UMD Payload Operations Center, MSFC Science Operations Center, UMD RMS Handoff Flight in Dragon Trunk Visit our homepage using this QR code! Installation on JEMEF 초고에너지 우주선 연구

Transcript of Cosmic Ray Energetics And Mass for the International Space...

Page 1: Cosmic Ray Energetics And Mass for the International Space ...cosmicray.umd.edu/iss-cream/files/CREAM_Poster.pdf · This work was supported in the U.S. by NASA grants NNX11AC52G,

Ope

ratio

ns•Nom

inaldata

collectionof

3yearson

theJapane

seExpe

rimen

talM

oduleExpo

sed

Facility(JE

M‐EF)

•24

/7mon

itorin

gfrom

the

Science

Ope

ratio

nCe

nter

(SOC)

atUniversity

ofMaryland

•Da

taprod

uced

at3

55kbps,or

3.7GB/day

•32

GBof

onbo

arddata

storage(4‐fo

ldredu

ndant)

•Co

ntinuo

usdo

wnlinkof

housekeeping

andsciencedata

inne

arreal‐tim

efor

mon

itorin

g•Co

mmanding

toadjustinstrumento

peratio

nparametersas

need

ed

Science Mission

 Statemen

tExtend

 the en

ergy re

ach of dire

ct measurements of cosmic ra

ys to

 the highest e

nergy po

ssible to

 investigate cosm

ic ra

y origins, 

acceleratio

n and prop

agation.

Detector S

ystems1

•Silicon

Charge

Detector(SCD

)–

4layers

of2x2

cm2

silicon

pixels

used

tode

term

ine

incide

ntparticlecharge

•Ca

rbon

Targets(C‐targets)–Layers

ofcarbon

plates

toindu

cehadron

icinteractions

for

measurementinthecalorim

eter

•Top/Bo

ttom

Coun

tingDetector(TCD

/BCD

)–

Plastic

scintillators

for

electron

/proton

distinction

•Ca

lorim

eter

(CAL

)–20

layers

ofalternating

tungsten

plates

andscintillatin

gfib

ersused

tomeasure

incide

ntparticle

energy

and

trajectory

with

intheinstrument

•Bo

rona

ted

Scintillator

Detector

(BSD

)–

Boron‐do

ped

scintillatorto

capture

thermal

neutrons

from

hadron

icinteractions

inthe

calorim

eter

providing

additio

nal

e/p

distinction

•ScienceFlight

Compu

ter(SFC)–Th

eon

board

compu

terused

tocontrold

etectors,a

ssem

ble

eventsandstoresciencedata

•Gen

eral

Payloa

dAttributes

–Mass:

1258

kg.

size:

1.85

mx

0.95

mx

1m,

power

consum

ption:5

50W

Ackn

owledgem

ents

Theauthorsthank

NASAGSFCWFF

forp

rojectmanagem

ent

anden

gine

eringsupp

ort,andNAS

AJSCISSProgram

Office

forthelaun

chsupp

ortandtheISSaccommod

ation.

This

work

was

supp

orted

inthe

U.S.

byNAS

Agrants

NNX1

1AC5

2G,

NNX0

8AC1

5G,

NNX0

8AC1

6Gand

their

predecessorgrants,as

wellas

bydirected

RTOPfund

sto

NAS

AGSFCWFF.Itissupp

ortedin

Koreaby

theCreative

Research

Initiatives

ofMEST/NRF

andby

NationalR

esearch

Foun

datio

nGrants

NRF

‐201

4R1A

2A2A

0100

2734

,NRF

‐2014R1

A1A2

006456.

Itis

supp

orted

inFrance

byIN2P

3/CN

RSandCN

ESandin

Mexicoby

DGAP

A‐UNAM

and

CONAC

YT.

Ballo

on Herita

ge•6 flights to

taling 161 days    

over Antarctica

•Flight altitude

 aroun

d 40

 km, 

with

 resid

ual atm

osph

eric 

overbu

rden

 ~3.9 g/cm

2

•Successful re

covery and

 refurbish

ing of hardw

are

•Discovery of disc

repant 

harden

ing of elemental 

spectra

•Measurements of e

nergy 

spectra at high en

ergies

Abstract

TheCo

smic

RayEn

ergeticsAn

dMass(CRE

AM)instrumentis

desig

ned

todirectly

measure

cosm

icrays

with

energy

betw

een10

12‐1

015eV

andcompo

sitionfrom

proton

toiro

nthereb

yinvestigatingcosm

icrayorigins,acceleratio

nandprop

agation.

CREA

Mhasfour

subsystems:

asilicon

charge

detector

(SCD

),top/bo

ttom

coun

tingde

tectors

(TCD

/BCD

),a

calorim

eter

(CAL),

and

abo

ronated

scintillator

detector

(BSD

).Re

configuringthepayloadforim

plem

entatio

non

theInternationalS

pace

Stationwill

providean

orde

rof

magnitude

increase

inexpo

sure

timeandremovetheatmosph

eric

overbu

rden

ascomparedto

previous

balloon

flights.In

prep

arationforlaun

ch,the

newly

configured

hardware

mustbe

tested

,and

remote

mon

itorin

gand

control

capabilitiesmustbe

establishe

d.Th

eprojectoverview

,current

status

oftesting,

and

prep

arations

forlauncharediscussedhe

re.

Wha

tare

Cosm

icRa

ys?

•En

ergetic

particles

which

are

prim

arily

proton

sbu

tinclud

enu

clei

andasm

allamou

ntof

electron

s•

Orig

inate

and

accelerate

inbo

thgalacticandextragalactic

sources

•Second

arycosm

icrays

areprod

uced

throughspallatio

nwith

interstellar

med

ium

•Th

eycan

bemeasured

from

the

grou

nd(in

direct)o

rfrom

theup

per

atmosph

ere/space(dire

ct)

•Co

smic

rays

areon

epieceof

the

puzzle

ofmod

ern

cosm

ology

and

mustbe

investigated

inorde

rto

fully

unde

rstand

thecomplexities

ofou

rUniverse

TheCR

EAM

team

inAn

tarcticajust

before

laun

ch.

Attached

tothepayloadaresolarpanels

(black

squares)

andthecommun

icationsatellite

(rou

nddo

meon

uppe

rright

ofthepayload).

Comparison

ofhigh

‐ene

rgyspectrafrom

ano

minal

ISS‐CR

EAM

mission

(red

circles)

with

existingdata

(black

symbo

ls).2

Data

from

previous

expe

rimen

tsinclud

eBE

SS(ope

nsqua

res),

ATIC‐2

(ope

ndiam

onds),

JACE

E(X),

andRU

NJOB

(ope

ninverted

triangles).Th

eCR

EAM

heavy

nuclei

data:carbon

(ope

ncircles),oxygen

(filled

squares),ne

on(ope

ncrosses),magne

sium

(ope

ntriangles),silicon

(filled

diam

onds),andiro

n(asterisk

s).

Science Que

stions

•Do

 supe

rnovae sup

ply the bu

lk of 

cosm

ic ra

ys?

•What is the

 history of cosmic ra

ys in

 the galaxy?

•What is the

 orig

in of the

 “knee” 

arou

nd 3x101

5 eV

 in th

e cosm

ic ra

y en

ergy spe

ctrum?

•Can the en

ergy spe

ctra of cosmic 

rays re

sult from

 a single m

echanism

?

References

1.H. S. A

hn et a

l., The

 Cosmic Ray Energetics A

nd M

ass (CR

EAM) 

Instrument, Nuclear Instrumental M

etho

ds A 579, 1034‐1053, 

2007; H

. J Hyun, et a

l., Develop

ment o

f Top

/Bottom Cou

nting 

Detectors for th

e CR

EAM Experiment o

n the ISS, Proc. 33rd Int. 

Cosm

ic Ray Con

f., Rio de Janeiro

, ID 1017, 2013; T. And

erson 

et al., The

 ISS‐CR

EAM Boron

ated

 Scintillator D

etector, Proc. 

33rd Int. Co

smic Ray Con

f., Rio de Janeiro

, ID 0350, 2013

2.E. S. Seo

 eta

l., Cosmic Ray Energetics A

nd M

ass for th

e Internationa

l Spa

ce Statio

n (ISS‐CR

EAM).Ad

vances in Space 

Research, in press, 2014.

3.H. S. A

hnet al., Disc

repa

nt Hardening

 Observed in Cosmic‐Ray 

Elem

ental Spectra. Astrop

hys. J Lett. 714

L89‐L92, 2010.

4.E. S. Seo, D

irect M

easurements of C

osmic Rays U

sing Ba

lloon

 Bo

rne Experim

ents, Astroparticle Physic

s, 39/40

, 76‐87, 2012.

Measureden

ergy

spectraof

cosm

icrayproton

sand

helium

nuclei.3

TheCR

EAM‐Ispectraarecompa

red

with

selected

previous

measuremen

tsusing

open

symbo

lsforproton

sandfilledsymbo

lsforhe

lium:

CREA

M(circles),A

MS(stars),BE

SS(squ

ares),CA

PRICE

(inverted

triangles).

Measurin

g bo

ron to carbo

n ratio

 at h

igh energies helps 

distinguish

 between prop

agation mod

els.4ISS‐CR

EAM 

seeks to im

prove measurements in

 the region

 highlighted

 by th

e circle.

Cosm

icrayen

ergy

spectraspan

manyorde

rsof

magnitude

.ISS‐CR

EAM

will

extend

direct

measuremen

tsto

the

highesten

ergy

curren

tlypo

ssible,app

roaching

the“kne

e.”

Cos

mic

Ray

Ene

rget

ics

And

Mas

s fo

r th

e In

tern

atio

nal S

pace

Sta

tion

E.S. Seo

1,* , Y. Am

are1, T. A

nderson2, D

. Angelaszek1, M

. Bué

nerd

3 , M. Cop

ley1, S. Cou

tu2 , L. Derom

e3, C. Ebo

ngue

1 , L. Eraud

3 , I. Fadd

is1, B

. Fields1, M

. Gup

ta1 , J.H

. Han

1 , I.J. H

owley1

, H.G. H

uh1 , Y.S

. Hwang4, H

.J. Hyun4, S. Im

2 , H.B. Je

on4 , J.A

. Jeo

n5, D

.Y. Kim

1, H

.J. Kim

4 , K.C. Kim

1 , M.H. Kim

1 , K. 

Kwashn

ak1 , H.Y. Lee5, J. Lee

5 , M.H. Lee

1 , J. Liang1, J.T. Link6, L. Lutz1, A

. Malinin

1 , J. Meade

1 , A. M

enchaca‐Ro

cha7, J.W. M

itche

ll6, S. N

utter8, O

. Ofoha

 1 , H. Park4, H

.A. Park5, I.H. Park5, J.M

. Park4, P. Patterson

1 , N. Picot‐Clemente

1 , J.R

. Smith

1 , P. W

alpo

le1 , R.P. W

einm

ann1, J. W

u1, Y.S. Yoo

n11 Inst. for Phys. Sci. and

 Tech., University

 of M

aryland Co

llege Park, USA

; 2  Dep

t. of Physic

s, Pen

n State University, U

SA; 3

  Labo

ratoire

de Physiq

ue Sub

atom

ique

et de Co

smologie, U

JF –CN

RS/IN2P

3 –INP, France; 4 De

pt. of P

hysic

s, Kyungpo

okNational U

niversity, R

epub

lic of K

orea; 5

Sungkyun

kwan

University, P

hysic

s De

partment, Repu

blic of K

orea; 6

Astrop

hysic

s Space Divisio

n, NAS

A God

dard Space Flight Center, USA

; 7Institu

tode

 Fisica, U

niversidad

 Nacional A

uton

omade

 Mexico,Mexico;

8De

pt. of P

hysic

s & Geo

logy, N

orthern Kentucky University, U

SA *Principa

l Investig

ator

Plan

ned Measuremen

ts•Measure

elem

ental

energy

spectra

ofproton

throughiro

nfrom

1012to

1015eV

•Extend

the

boron

tocarbon

ratio

measuremen

tto

energies

previously

unavailable

•Iden

tifyhigh

energy

electron

sto

search

for

nearby

sources

Curren

t Status

•Final verificatio

n includ

ing mechanical, electrom

agne

tic, and

 thermal vacuu

qualificatio

n testing was com

pleted

 at G

oddard Space Flight Center in Au

gust 2015 

•Payload

was

delivered

toKenn

edySpace

Center

forintegration

with

SpaceX

Dragon

capsuletrun

k•Laun

chismanifested

forS

paceX‐11

in2016

•Payloadwillbe

installedon

totheJEM‐EFviaISSandJEM‐EFrobo

ticarms

Path

takenby

CREA

M‐Ion

itsthen

record

breaking

flightof

42days.Th

efirst

circum

navigatio

nis

show

nin

red,

thesecond

ingreen,

andthethird

inyellow.

http://cosmicray.um

d.ed

u/iss

‐cream

/

SpaceX

Laun

ch 

Research Data Ce

nter, 

UMD

Payload Operatio

ns 

Center, M

SFC

Science Operatio

ns 

Center, U

MD

RMS 

Hando

ff

Flight in

 Dragon

 Trunk

Visit our hom

epage 

using this QR code

!

Installatio

n on

 JEM‐EF

초고에너지우주선연구